Second Metacarpal Index as a Predictor of Secondary Displacement in Conservatively Treated Distal Radius Fractures
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design, Patients, and Data Collection
2.2. Treatment Protocol
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Description of the Patients Included
3.2. Associations Between Instability Predictors and Outcomes
3.2.1. Univariate Linear Regression Models
3.2.2. Multivariate Linear Regression Models
3.3. ROC Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nellans, K.W.; Kowalski, E.; Chung, K.C. The Epidemiology of Distal Radius Fractures. Hand Clin. 2012, 28, 113–125. [Google Scholar] [CrossRef]
- Diaz-Garcia, R.J.; Chung, K.C. The Evolution of Distal Radius Fracture Management—A Historical Treatise. Hand Clin. 2012, 28, 105–111. [Google Scholar] [CrossRef]
- Alanazi, A.A.; Alsharari, A.M.; Alrumaih, N.H.; Alsudays, A.I.; Alanazi, A.K.; Alhilali, M.; Bo Shagea, F.; Al-Rawaf, M.M.; Alsiwat, F.J. Surgical vs. Conservative Treatment of Distal Radius Fractures in the Elderly: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e75879. [Google Scholar] [CrossRef]
- Diepold, J.; Filipp, S.; Dussing, F.; Steiner, G.; Deininger, C.; Gotterbarm, T.; Wichlas, F. Poor Fracture Alignment Equals Poor Outcome? Analysis of Conservatively Managed Distal Radius Fractures. Arch. Orthop. Trauma Surg. 2025, 145, 442. [Google Scholar] [CrossRef]
- Walenkamp, M.M.J.; Vos, L.M.; Strackee, S.D.; Goslings, J.C.; Schep, N.W.L. The Unstable Distal Radius Fracture—How Do We Define It? A Systematic Review. J. Wrist Surg. 2015, 4, 307–316. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Bartina, Y.; Larti, M.; Kiaei, A.; Hemmati, M.; Shohaimi, S.; Mohammadi, M. Global Prevalence of Osteoporosis among the World Older Adults: A Comprehensive Systematic Review and Meta-Analysis. J. Orthop. Surg. Res. 2021, 16, 669. [Google Scholar] [CrossRef]
- Mantila Roosa, S.M.; Hurd, A.L.; Xu, H.; Fuchs, R.K.; Warden, S.J. Age-Related Changes in Proximal Humerus Bone Health in Healthy, White Males. Osteoporos. Int. 2012, 23, 2775–2783. [Google Scholar] [CrossRef] [PubMed]
- Gullborg, E.J.; Kim, J.H.; Ward, C.M.; Simcock, X.C. Optimizing Treatment Strategies for Distal Radius Fractures in Osteoporosis: A Comparative Review. Medicina 2024, 60, 1848. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, J.J.; Kamal, R.N.; Yao, J. Simple Assessment of Global Bone Density and Osteoporosis Screening Using Standard Radiographs of the Hand. J. Hand Surg. 2017, 42, 244–249. [Google Scholar] [CrossRef]
- Kitidumrongsook, P.; Luangjarmekorn, P.; Kuptniratsaikul, V.; Teeragananan, T.; Chaitantipongse, S. Measurement of Radiological Parameters of Distal Radius Fracture Using the Ulnar Axis Compared with the Radial Axis. J. Hand Surg. (Asian-Pac. Vol.) 2024, 29, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Pace, V.; Lanzetti, R.M.; Venditto, T.; Park, C.; Kim, W.J.; Rinonapoli, G.; Caraffa, A. Dorsally Displaced Distal Radius Fractures: Introduction of Pacetti’s Line as Radiological Measurement to Predict Dorsal Fracture Displacement. Acta Biomed. 2021, 92, e2021200. [Google Scholar] [CrossRef]
- Lichtman, D.M.; Bindra, R.R.; Boyer, M.I.; Putnam, M.D.; Ring, D.; Slutsky, D.J.; Taras, J.S.; Watters, W.C.; Goldberg, M.J.; Keith, M.; et al. American Academy of Orthopaedic Surgeons Clinical Practice Guideline on: The Treatment of Distal Radius Fractures. J. Bone Jt. Surg. 2011, 93, 775–778. [Google Scholar] [CrossRef]
- Bong, M.R.; Egol, K.A.; Leibman, M.; Koval, K.J. A Comparison of Immediate Postreduction Splinting Constructs for Controlling Initial Displacement of Fractures of the Distal Radius: A Prospective Randomized Study of Long-Arm Versus Short-Arm Splinting. J. Hand Surg. 2006, 31, 766–770. [Google Scholar] [CrossRef]
- Farah, N.; Nassar, L.; Farah, Z.; Schuind, F. Secondary Displacement of Distal Radius Fractures Treated by Bridging External Fixation. J. Hand Surg. (Eur. Vol.) 2014, 39, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Elbardesy, H.; Yousaf, M.I.; Reidy, D.; Ansari, M.I.; Harty, J. Distal Radial Fractures in Adults: 4 versus 6 Weeks of Cast Immobilisation after Closed Reduction, a Randomised Controlled Trial. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 3469–3474. [Google Scholar] [CrossRef]
- Okamura, A.; de Moraes, V.Y.; Neto, J.R.; Tamaoki, M.J.; Faloppa, F.; Belloti, J.C. No Benefit for Elbow Blocking on Conservative Treatment of Distal Radius Fractures: A 6-Month Randomized Controlled Trial. PLoS ONE 2021, 16, e0252667. [Google Scholar] [CrossRef]
- Meinberg, E.G.; Agel, J.; Roberts, C.S.; Karam, M.D.; Kellam, J.F. Fracture and Dislocation Classification Compendium-2018. J. Orthop. Trauma 2018, 32, S1–S170. [Google Scholar] [CrossRef]
- Bergh, C.; Wennergren, D.; Möller, M.; Brisby, H. Fracture Incidence in Adults in Relation to Age and Gender: A Study of 27,169 Fractures in the Swedish Fracture Register in a Well-Defined Catchment Area. PLoS ONE 2020, 15, e0244291. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.M.; Gong, H.S.; Chae, Y.J.; Kim, Y.S.; Kim, J.; Baek, G.H. Evaluation and Management of Osteoporosis and Sarcopenia in Patients with Distal Radius Fractures. Clin. Orthop. Surg. 2020, 12, 9–21. [Google Scholar] [CrossRef]
- O’Mara, A.; Kerkhof, F.; Kenney, D.; Segovia, N.; Asbell, P.; Ladd, A.L. Opportunistic Hand Radiographs to Screen for Low Forearm Bone Mineral Density: A Prospective and Retrospective Cohort Study. BMC Musculoskelet. Disord. 2024, 25, 159. [Google Scholar] [CrossRef] [PubMed]
- Lafontaine, M.; Hardy, D.; Delince, P. Stability Assessment of Distal Radius Fractures. Injury 1989, 20, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, C.J.; Verlinsky, L.; Emukah, C.C.; Ogburn, M.J.; Ubanwa, B.; Sager, B.W. Rethinking Lafontaine Criteria: Second Metacarpal Cortical Percentage as a Reliable Predictor of Distal Radius Fracture Instability. Hand 2025, 15589447251346859. [Google Scholar] [CrossRef] [PubMed]
- Ghodasra, J.H.; Yousaf, I.S.; Sanghavi, K.K.; Rozental, T.D.; Means, K.R.; Giladi, A.M. Assessing the Relationship Between Bone Density and Loss of Reduction in Nonsurgical Distal Radius Fracture Treatment. J. Hand Surg. 2021, 46, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.C.; Kim, H.M.; Malay, S.; Shauver, M.J. The Wrist and Radius Injury Surgical Trial (WRIST): 12-Month Outcomes from a Multicenter International Randomized Clinical Trial. Plast. Reconstr. Surg. 2020, 145, 1054e–1066e. [Google Scholar] [CrossRef]
- Haslhofer, D.J.; Froschauer, S.M.; Gotterbarm, T.; Schmidt, M.; Kwasny, O.; Holzbauer, M. Comparison of Surgical and Conservative Therapy in Older Patients with Distal Radius Fracture: A Prospective Randomized Clinic al Trial. J. Orthop. Traumatol. 2024, 25, 46. [Google Scholar] [CrossRef]
- Ong, J.; Snee, I.; Marcano, I.; Tintle, S.; Cheikh, M.; Giladi, A.M. Bone Health, Fragility Fractures, and the Hand Surgeon. J. Hand Surg. Glob. Online 2025, 7, 100709. [Google Scholar] [CrossRef]



| Variable | Category | n (%) = 105 |
|---|---|---|
| Age (years) | Median (IQR) | 68.00 (19.00) |
| Range | 20–90 | |
| Sex | Male | 23 (21.9) |
| Female | 82 (78.1) | |
| AO Classification | A1 | 2 (1.9) |
| A2 | 21 (20) | |
| A3 | 58 (55.2) | |
| B1 | 6 (5.7) | |
| B2 | 1 (1.0) | |
| B3 | 4 (3.8) | |
| C1 | 6 (5.7) | |
| C2 | 3 (2.9) | |
| C3 | 4 (3.8) | |
| Intra-articular fracture | Yes | 24 (22.9) |
| Dorsal comminution | Yes | 73 (69.5) |
| Initial displacement (>20° dorsal tilt) | Yes | 39 (37.1) |
| Associated ulnar fracture | Base | 37 (35.2) |
| Neck | 3 (2.9) | |
| Tip | 13 (12.4) | |
| No fracture | 52 (49.5) |
| Parameter | Measurement Time | Mean ± SD | Median (IQR) |
|---|---|---|---|
| 2MCI | 0.40 (0.32–0.49) | ||
| Radial Inclination (°) | Pre-reduction | 16.65 ± 6.31 | |
| Post-reduction | 21.00 (19.2–22.8) | ||
| 6 weeks | 16.40 (12.35–20.45) | ||
| Volar Inclination (°) | Pre-reduction | −14.18 ± 16.52 | |
| Post-reduction | 5.00 (0.25–9.75) | ||
| 6 weeks | −2.50 (−10.34–5.34) | ||
| Ulnar Variance (mm) | Pre-reduction | 3.49 ± 2.41 | |
| Post-reduction | 1.70 (0.20–3.25) | ||
| 6 weeks | 3.67 ± 2.74 | ||
| ∆ Radial Inclination (°) | 4.00 (0.97–7.02) | ||
| ∆ Volar Inclination (°) | 9.00 (2.70–15.45) | ||
| ∆ Ulnar variance (mm) | 1.80 (0.50–3.10) |
| Dependent Variable | Predictor | R2 | Adjusted R2 | B | Standard Error | β | 95% CI | t | p-Value |
|---|---|---|---|---|---|---|---|---|---|
| ∆Volar inclination | Age | 0.089 | 0.080 | 0.179 | 0.057 | 0.298 | 0.067–0.291 | 3.165 | 0.002 |
| 2MCI | 0.276 | 0.269 | −38.049 | 6.076 | −0.525 | −50.100–−25.998 | −6.262 | <0.001 | |
| Ulnar fracture | - | - | 0.045 | ||||||
| Dorsal comminution | - | - | 0.003 | ||||||
| Intra-articular fracture | - | - | 0.11 | ||||||
| Initial displacement | - | - | 0.16 | ||||||
| Sex | - | - | 0.08 | ||||||
| ∆ Radial inclination | Age | 0.147 | 0.139 | 0.113 | 0.027 | 0.384 | 0.060–0.165 | 4.216 | <0.001 |
| 2MCI | 0.233 | 0.225 | −17.042 | 3.050 | −0.482 | −23.090–−10.993 | −5.587 | <0.001 | |
| Ulnar fracture | - | - | 0.025 | ||||||
| Dorsal comminution | - | - | 0.047 | ||||||
| Intra-articular fracture | - | - | 0.68 | ||||||
| Initial displacement | - | - | 0.86 | ||||||
| Sex | - | - | 0.98 | ||||||
| ∆ Ulnar Variation | Age | 0.058 | 0.049 | 0.027 | 0.011 | 0.240 | 0.006–0.048 | 2.512 | 0.014 |
| 2MCI | 0.162 | 0.154 | −5.433 | 1.216 | −0.403 | −7.845–−3.022 | −4.468 | <0.001 | |
| Ulnar fracture | - | - | 0.024 | ||||||
| Dorsal comminution | - | - | <0.001 | ||||||
| Intra-articular fracture | - | - | 0.33 | ||||||
| Initial displacement | - | - | 0.007 | ||||||
| Sex | - | - | 0.87 |
| Outcome | R2 | Adjusted R2 | F | B | Standard Error | β | 95% CI | t | p | |
|---|---|---|---|---|---|---|---|---|---|---|
| ∆ Volar inclination | 0.291 | 0.255 | 8.129 | <0.001 | ||||||
| Age | −0.083 | 0.072 | −0.138 | −0.226–0.060 | −1.155 | 0.25 | ||||
| 2MCI | −42.533 | 8.829 | −0.587 | −60.052–−25.013 | −4.817 | <0.001 | ||||
| Ulnar fracture | 0.019 | 1.595 | 0.001 | −3.146–3.184 | −0.012 | 0.99 | ||||
| Dorsal comminution | 1.629 | 1.778 | 0.082 | −1.900–5.157 | 0.916 | 0.36 | ||||
| Sex | 1.079 | 2.016 | 0.049 | −2.920–5.079 | 0.593 | 0.59 | ||||
| ∆ Radial inclination | 0.255 | 0.217 | 6.772 | <0.001 | ||||||
| Age | 0.024 | 0.036 | 0.081 | −0.048–0.095 | 0.662 | 0.51 | ||||
| 2MCI | −12.923 | 4.414 | −0.366 | −21.682–−4.165 | −2.928 | 0.004 | ||||
| Ulnar fracture | 0.621 | 0.797 | 0.069 | −0.962–2.203 | 0.778 | 0.43 | ||||
| Dorsal comminution | 0.932 | 0.889 | 0.096 | −0.832–2.696 | 1.048 | 0.29 | ||||
| Sex | 0.929 | 1.008 | 0.086 | −1.071–2.928 | 0.359 | 0.35 | ||||
| ∆ Ulnar variance | 0.252 | 0.206 | 5.494 | <0.001 | ||||||
| Age | −0.003 | 0.014 | −0.031 | −0.031–0.024 | −0.248 | 0.80 | ||||
| 2MCI | −5.208 | 1.697 | −0.386 | −8.575–−1.841 | −3.069 | 0.003 | ||||
| Ulnar fracture | 0.360 | 0.308 | 0.106 | −0.252– 0.973 | 1.168 | 0.24 | ||||
| Dorsal comminution | 0.511 | 0.349 | 0.138 | −0.182–1.203 | 1.462 | 0.14 | ||||
| Initial displacement | 0.637 | 0.319 | 0.180 | 0.003–1.271 | 1.995 | 0.049 | ||||
| Sex | −0.251 | 0.387 | −0.061 | −1.019–0.518 | −0.648 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Jecan, A.; Tomoaia, G.; Melinte, R.M.; Jecan-Toader, D.; Rad Bodan, R.C.; Oltean-Dan, D. Second Metacarpal Index as a Predictor of Secondary Displacement in Conservatively Treated Distal Radius Fractures. Medicina 2026, 62, 105. https://doi.org/10.3390/medicina62010105
Jecan A, Tomoaia G, Melinte RM, Jecan-Toader D, Rad Bodan RC, Oltean-Dan D. Second Metacarpal Index as a Predictor of Secondary Displacement in Conservatively Treated Distal Radius Fractures. Medicina. 2026; 62(1):105. https://doi.org/10.3390/medicina62010105
Chicago/Turabian StyleJecan, Alexandru, Gheorghe Tomoaia, Răzvan Marian Melinte, Diana Jecan-Toader, Roxana Cristina Rad Bodan, and Daniel Oltean-Dan. 2026. "Second Metacarpal Index as a Predictor of Secondary Displacement in Conservatively Treated Distal Radius Fractures" Medicina 62, no. 1: 105. https://doi.org/10.3390/medicina62010105
APA StyleJecan, A., Tomoaia, G., Melinte, R. M., Jecan-Toader, D., Rad Bodan, R. C., & Oltean-Dan, D. (2026). Second Metacarpal Index as a Predictor of Secondary Displacement in Conservatively Treated Distal Radius Fractures. Medicina, 62(1), 105. https://doi.org/10.3390/medicina62010105

