Stroke Neurorehabilitation and the Role of Motor Imagery Training: Do ARAT and Barthel Index Improvements Support Its Clinical Use? A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Eligibility Criteria
2.2.1. Population
2.2.2. Intervention
2.2.3. Comparison
2.2.4. Outcomes
2.2.5. Study Design
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias and the Assessment of Methodological Quality of the Studies
2.6. Studies Data Synthesis and Analysis
2.6.1. Heterogeneity in ES Estimates
2.6.2. Sensitivity Analysis
2.6.3. Publication Bias Analysis
2.6.4. Moderator Analyses
3. Results
3.1. Search Outcome and Study Inclusion Process
3.2. Study Characteristics
3.3. Methodological Quality
3.4. Risk of Bias
3.5. Evaluation of MI Effects on ARAT Performance
3.5.1. Meta-Analytic Findings for MI Effects on ARAT
3.5.2. Sensitivity Analyses on ARAT
3.5.3. Publication Bias Assessment on ARAT
3.6. Analysis of the Effects of MI on Functional Independence
3.6.1. Meta-Analytic Findings for MI Effects on BI
3.6.2. Sensitivity Analyses on Functional Independence
3.6.3. Publication Bias Assessment on Functional Independence
3.7. Moderator Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries. Lancet 2024, 403, 2133–2161. [Google Scholar] [CrossRef]
- Shen, S.; Chu, T.; Wang, J.; Zhao, H.; Tang, J.; Xu, L.; Ni, W.; Tan, L.; Chen, Y. Progress in the application of motor imagery therapy in upper limb motor function rehabilitation of stroke patients with hemiplegia. Front. Neurol. 2025, 16, 1454499. [Google Scholar] [CrossRef] [PubMed]
- Ingram, L.A.; Butler, A.A.; Lord, S.R.; Gandevia, S.C. Use of a physiological profile to document upper limb motor impairment in ageing and in neurological conditions. J. Physiol. 2023, 601, 2251–2262. [Google Scholar] [CrossRef] [PubMed]
- Claflin, E.S.; Krishnan, C.; Khot, S.P. Emerging treatments for motor rehabilitation after stroke. Neurohospitalist 2015, 5, 77–88. [Google Scholar] [CrossRef]
- Lai, C.-H.; Sung, W.-H.; Chiang, S.-L.; Lu, L.-H.; Lin, C.-H.; Tung, Y.-C.; Lin, C.-H. Bimanual coordination deficits in hands following stroke and their relationship with motor and functional performance. J. Neuroeng. Rehabil. 2019, 16, 105. [Google Scholar] [CrossRef]
- De Wit, L.; Theuns, P.; Dejaeger, E.; Devos, S.; Gantenbein, A.R.; Kerckhofs, E.; Schuback, B.; Schupp, W.; Putman, K. Long-term impact of stroke on patients’ health-related quality of life. Disabil. Rehabil. 2017, 39, 1435–1440. [Google Scholar] [CrossRef]
- Santisteban, L.; Térémetz, M.; Bleton, J.P.; Baron, J.C.; Maier, M.A.; Lindberg, P.G. Upper limb outcome measures used in stroke rehabilitation studies: A systematic literature review. PLoS ONE 2016, 11, e0154792. [Google Scholar] [CrossRef]
- de Blas-Zamorano, P.; Montagut-Martínez, P.; Pérez-Cruzado, D.; Merchan-Baeza, J.A. Fugl-Meyer Assessment for upper extremity in stroke: A psychometric systematic review. J. Hand Ther. 2025, 1–29. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Lyle, R.C. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehabil. Res. 1981, 4, 483–492. [Google Scholar] [CrossRef]
- Zhang, W.; Li, W.; Liu, X.; Zhao, Q.; Gao, M.; Li, Z.; Lv, P.; Yin, Y. Examining the effectiveness of motor imagery combined with non-invasive brain stimulation for upper limb recovery in stroke patients: A systematic review and meta-analysis of randomized clinical trials. J. Neuroeng. Rehabil. 2024, 21, 209. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, K.B.; dos Santos Cardoso, M.; da Costa Cabral, V.R.; dos Santos, A.O.B.; da Silva, P.S.; de Castro, J.B.P.; de Souza Vale, R.G. Effects of motor imagery as a complementary resource on the rehabilitation of stroke patients: A meta-analysis of randomized trials. J. Stroke Cerebrovasc. Dis. 2021, 30, 105876. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Pendy, J.T.; Li, W.A.; Du, H.; Zhang, T.; Geng, X.; Ding, Y. Motor imagery-based rehabilitation: Potential neural correlates and clinical application for functional recovery of motor deficits after stroke. Aging Dis. 2017, 8, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, J.; Chitravas, N.; Meslo, I.L.; Thrift, A.G.; Indredavik, B. Not all stroke units are the same: A comparison of physical activity patterns in Melbourne, Australia, and Trondheim, Norway. Stroke 2008, 39, 2059–2065. [Google Scholar] [CrossRef]
- Kho, A.Y.; Liu, K.P.Y.; Chung, R.C.K. Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function. Aust. Occup. Ther. J. 2014, 61, 38–48. [Google Scholar] [CrossRef]
- Villa-Berges, E.; Laborda Soriano, A.A.; Lucha-López, O.; Tricas-Moreno, J.M.; Hernández-Secorún, M.; Gómez-Martínez, M.; Hidalgo-García, C. Motor imagery and mental practice in the subacute and chronic phases in upper limb rehabilitation after stroke: A systematic review. Occup. Ther. Int. 2023, 2023, 3752889. [Google Scholar] [CrossRef]
- Barclay, R.E.; Stevenson, T.J.; Poluha, W.; Semenko, B.; Schubert, J. Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke. Cochrane Database Syst. Rev. 2020, 2020, CD005950. [Google Scholar] [CrossRef]
- Guerra, Z.F.; Lucchetti, A.L.G.; Lucchetti, G. Motor imagery training after stroke: A systematic review and meta-analysis of randomized controlled trials. J. Neurol. Phys. Ther. 2017, 41, 205–214. [Google Scholar] [CrossRef]
- Polo-Ferrero, L.; Torres-Alonso, J.; Luis Sánchez-González, J.; Hernández-Rubia, S.; Pérez-Elvira, R.; Oltra-Cucarella, J. Motor imagery for post-stroke upper limb recovery: A meta-analysis of RCTs on Fugl-Meyer upper extremity scores. J. Clin. Med. 2025, 14, 7891. [Google Scholar] [CrossRef]
- Nakashima, A.; Okamura, R.; Moriuchi, T.; Fujiwara, K.; Higashi, T.; Tomori, K. Exploring methodological issues in mental practice for upper-extremity function following stroke-related paralysis: A scoping review. Brain Sci. 2024, 14, 202. [Google Scholar] [CrossRef]
- Page, S.J.; Dunning, K.; Hermann, V.; Leonard, A.; Levine, P. Longer versus shorter mental practice sessions for affected upper extremity movement after stroke: A randomized controlled trial. Clin. Rehabil. 2011, 25, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stone, P.W. Popping the (PICO) question in research and evidence-based practice. Appl. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef] [PubMed]
- McDonnell, M. Action Research Arm Test. Aust. J. Physiother. 2008, 54, 220. [Google Scholar] [CrossRef]
- Ohura, T.; Hase, K.; Nakajima, Y.; Nakayama, T. Validity and reliability of a performance evaluation tool based on the modified Barthel Index for stroke patients. BMC Med. Res. Methodol. 2017, 17, 131. [Google Scholar] [CrossRef]
- Philips, G.R.; Daly, J.J.; Príncipe, J.C. Topographical measures of functional connectivity as biomarkers for post-stroke motor recovery. J. Neuroeng. Rehabil. 2017, 14, 67. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley: Chichester, UK, 2009; pp. 1–421. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Wiley: Chichester, UK, 2019; pp. 1–694. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Cicchetti, D.V.; Feinstein, A.R. High agreement but low kappa: II. Resolving the paradoxes. J. Clin. Epidemiol. 1990, 43, 551–558. [Google Scholar] [CrossRef]
- Landis, J.R.; Gary, G.K. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 15 September 2025).
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef]
- Weights in Models Fitted with the rma.mv() Function [The metafor Package]. Available online: https://www.metafor-project.org/doku.php/tips:weights_in_rma.mv_models (accessed on 15 September 2025).
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, S.; Lagisz, M.; O’Dea, R.E.; Rutkowska, J.; Yang, Y.; Noble, D.W.A.; Senior, A.M. The orchard plot: Cultivating a forest plot for use in ecology, evolution, and beyond. Res. Synth. Methods 2021, 12, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef]
- van Aert, R.C.M.; Wicherts, J.M. Correcting for outcome reporting bias in a meta-analysis: A meta-regression approach. Behav. Res. Methods 2024, 56, 1994–2012. [Google Scholar] [CrossRef]
- Büttner, F.; Winters, M.; Delahunt, E.; Elbers, R.; Lura, C.B.; Khan, K.M.; Weir, A.; Ardern, C.L. Identifying the “incredible”! Part 1: Assessing the risk of bias in outcomes included in systematic reviews. Br. J. Sports Med. 2020, 54, 798–800. [Google Scholar] [CrossRef]
- Page, M.J.; Higgins, J.P.T.; Clayton, G.; Sterne, J.A.C.; Hróbjartsson, A.; Savović, J. Empirical evidence of study design biases in randomized trials: Systematic review of meta-epidemiological studies. PLoS ONE 2016, 11, e0159267. [Google Scholar] [CrossRef]
- Files Neuropsicología y Envejecimiento|SABIEX: Programa Integral Para Mayores de 55 Años en la UMH. Available online: https://sabiex.umh.es/lineas-de-investigacion/neuropsicologia-y-envejecimiento-files/ (accessed on 15 September 2025).
- Ahmad, F.; Al-Abdulwahab, S.; Al-Jarallah, N.; Al-Baradie, R.; Al-Qawi, M.Z.; Kashoo, F.Z.; Sachdeva, H.S. Relative & cumulative efficacy of auditory & visual imagery on upper limb functional activity among chronic stroke patients. Indian J. Physiother. Occup. Ther. 2014, 8, 259–264. [Google Scholar]
- Page, S.J.; Levine, P.; Sisto, S.A.; Johnston, M.V. A randomized efficacy and feasibility study of imagery in acute stroke. Clin. Rehabil. 2001, 15, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Page, S.J.; Levine, P.; Leonard, A. Mental practice in chronic stroke: Results of a randomized, placebo-controlled trial. Stroke 2007, 38, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Welfringer, A.; Leifert-Fiebach, G.; Babinsky, R.; Brandt, T. Visuomotor imagery as a new tool in the rehabilitation of neglect: A randomised controlled study of feasibility and efficacy. Disabil. Rehabil. 2011, 33, 2033–2043. [Google Scholar] [CrossRef] [PubMed]
- Ietswaart, M.; Johnston, M.; Dijkerman, H.C.; Joice, S.; Scott, C.L.; MacWalter, R.S.; Hamilton, S.J. Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain 2011, 134, 1373–1386. [Google Scholar] [CrossRef]
- Bovend’Eerdt, T.J.; Dawes, H.; Sackley, C.; Izadi, H.; Wade, D.T. An integrated motor imagery program to improve functional task performance in neurorehabilitation: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2010, 91, 939–946. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, N.; Cho, M.; Kim, D.J.; Yang, Y. Effects of mental practice on stroke patients’ upper extremity function and daily activity performance. J. Phys. Ther. Sci. 2015, 27, 1075–1077. [Google Scholar] [CrossRef]
- Braun, S.M.; Beurskens, A.J.; Kleynen, M.; Oudelaar, B.; Schols, J.M.; Wade, D.T. A multicenter randomized controlled trial to compare subacute “treatment as usual” with and without mental practice among persons with stroke in Dutch nursing homes. J. Am. Med. Dir. Assoc. 2012, 13, 85.e1–85.e7. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Xiong, X.; Sun, C.; Zhu, B.; Xu, Y.; Fan, M.; Tong, S.; Sun, L.; Guo, X. Motor imagery training after stroke increases slow-5 oscillations and functional connectivity in the ipsilesional inferior parietal lobule. Neurorehabil. Neural Repair 2020, 34, 321–332. [Google Scholar] [CrossRef]
- Wang, H.; Xiong, X.; Zhang, K.; Wang, X.; Sun, C.; Zhu, B.; Xu, Y.; Fan, M.; Tong, S.; Guo, X.; et al. Motor network reorganization after motor imagery training in stroke patients with moderate to severe upper limb impairment. CNS Neurosci. Ther. 2023, 29, 619–632. [Google Scholar] [CrossRef]
- Liu, W.; Cheng, X.; Rao, J.; Yu, J.; Lin, Z.; Wang, Y.; Wang, L.; Li, D.; Liu, L.; Gao, R. Motor imagery therapy improved upper limb motor function in stroke patients with hemiplegia by increasing functional connectivity of sensorimotor and cognitive networks. Front. Hum. Neurosci. 2024, 18, 1295859. [Google Scholar] [CrossRef]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Branscheidt, M.; Ejaz, N.; Xu, J.; Widmer, M.; Harran, M.D.; Cortés, J.C.; Kitago, T.; Celnik, P.; Hernandez-Castillo, C.; Diedrichsen, J.; et al. No evidence for motor-recovery-related cortical connectivity changes after stroke using resting-state fMRI. J. Neurophysiol. 2021, 127, 637–649. [Google Scholar] [CrossRef] [PubMed]
- van der Lee, J.H.; Beckerman, H.; Lankhorst, G.J.; Bouter, L.M. The responsiveness of the Action Research Arm Test and the Fugl-Meyer Assessment scale in chronic stroke patients. J. Rehabil. Med. 2001, 33, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.E.; Edwards, D.F.; Birkenmeier, R.L.; Dromerick, A.W. Estimating minimal clinically important differences of upper-extremity measures early after stroke. Arch. Phys. Med. Rehabil. 2008, 89, 1693–1700. [Google Scholar] [CrossRef]
- See, J.; Dodakian, L.; Chou, C.; Chan, V.; McKenzie, A.; Reinkensmeyer, D.J.; Cramer, S.C. A standardized approach to the Fugl-Meyer Assessment and its implications for clinical trials. Neurorehabil. Neural Repair 2013, 27, 732–741. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B. Predicting improvement in the upper paretic limb after stroke: A longitudinal prospective study. Restor. Neurol. Neurosci. 2007, 25, 453–460. [Google Scholar] [CrossRef]
- Hara, Y. Brain plasticity and rehabilitation in stroke patients. J. Nippon Med. Sch. 2015, 82, 4–13. [Google Scholar] [CrossRef]
- Park, C.H.; Chang, W.H.; Lee, M.; Kwon, G.H.; Kim, L.; Kim, S.T.; Kim, Y.-H. Predicting the performance of motor imagery in stroke patients: Multivariate pattern analysis of functional MRI data. Neurorehabil. Neural Repair 2015, 29, 247–254. [Google Scholar] [CrossRef]
- Malouin, F.; Richards, C.L.; Durand, A.; Doyon, J. Reliability of mental chronometry for assessing motor imagery ability after stroke. Arch. Phys. Med. Rehabil. 2008, 89, 311–319. [Google Scholar] [CrossRef]
- Phan, H.L.; Le, T.H.; Lim, J.M.; Hwang, C.H.; Koo, K.I. Effectiveness of augmented reality in stroke rehabilitation: A meta-analysis. Appl. Sci. 2022, 12, 1848. [Google Scholar] [CrossRef]
- Im, H.; Ku, J.; Kim, H.J.; Kang, Y.J. Virtual reality-guided motor imagery increases corticomotor excitability in healthy volunteers and stroke patients. Ann. Rehabil. Med. 2016, 40, 420–431. [Google Scholar] [CrossRef]
- Qu, H.; Zeng, F.; Tang, Y.; Shi, B.; Wang, Z.; Chen, X.; Wang, J. The clinical effects of brain–computer interface with robot on upper-limb function for post-stroke rehabilitation: A meta-analysis and systematic review. Disabil. Rehabil. Assist. Technol. 2024, 19, 30–41. [Google Scholar] [CrossRef]
- Khan, M.A.; Fares, H.; Ghayvat, H.; Brunner, I.C.; Puthusserypady, S.; Razavi, B.; Lansberg, M.; Poon, A.; Meador, K.J. A systematic review on functional electrical stimulation-based rehabilitation systems for upper limb post-stroke recovery. Front. Neurol. 2023, 14, 1272992. [Google Scholar] [CrossRef]
- Cramer, S.C.; Wolf, S.L.; Adams, H.P.; Chen, D.; Dromerick, A.W.; Dunning, K.; Ellerbe, C.; Grande, A.; Janis, S.; Lansberg, M.G.; et al. Stroke recovery and rehabilitation research: Issues, opportunities, and the National Institutes of Health StrokeNet. Stroke 2017, 48, 813–819. [Google Scholar] [CrossRef]






| Study | Study Design | Phase Stroke | Etiology | Lesion Laterality | Groups | Age | Intervention | Intervention Volume | Outcomes | Results | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Weeks | Frequency | Session Duration (Minutes) | ||||||||||
| Braun et al., 2012 [52] | RCT | Subacute | - | Both | IG (18) | 77.5 | Multi-professional rehabilitation + mental practice techniques | 6 | Min. 10 | - | MI BI 9HPT BBS RMI 10MWT | Patients in both groups significantly improved on almost all outcome measures, but the differences in improvements between the 2 groups were small. |
| CG (18) | 77.9 | Multi-professional rehabilitation | 6 | Min 10 | - | |||||||
| Fuzail et al., 2014 [45] | Pilot RCT | Chronic | - | - | IG (10) | - | Single-task training with auditory imagery techniques | 1 | 1 | 45 | ARAT MAL-AOU MAL-QOM BI | MI significantly improved upper limb function in chronic stroke patients compared to physiotherapy alone. |
| IG (10) | - | Single-task training with visual imagery techniques | 1 | 1 | 45 | |||||||
| IG (10) | - | Single-task training with auditory and visual techniques | 1 | 1 | 45 | |||||||
| CG (10) | - | Single task training | 1 | 1 | 45 | |||||||
| Wang et al., 2023 [54] | RCT | Chronic | Ischemic and hemorrhagic | Both | IG (17) | 54.36 | CRT + supervised MI (relaxation, basic movements, goal-directed daily tasks) | 4 | 5 | MI: 30 CRT: 180 | FM-UE MBI fMRI | Participants receiving MI showed greater FM-UE improvements than CG, accompanied by changes in slow-5 fractional amplitude of low-frequency fluctuations and ipsilesional inferior parietal connectivity, neuroimaging markers previously associated with motor improvement. |
| CG (17) | 59.71 | CRT | 4 | 5 | 180 | |||||||
| Ietswaart et al., 2011 [49] | RCT | Subacute | - | Both | IG (41) | 69.3 | Structured MI training focused on the affected upper limb, including imagined elementary movements, goal-directed tasks, activities of daily living, and facilitated imagery and CRT | 4 | 5 | MI: 45 CRT: 40 | ARAT HG Hand function BI | MP with MI showed no significant effects on motor recovery in early post-stroke patients. |
| Placebo (39) | 68.6 | Visual and sensory IM not related to motor control | 4 | 5 | 45 | |||||||
| CG (41) | 64.4 | CRT | 4 | 5 | 40 | |||||||
| Park et al., 2015 [51] | RCT | Chronic | ni | Both | IG (14) | 60 | MI centered on daily task practice (page turning, bean transfer, cup stacking) combined with CRT. | 2 | 5 | MI:10 CRT: 30 | FM-UE ARAT MBI | MI enhanced upper-limb function and performance in daily activities. |
| CG (15) | 58 | CRT | 2 | 5 | 40 | |||||||
| Wan Liu et al., 2024 [55] | RCT | Subacute | Ischemic and hemorrhagic | Both | IG (13) | 58.63 | CRT (physiotherapy, occupational therapy, electrical stimulation, Chinese acupuncture) combined with targeted MI training. | 4 | 5 | IM: 30 CRT: 120 | MBI FM-UE | MI combined with CRT led to greater improvements in upper-limb function and daily activities than CRT alone. |
| CG (13) | 60.17 | CRT (physical therapy, occupational therapy, electrical stimulation, and Chinese acupuncture) | 4 | 5 | 120 | |||||||
| Wang et al., 2020 [53] | Chronic | Ischemic and hemorrhagic | Both | IG (17) | 53.38 | CRT + supervised MI for the affected upper limb (relaxation, basic movements, goal-directed daily tasks) | 4 | 5 | IM: 30 CRT: 180 | FM-UE MBI fMRI | MI improved FM-UE more than CG and produced increases in slow-5 fractional amplitude of low-frequency fluctuations and changes in ipsilesional inferior parietal connectivity, both linked to motor recovery. | |
| CG (17) | 60.47 | CRT | 4 | 5 | 180 | |||||||
| Page et al., 2001 [46] | RCT | Subacute | IG (8) | 64.4 | CRT with upper/lower limb exercises, transfers, balance and gait training, and bimanual ADL practice, plus guided MI sessions after each therapy. | 6 | 3 | MI: 10 CRT: 60 | FM-UE ARAT | MI was shown to be a feasible and low-resource adjunct to CRT, with modest improvements observed relative to therapy alone. | ||
| CG (5) | 65.0 | CRT consisting of the same upper- and lower-limb exercises, transfer training, balance/walking activities, and ADL routines. | 6 | 3 | 60 | |||||||
| Page et al., 2007 [47] | RCT | Chronic | IG (16) | 58.7 | CRT focused on activities of daily living, combined with daily MP sessions directly after therapy. | 6 | 2 | MI: 30 CRT: 30 | FM-UE ARAT | MP enhanced arm motor function in individuals with chronic stroke. | ||
| CG (16) | 60.4 | CRT with equal therapist interaction. | 6 | 2 | 30 | |||||||
| Welfringer et al., 2011 [48] | RCT | Subacute | IG (15) | 56.3 | CRT supplemented with visuomotor MI therapy of the contralesional upper limb involving repetitive practice of positions and movement sequences plus CRT | 3 | MI: 7 CRT: 4 | MI: 60 CRT: 45 | BCT AFTS Representation tests Body touching ARAT | Kinesthetic visuomotor MI therapy was feasible and improved body and space perception in subacute neglect patients. | ||
| CG (15) | 57.1 | CRT | 3 | 4 | ||||||||
| Bovend’Eerdt 2010 [50] | RCT | Subacute and Chronic | IG (15) | 51.2 | CRT (standard physiotherapy and occupational therapy) supplemented with MI practice | 6 | 3 | MI:10 CRT: 50 | GAS RMI NEADL ARAT TUG | Both groups improved over time, with no significant differences between integrated MI and RCT. | ||
| CG (15) | 50.6 | CRT (standard physiotherapy and occupational therapy) | 6 | 3 | 50 | |||||||
| Study | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Fuzail et al., 2014 [45] | Y | Y | N | Y | N | N | Y | N | N | Y | Y | 5 |
| Ietswaart et al., 2011 [49] | Y | Y | Y | Y | N | N | Y | Y | Y | Y | Y | 8 |
| Page et al., 2001 [46] | Y | Y | N | N | N | N | Y | Y | Y | Y | Y | 6 |
| Page et al., 2007 [47] | Y | Y | N | Y | N | N | Y | Y | Y | Y | Y | 7 |
| Welfringer et al., 2011 [48] | Y | Y | N | Y | N | N | Y | Y | Y | Y | Y | 7 |
| Bovend’Eerdt et al., 2010 [50] | Y | Y | Y | Y | N | N | N | Y | Y | Y | Y | 7 |
| Braun et al., 2012 [52] | Y | Y | Y | Y | N | N | Y | Y | Y | Y | Y | 8 |
| Wang et al., 2023 [54] | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | 9 |
| Park et al., 2015 [51] | Y | Y | N | Y | N | N | N | Y | N | Y | Y | 5 |
| Wan Liu et al., 2024 [55] | Y | Y | N | Y | N | N | Y | N | N | Y | Y | 5 |
| Wang et al., 2020 [53] | Y | Y | N | Y | N | N | Y | Y | N | N | Y | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Polo-Ferrero, L.; Torres-Alonso, J.; Sánchez-González, J.L.; Hernández-Rubia, S.; Agudo Juan, M.; Pérez-Elvira, R.; Oltra-Cucarella, J. Stroke Neurorehabilitation and the Role of Motor Imagery Training: Do ARAT and Barthel Index Improvements Support Its Clinical Use? A Systematic Review and Meta-Analysis. Medicina 2026, 62, 174. https://doi.org/10.3390/medicina62010174
Polo-Ferrero L, Torres-Alonso J, Sánchez-González JL, Hernández-Rubia S, Agudo Juan M, Pérez-Elvira R, Oltra-Cucarella J. Stroke Neurorehabilitation and the Role of Motor Imagery Training: Do ARAT and Barthel Index Improvements Support Its Clinical Use? A Systematic Review and Meta-Analysis. Medicina. 2026; 62(1):174. https://doi.org/10.3390/medicina62010174
Chicago/Turabian StylePolo-Ferrero, Luis, Javier Torres-Alonso, Juan Luis Sánchez-González, Sara Hernández-Rubia, María Agudo Juan, Rubén Pérez-Elvira, and Javier Oltra-Cucarella. 2026. "Stroke Neurorehabilitation and the Role of Motor Imagery Training: Do ARAT and Barthel Index Improvements Support Its Clinical Use? A Systematic Review and Meta-Analysis" Medicina 62, no. 1: 174. https://doi.org/10.3390/medicina62010174
APA StylePolo-Ferrero, L., Torres-Alonso, J., Sánchez-González, J. L., Hernández-Rubia, S., Agudo Juan, M., Pérez-Elvira, R., & Oltra-Cucarella, J. (2026). Stroke Neurorehabilitation and the Role of Motor Imagery Training: Do ARAT and Barthel Index Improvements Support Its Clinical Use? A Systematic Review and Meta-Analysis. Medicina, 62(1), 174. https://doi.org/10.3390/medicina62010174

