IL-6 Versus TNF-α as Predictors of Echocardiographic Cardiac Remodeling in Maintenance Hemodialysis Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Clinical and Laboratory Assessments
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Echocardiographic Findings
3.3. Inflammatory Markers
3.4. Correlations Analyses Between Cytokines and Echocardiography
3.4.1. Spearman’s Rank Correlations
3.4.2. Multivariate Regression Analyses
4. Discussion
4.1. Key Findings
4.2. Comparison with Previous Studies
4.3. Mechanistic Insights
4.4. Clinical Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ASE | American Society of Echocardiography |
BMI | Body Mass Index |
CAC | Coronary Artery Calcification |
CKD | Chronic Kidney Disease |
CRP | C-Reactive Protein |
CRIC | Chronic Renal Insufficiency Cohort |
CVD | Cardiovascular Disease |
EACVI | European Association of Cardiovascular Imaging |
EF | Ejection Fraction |
ELISA | Enzyme-Linked Immunosorbent Assay |
ESC | European Society of Cardiology |
ESKD | End-Stage Kidney Disease |
ESRD | End-Stage Renal Disease |
FHN | Frequent Hemodialysis Network |
GLS | Global Longitudinal Strain |
HD | Hemodialysis |
IL-1β | Interleukin-1 beta |
IL-6 | Interleukin-6 |
IQR | Interquartile Range |
IVS | Interventricular Septum |
LA | Left Atrium |
LV | Left Ventricle |
LVEDD | Left Ventricular End-Diastolic Diameter |
LVESD | Left Ventricular End-Systolic Diameter |
LVH | Left Ventricular Hypertrophy |
LVM | Left Ventricular Mass |
RV | Right Ventricle |
RVD | Right Ventricular Diameter |
SD | Standard Deviation |
SPSS | Statistical Package for the Social Sciences |
TNF-α | Tumor Necrosis Factor-alpha |
References
- Dębska-Ślizień, A.; Bello, A.K.; Johnson, D.W.; Jha, V.; Harris, D.C.; Levin, A.; Tonelli, M.; Saad, S.; Zaidi, D.; Osman, M.A.; et al. International Society of Nephrology Global Kidney Health Atlas: Structures, organization, and services for the management of kidney failure in Eastern and Central Europe. Kidney Int. Suppl. 2021, 11, e24–e34. [Google Scholar] [CrossRef]
- Alexandrou, M.E.; Sarafidis, P.; Theodorakopoulou, P.Μ.; Sachpekidis, V.; Papadopoulos, C.; Loutradis, C.; Kamperidis, V.; Boulmpou, A.; Bakaloudi, D.R.; Faitatzidou, D.; et al. Cardiac geometry, function, and remodeling patterns in patients under maintenance hemodialysis and peritoneal dialysis treatment. Ther. Apher. Dial. 2022, 26, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Truyen, T.T.; Uy-Evanado, A.; Holmstrom, L.; Reinier, K.; Chugh, H.; Jui, J.; Herzog, C.A.; Chugh, S.S. Sudden Cardiac Arrest Associated with Hemodialysis A Community-Based Study. Kidney360 2025, 6, 805–813. [Google Scholar] [CrossRef]
- TTsilonis, K.; Sarafidis, P.A.; Kamperidis, V.; Loutradis, C.; Georgianos, P.I.; Imprialos, K.; Ziakas, A.; Sianos, G.; Nikolaidis, P.; Lasaridis, A.N.; et al. Echocardiographic Parameters During Long and Short Interdialytic Intervals in Hemodialysis Patients. Am. J. Kidney Dis. 2016, 68, 772–781. [Google Scholar] [CrossRef]
- Baradaran, A.; Hosseini, S.M.; Shirvani, R.; Hedayati, P.; Hoseini, Z. Study of the relationship between neutrophil-to-lymphocyte ratio and parathyroid hormone levels in patients undergoing hemodialysis, Isfahan, Iran. J. Prev. Epidemiol. 2021, 6, e19. [Google Scholar] [CrossRef]
- Cao, H.; Ye, H.; Sun, Z.; Shen, X.; Song, Z.; Wu, X.; He, W.; Dai, C.; Yang, J. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients. PLoS ONE 2014, 9, e113179. [Google Scholar] [CrossRef][Green Version]
- Vafadar-Afshar, G.; Rasmi, Y.; Yaghmaei, P.; Khadem-Ansari, M.H.; Makhdoomi, K.; Rasouli, J. The effects of nanocurcumin supplementation on inflammation in hemodialysis patients: A randomized controlled trial. Hemodial. Int. 2021, 25, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, H.; Yin, Y.; Wang, J. CRP, IL-2 and TNF-α level in patients with uremia receiving hemodialysis. Mol. Med. Rep. 2018, 17, 3350–3355. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y. Interleukin-6 levels can be used to estimate cardiovascular and all-cause mortality risk in dialysis patients: A meta-analysis and a systematic review. Immun. Inflamm. Dis. 2023, 11, e818. [Google Scholar] [CrossRef]
- Anavekar, N.S.; Pfeffer, M.A. Cardiovascular risk in chronic kidney disease. Kidney Int. Suppl. 2004, 66, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Losito, A.; Kalidas, K.; Santoni, S.; Jeffery, S. Association of interleukin-6-174G/C promoter polymorphism with hypertension and left ventricular hypertrophy in dialysis patients. Kidney Int. 2003, 64, 616–622. [Google Scholar] [CrossRef]
- Law, J.P.; Pickup, L.; Pavlovic, D.; Townend, J.N.; Ferro, C.J. Hypertension and cardiomyopathy associated with chronic kidney disease: Epidemiology, pathogenesis and treatment considerations. J. Hum. Hypertens. 2023, 37, 1–19. [Google Scholar] [CrossRef]
- Dobre, M.A.; Ahlawat, S.; Schelling, J.R. CKD-associated cardiomyopathy: Recent advances and future perspectives. Curr. Opin. Nephrol. Hypertens. 2025, 33, 203–211. [Google Scholar] [CrossRef]
- Kamińska, J.; Stopiński, M.; Mucha, K.; Jędrzejczak, A.; Gołębiowski, M.; Niewczas, M.A.; Pączek, L.; Foroncewicz, B. IL 6 but not TNF is linked to coronary artery calcification in patients with chronic kidney disease. Cytokine 2019, 120, 9–14. [Google Scholar] [CrossRef]
- Junho, C.V.C.; Frisch, J.; Soppert, J.; Wollenhaupt, J.; Noels, H. Cardiomyopathy in chronic kidney disease: Clinical features, biomarkers and the contribution of murin models in understanding pathophysiology. Clin. Kidney J. 2023, 16, 1786–1803. [Google Scholar] [CrossRef] [PubMed]
- Kaesler, N.; Babler, A.; Floege, J.; Kramann, R. Cardiac remodeling in chronic kidney disease. Toxins 2020, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Dominic, E.A.; Fink, J.C.; Ojo, A.O.; Barrows, I.R.; Reilly, M.P.; Townsend, R.R.; Joffe, M.M.; Rosas, S.E.; Wolman, M.; et al. Association between inflammation and cardiac geometry in chronic kidney disease: Findings from the CRIC study. PLoS ONE 2015, 10, e0124772. [Google Scholar] [CrossRef]
- Hassan, M.O.; Duarte, R.; Dix-Peek, T.; Vachiat, A.; Naidoo, S.; Dickens, C.; Grinter, S.; Manga, P.; Naicker, S. Correlation between volume overload, chronic inflammation, and left ventricular dysfunction in chronic kidney disease patients. Clin. Nephrol. 2016, 86, 131–135. [Google Scholar] [CrossRef] [PubMed]
- FrFreise, C.; Schaefer, B.; Bartosova, M.; Bayazit, A.; Bauer, U.; Pickardt, T.; Berger, F.; Rasmussen, L.M.; Jensen, P.S.; Laube, G. Arterial tissue transcriptional profiles associate with tissue remodeling and cardiovascular phenotype in children with end-stage kidney disease. Sci. Rep. 2019, 9, 10316. [Google Scholar] [CrossRef]
- Karur, G.R.; Wald, R.; Goldstein, M.B.; Wald, R.; Jimenez-Juan, L.; Kiaii, M.; Leipsic, J.; Kirpalani, A.; Bello, O.; Barthur, A.; et al. Association between conversion to in-center nocturnal hemodialysis and right ventricular remodeling. Nephrol. Dial. Transplant. 2018, 33, 1010–1016. [Google Scholar] [CrossRef]
- Chan, C.T.; Greene, T.; Chertow, G.M.; Kliger, A.S.; Stokes, J.B.; Beck, G.J.; Daugirdas, J.T.; Kotanko, P.; Larive, B.; Levin, N.W.; et al. Effects of frequent hemodialysis on ventricular volumes and left ventricular remodeling. Clin. J. Am. Soc. Nephrol. 2013, 8, 2106–2116. [Google Scholar] [CrossRef]
- Howerton, E.; Tarzami, S.T. Tumor Necrosis Factor-Alpha and Inflammation-Mediated Cardiac Injury. J. Cell Sci. Ther. 2017, 8, 8–11. [Google Scholar] [CrossRef]
- Rolski, F.; Błyszczuk, P. Complexity of TNF-α signaling in heart disease. J. Clin. Med. 2020, 9, 3267. [Google Scholar] [CrossRef]
- Sun, M.; Chen, M.; Dawood, F.; Zurawska, U.; Li, J.Y.; Parker, T.; Kassiri, Z.; Kirshenbaum, L.A.; Arnold, M.; Khokha, R.; et al. Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007, 115, 1398–1407. [Google Scholar] [CrossRef]
- Jobe, L.J.; Mele, G.C.; Levick, S.P.; Du, Y.; Brower, G.L.; Janicki, J.S. TNF-α inhibition attenuates adverse myocardial remodeling in a rat model of volume overload. Am. J. Physiol.-Heart Circ. Physiol. 2009, 297, 1462–1469. [Google Scholar] [CrossRef]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: Results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L.; McMurray, J.J.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted Anticytokine Therapy in Patients with Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef] [PubMed]
- Miao, K.; Zhou, L.; Ba, H.; Li, C.; Gu, H.; Yin, B.; Wang, J.; Yang, X.P.; Li, Z.; Wang, D.W. Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2. PLoS Biol. 2020, 18, e3000967. [Google Scholar] [CrossRef]
- Idborg, H.; Eketjäll, S.; Pettersson, S.; Gustafsson, J.T.; Zickert, A.; Kvarnström, M.; Oke, V.; Jakobsson, P.J.; Gunnarsson, I.; Svenungsson, E. TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, 1–11. [Google Scholar] [CrossRef]
- Supriyadi, R.; Agustanti, N.; Adisuhanto, M. Increase serum tumor necrosis factor alpha decreased serum cholesterol level, but not albumin, in hemodialysis patients with non-fibrotic hepatitis c infection. Open Access Maced. J. Med. Sci. 2021, 9, 614–619. [Google Scholar] [CrossRef]
- Song, J.; Navarro-Garcia, J.A.; Wu, J.; Saljic, A.; Abu-Taha, I.; Li, L.; Lahiri, S.K.; Keefe, J.A.; Aguilar-Sanchez, Y.; Moore, O.M.; et al. Chronic kidney disease promotes atrial fibrillation via inflammasome pathway activation. J. Clin. Investig. 2023, 133, e167517. [Google Scholar] [CrossRef]
- Zoccali, C.; Benedetto, F.A.; Mallamaci, F.; Tripepi, G.; Giacone, G.; Stancanelli, B.; Cataliotti, A.; Malatino, L.S. Left ventricular mass monitoring in the follow-up of dialysis patients: Prognostic value of left ventricular hypertrophy progression. Kidney Int. 2004, 65, 1492–1498. [Google Scholar] [CrossRef]
- Inoue, T.; Ogawa, T.; Iwabuchi, Y.; Otsuka, K.; Nitta, K. Left Ventricular End-Diastolic Diameter Is an Independent Predictor of Mortality in Hemodialysis Patients. Ther. Apher. Dial. 2012, 16, 134–141. [Google Scholar] [CrossRef]
- Rusu, C.C.; Kacso, I.; Moldovan, D.; Potra, A.; Tirinescu, D.; Ticala, M.; Maslyennikov, Y.; Urs, A.; Bondor, C.I. Exploring the Associations Between Inflammatory Biomarkers, Survival, and Cardiovascular Events in Hemodialysis Patients and the Interrelationship with Nutritional Parameters—The Experience of a Single Transylvanian Dialysis Center. J. Clin. Med. 2025, 14, 1139. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.; Engelmann, M.D.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Chertow, G.M.; Chang, A.M.; Felker, G.M.; Heise, M.; Velkoska, E.; Fellström, B.; Charytan, D.M.; Clementi, R.; Gibson, C.M.; Goodman, S.G. IL-6 inhibition with clazakizumab in patients receiving maintenance dialysis: A randomized phase 2b trial. Nat. Med. 2024, 30, 2328–2336. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kim, M.; Park, J.B.; Lee, J.; Huh, K.H.; Hong, G.R.; Ha, J.W.; Choi, J.O.; Shim, C.Y. Changes in Cardiac Structure and Function After Kidney Transplantation: A New Perspective Based on Strain Imaging. J. Cardiovasc. Imaging 2023, 31, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Shiino, K.; Obonyo, N.G.; Hanna, J.; Chamberlain, R.; Small, A.; Scalia, I.G.; Scalia, W.; Yamada, A.; Hamilton-Craig, C.R.; et al. Left Ventricular Global Strain Analysis by Two-Dimensional Speckle-Tracking Echocardiography: The Learning Curve. J. Am. Soc. Echocardiogr. 2017, 30, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Boehm, M.; Burri, H.; Butler, J.; Celutkien, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contributi. Eur. J. Heart Fail. 2022, 24, 4–131. [Google Scholar] [CrossRef]
Parameter | Mean | SD |
---|---|---|
Age (years) | 60.40 | 11.74 |
Dialysis duration (years) | 6.43 | 4.89 |
Dry weight (kg) | 83.33 | 19.33 |
Body Mass Index (BMI, kg/m2) | 29.17 | 6.43 |
Albumin (g/dL) | 4.07 | 0.39 |
Platelet count (PLT, ×103/µL) | 235.26 | 102.60 |
Hemoglobin (g/dL) | 10.83 | 1.26 |
Creatinine (mg/dL) | 8.52 | 2.04 |
Urea (mg/dL) | 122.46 | 26.99 |
Phosphorus (mg/dL) | 5.60 | 1.62 |
Calcium (mg/dL) | 8.52 | 0.46 |
Sodium (mEq/L) | 138.51 | 3.10 |
Potassium (mmol/L) | 5.42 | 0.64 |
Bicarbonate (mmol/L) | 22.19 | 2.27 |
Parameter | Value (Mean ± SD or n/%) |
---|---|
Left atrial diameter (LA, mm) | 41.87 ± 4.70 |
Right ventricular diameter (RV, mm) | 28 (26–29) * |
Aortic atheromatosis N (%) | 53/91.4% |
Endomyocardial calcifications N (%) | 41/70.7% |
Aortic valve calcifications N (%) | 39/67.2% |
Aortic valve fibrosis N (%) | 45/77.6% |
Mitral valve calcifications N (%) | 45/77.6% |
Mitral valve fibrosis N (%) | 45/77.6% |
Left ventricular end-diastolic diameter (LVEDD, mm) | 53.83 ± 6.21 |
Left ventricular end-systolic diameter (LVESD, mm) | 38.64 ± 6.80 |
Interventricular septum thickness (IVS, mm) | 12.89 ± 1.65 |
Left ventricular mass (LVM, g) | 267.43 ± 83.77 |
E/A ratio | 0.71 ± 0.34 |
Ejection fraction (EF, %) | 49.29 ± 7.98 |
Global longitudinal strain (GLS, %) | 14.68 ± 2.75 |
Endomyocardial calcifications (present) | 41/70.7% |
Parameter | Median (IQR) |
---|---|
IL-6 (pg/mL) | 7.36 (4.52–11.03) |
TNF-α (pg/mL) | 9.35 (7.90–12.57) |
IL-1β (pg/mL) | 44.439 (42.924–47.432) |
CRP (mg/dL) | 1.091 (0.249–1.210) |
Cytokine | Echo Parameter | ρ (Rho) | p-Value |
---|---|---|---|
IL-6 | LV mass | 0.630 | <0.001 |
RV | 0.260 | 0.053 | |
IVS | 0.107 | 0.676 (NS) | |
E/A ratio | 0.074 | 0.744 (NS) | |
EF | 0.105 | 0.670 (NS) | |
GLS | 0.315 | 0.244 (NS) | |
TNF-α | LV mass | −0.375 | 0.006 |
RV | −0.147 | 0.637 (NS) | |
IVS | 0.090 | 0.651 (NS) | |
E/A ratio | −0.032 | 0.858 (NS) | |
EF | 0.124 | 0.455 (NS) | |
GLS | 0.217 | 0.469 (NS) | |
IL-1β | LVEDD | 0.410 | 0.004 |
(NS) | Other echo params | — | >0.050 |
Metric | Value |
---|---|
R | 0.494 |
R2 | 0.244 |
Adjusted R2 | −0.147 |
Std. Error of Estimate | 24.355 |
F (df 1 = 15, df 2 = 29) | 0.624 |
p-value for overall model (Sig. F) | 0.831 (NS) |
Number of predictors initially tested | 15 |
Number of cases (df 2 = 29) | 45 |
Metric | Value |
Predictor | B | SE | β | t | p | 95% CI |
---|---|---|---|---|---|---|
LV mass (LVM, g) | 2.534 | 1.347 | 0.548 | 2.534 | 0.019 | 0.507 to 4.561 |
RV (RV, mm) | 0.605 | 0.293 | 0.151 | 2.063 | 0.042 | 0.022 to 1.188 |
Metric | Value |
---|---|
R | 0.622 |
R2 | 0.387 |
Adjusted R2 | 0.346 |
Std. Error | 21.295 |
F (2, 42) | 8.569 |
p (model) | 0.015 * |
Predictor | B (Unstandardized) | Std. Error | β (Standardized) | t-Value | p-Value | 95% CI for B |
---|---|---|---|---|---|---|
Age (years) | 0.168 | 0.042 | 0.606 | 3.962 | < 0.001 (**) | 0.082 to 0.254 |
CRP (mg/dL) | 0.797 | 0.367 | 0.418 | 2.173 | 0.038 (*) | 0.052 to 1.542 |
Albumin (g/dL) | 3.415 | 1.279 | 0.425 | 2.670 | 0.012 (*) | 0.802 to 6.028 |
Metric | Value |
---|---|
R | 0.716 |
R2 | 0.513 |
Adjusted R2 | 0.286 |
Std. Error of Estimate | 2.844 |
F (df 1 = 3, df 2 = 44) | 4.602 |
p (model) | <0.001 (*) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sircuța, A.F.; Grosu, I.D.; Schiller, A.; Petrica, L.; Ivan, V.; Schiller, O.; Palamar, M.; Mircea, M.-N.; Nișulescu, D.; Goleț, I.; et al. IL-6 Versus TNF-α as Predictors of Echocardiographic Cardiac Remodeling in Maintenance Hemodialysis Patients. Medicina 2025, 61, 1667. https://doi.org/10.3390/medicina61091667
Sircuța AF, Grosu ID, Schiller A, Petrica L, Ivan V, Schiller O, Palamar M, Mircea M-N, Nișulescu D, Goleț I, et al. IL-6 Versus TNF-α as Predictors of Echocardiographic Cardiac Remodeling in Maintenance Hemodialysis Patients. Medicina. 2025; 61(9):1667. https://doi.org/10.3390/medicina61091667
Chicago/Turabian StyleSircuța, Alexandru Florin, Iulia Dana Grosu, Adalbert Schiller, Ligia Petrica, Viviana Ivan, Oana Schiller, Marcel Palamar, Monica-Nicoleta Mircea, Daniel Nișulescu, Ionuț Goleț, and et al. 2025. "IL-6 Versus TNF-α as Predictors of Echocardiographic Cardiac Remodeling in Maintenance Hemodialysis Patients" Medicina 61, no. 9: 1667. https://doi.org/10.3390/medicina61091667
APA StyleSircuța, A. F., Grosu, I. D., Schiller, A., Petrica, L., Ivan, V., Schiller, O., Palamar, M., Mircea, M.-N., Nișulescu, D., Goleț, I., & Bob, F. (2025). IL-6 Versus TNF-α as Predictors of Echocardiographic Cardiac Remodeling in Maintenance Hemodialysis Patients. Medicina, 61(9), 1667. https://doi.org/10.3390/medicina61091667