The Use of Fibrin Clot During Meniscus Repair in Young Patients Reduces Clinical Symptom Rates at 12-Month Follow-Up: A Pilot Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Surgical Procedure
2.2. Postoperative Management and Rehabilitation
2.3. Evaluation and Data Collection
2.4. MRI Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flandry, F.; Hommel, G. Normal anatomy and biomechanics of the knee. Sports Med. Arthrosc. Rev. 2011, 19, 82–92. [Google Scholar] [CrossRef]
- Mameri, E.S.; Dasari, S.P.; Fortier, L.M.; Verdejo, F.G.; Gursoy, S.; Yanke, A.B.; Chahla, J. Review of Meniscus Anatomy and Biomechanics. Curr. Rev. Musculoskelet. Med. 2022, 15, 323–335. [Google Scholar] [CrossRef]
- Gupta, M.; Goyal, P.K.; Singh, P.; Sharma, A. Morphology of Intra-articular Structures and Histology of Menisci of Knee Joint. Int. J. Appl. Basic Med. Res. 2018, 8, 96–99. [Google Scholar] [CrossRef]
- Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Price, A.; Metcalfe, A. Meniscal tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 3892–3898. [Google Scholar] [CrossRef]
- Asokan, A.; Ayub, A.; Ramachandran, M. Pediatric meniscal injuries: Current concepts. J. Child. Orthop. 2023, 17, 70–75. [Google Scholar] [CrossRef]
- Francavilla, M.L.; Restrepo, R.; Zamora, K.W.; Sarode, V.; Swirsky, S.M.; Mintz, D. Meniscal pathology in children: Differences and similarities with the adult meniscus. Pediatr. Radiol. 2014, 44, 910–925. [Google Scholar] [CrossRef]
- Vinagre, G.; Cruz, F.; Alkhelaifi, K.; D’Hooghe, P. Isolated meniscus injuries in skeletally immature children and adolescents: State of the art. J. ISAKOS 2022, 7, 19–26. [Google Scholar] [CrossRef]
- Verdonk, R.; Madry, H.; Shabshin, N.; Dirisamer, F.; Peretti, G.M.; Pujol, N.; Spalding, T.; Verdonk, P.; Seil, R.; Condello, V.; et al. The role of meniscal tissue in joint protection in early osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, U.; Sonne-Holm, S.; Lauridsen, F.; Rosenklint, A. Long-term follow-up of meniscectomy in athletes. A prospect. longitud. study. J. Bone Jt. Surg. Br. Vol. 1987, 69, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Yunus Emre Bektaş, O.N.E. Long-Term Results of the Arthroscopic Meniscectomy Following Non-Traumatic Tears Due to Mucoid Degeneration and Traumatic Tears. Cyprus J. Med. Sci. 2022, 7, 266–270. [Google Scholar] [CrossRef]
- Kopf, S.; Beaufils, P.; Hirschmann, M.T.; Rotigliano, N.; Ollivier, M.; Pereira, H.; Verdonk, R.; Darabos, N.; Ntagiopoulos, P.; Dejour, D.; et al. Management of traumatic meniscus tears: The 2019 ESSKA meniscus consensus. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1177–1194. [Google Scholar] [CrossRef]
- Hampton, M.; Ali, F.; Nicolaou, N.; Ajuied, A.; Group, P.M.W. The management of isolated meniscal tears in skeletally immature children. An international expert consensus. Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 1259–1269. [Google Scholar] [CrossRef]
- Jaibaji, R.; Khaleel, F.; Jaibaji, M.; Volpin, A. Outcomes of Meniscal Repair in Patients Aged 40 and Above: A Systematic Review. J. Clin. Med. 2023, 12, 6922. [Google Scholar] [CrossRef]
- Nepple, J.J.; Dunn, W.R.; Wright, R.W. Meniscal Repair Outcomes at Greater Than Five Years. J. Bone Jt. Surg. Am. 2012, 94, 2222–2227. [Google Scholar] [CrossRef]
- Sedgwick, M.J.; Saunders, C.; Getgood, A.M.J. Systematic Review and Meta-analysis of Clinical Outcomes Following Meniscus Repair in Patients 40 Years and Older. Orthop. J. Sports Med. 2024, 12, 23259671241258974. [Google Scholar] [CrossRef]
- Yang, B.W.; Liotta, E.S.; Paschos, N. Outcomes of Meniscus Repair in Children and Adolescents. Curr. Rev. Musculoskelet. Med. 2019, 12, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Vanderhave, K.L.; Moravek, J.E.; Sekiya, J.K.; Wojtys, E.M. Meniscus Tears in the Young Athlete: Results of Arthroscopic Repair. J. Pediatr. Orthop. 2011, 31, 496. [Google Scholar] [CrossRef] [PubMed]
- Noyes, F.R.; Barber-Westin, S.D. Arthroscopic Repair of Meniscal Tears Extending into the Avascular Zone in Patients Younger than Twenty Years of Age. Am. J. Sports Med. 2002, 30, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Arnoczky, S.P.; Warren, R.F. Microvasculature of the human meniscus. Am. J. Sports Med. 1982, 10, 90–95. [Google Scholar] [CrossRef]
- Woodmass, J.M.; LaPrade, R.F.; Sgaglione, N.A.; Nakamura, N.; Krych, A.J. Meniscal Repair: Reconsidering Indications, Techniques, and Biologic Augmentation. J. Bone Jt. Surg. 2017, 99, 1222. [Google Scholar] [CrossRef]
- Rohde, M.S.; Trivedi, S.; Randhawa, S.; Wright, C.E.; Vuong, B.B.; Pham, N.; Stavinoha, T.; Ellis, H.B.; Ganley, T.J.; Green, D.W.; et al. Pediatric meniscus morphology varies with age: A cadaveric study. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4179–4186. [Google Scholar] [CrossRef]
- Kuczyński, N.; Boś, J.; Białoskórska, K.; Aleksandrowicz, Z.; Turoń, B.; Zabrzyńska, M.; Bonowicz, K.; Gagat, M. The Meniscus: Basic Science and Therapeutic Approaches. J. Clin. Med. 2025, 14, 2020. [Google Scholar] [CrossRef] [PubMed]
- Maak, T.G.; Fabricant, P.D.; Wickiewicz, T.L. Indications for Meniscus Repair. Clin. Sports Med. 2012, 31, 1–14. [Google Scholar] [CrossRef]
- Moran, C.J.; Busilacchi, A.; Lee, C.A.; Athanasiou, K.A.; Verdonk, P.C. Biological augmentation and tissue engineering approaches in meniscus surgery. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 944–955. [Google Scholar] [CrossRef]
- Taylor, S.A.; Rodeo, S.A. Augmentation techniques for isolated meniscal tears. Curr. Rev. Musculoskelet. Med. 2013, 6, 95–101. [Google Scholar] [CrossRef]
- Hutchinson, I.D.; Rodeo, S.A. The Current Role of Biologics for Meniscus Injury and Treatment. Curr. Rev. Musculoskelet. Med. 2022, 15, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Carlson Strother, C.R.; Saris, D.B.F.; Verdonk, P.; Nakamura, N.; Krych, A.J. Biological augmentation to promote meniscus repair: From basic science to clinic application—State of the art. J. ISAKOS 2020, 5, 150–157. [Google Scholar] [CrossRef]
- Shimomura, K.; Jacob, G.; Hanai, H.; Nakamura, N. Utilization of orthobiologic augmentation for meniscal repairs: Current concepts and future perspectives. J. Cartil. Jt. Preserv. 2023, 3, 100090. [Google Scholar] [CrossRef]
- Chen, K.; Aggarwal, S.; Baker, H.; Athiviraham, A. Biologic Augmentation of Isolated Meniscal Repair. Curr. Rev. Musculoskelet. Med. 2024, 17, 223–234. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Poggi, A.; Reale, D.; Andriolo, L.; Flanigan, D.C.; Filardo, G. Biologic Augmentation Reduces the Failure Rate of Meniscal Repair: A Systematic Review and Meta-analysis. Orthop. J. Sports Med. 2021, 9, 2325967120981627. [Google Scholar] [CrossRef]
- Davies, P.S.E.; Goldberg, M.; Anderson, J.A.; Dabis, J.; Stillwell, A.; McMeniman, T.J.; Myers, T. Fibrin clot augmentation of high-risk meniscal repairs may result in clinical healing in up to 90% of cases. J. ISAKOS 2024, 9, 100316. [Google Scholar] [CrossRef]
- Za, P.; Ambrosio, L.; Vasta, S.; Russo, F.; Papalia, G.F.; Vadalà, G.; Papalia, R. How to Improve Meniscal Repair through Biological Augmentation: A Narrative Review. J. Clin. Med. 2024, 13, 4688. [Google Scholar] [CrossRef]
- Sochacki, K.R.; Safran, M.R.; Abrams, G.D.; Donahue, J.; Chu, C.; Sherman, S.L. Platelet-Rich Plasma Augmentation for Isolated Arthroscopic Meniscal Repairs Leads to Significantly Lower Failure Rates: A Systematic Review of Comparative Studies. Orthop. J. Sports Med. 2020, 8, 2325967120964534. [Google Scholar] [CrossRef] [PubMed]
- Keller, R.E.; O’Donnell, E.A.; Medina, G.I.S.; Linderman, S.E.; Cheng, T.T.W.; Sabbag, O.D.; Oh, L.S. Biological augmentation of meniscal repair: A systematic review. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1915–1926. [Google Scholar] [CrossRef] [PubMed]
- Super, J.T.; LaPrade, R.F.; Robinson, J.; Parker, D.A.; DePhillipo, N.; Moatshe, G.; Beaufils, P.; Murray, I.R. Biologic augmentation of meniscus repair: A scoping review. Knee Surg. Sports Traumatol. Arthrosc. 2025, ksa.12634. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Nakasa, T.; Yoshizuka, M.; Yamasaki, T.; Yasunaga, Y.; Adachi, N.; Ochi, M. Comparison of fibrin clots derived from peripheral blood and bone marrow. Connect. Tissue Res. 2017, 58, 208–214. [Google Scholar] [CrossRef]
- Arnoczky, S.P.; Warren, R.F.; Spivak, J.M. Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J. Bone Jt. Surg. Am. 1988, 70, 1209–1217. [Google Scholar] [CrossRef]
- Jang, S.H.; Ha, J.K.; Lee, D.W.; Kim, J.G. Fibrin Clot Delivery System for Meniscal Repair. Knee Surg. Relat. Res. 2011, 23, 180–183. [Google Scholar] [CrossRef]
- Pujol, N.; Giordano, A.O.; Wong, S.E.; Beaufils, P.; Monllau, J.C.; Arhos, E.K.; Becker, R.; Della Villa, F.; Brett Goodloe, J.; Irrgang, J.J.; et al. The formal EU-US meniscus rehabilitation 2024 consensus: An ESSKA-AOSSM-AASPT initiative. Part I-Rehabilitation management after meniscus surgery (meniscectomy, repair and reconstruction). Knee Surg. Sports Traumatol. Arthrosc. 2025, 33, 3002–3013. [Google Scholar] [CrossRef]
- Martinkėnienė, V.B.; Austys, D.; Šaikus, A.; Brazaitis, A.; Bernotavičius, G.; Makulavičius, A.; Verkauskas, G. The Significance of Selecting an Appropriate Patient-Reported Outcome Measure (PROM): A Cross-Cultural Adaptation of the Specific Paediatric International Documentation Committee Subjective (Pedi-IKDC) Knee Form. Children 2023, 10, 1930. [Google Scholar] [CrossRef]
- Tegner, Y.; Lysholm, J. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res. 1985, 198, 43–49. [Google Scholar] [CrossRef]
- Heintjes, E.M.; Bierma-Zeinstra, S.M.A.; Berger, M.Y.; Koes, B.W. Lysholm scale and WOMAC index were responsive in prospective cohort of young general practice patients. J. Clin. Epidemiol. 2008, 61, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Briggs, K.K.; Steadman, J.R.; Hay, C.J.; Hines, S.L. Lysholm score and Tegner activity level in individuals with normal knees. Am. J. Sports Med. 2009, 37, 898–901. [Google Scholar] [CrossRef]
- Stoller, D.W.; Martin, C.; Crues, J.V.; Kaplan, L.; Mink, J.H. Meniscal tears: Pathologic correlation with MR imaging. Radiology 1987, 163, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, N.; Naouri, J.F.; Herman, S.; Gerometta, A.; Klouche, S.; Bohu, Y. A Current Review of the Meniscus Imaging: Proposition of a Useful Tool for Its Radiologic Analysis. Radiol. Res. Pract. 2016, 2016, 8329296. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Vilnius University. A Prospective Study Evaluating Different Arthroscopic Repair Methods for Youths with Traumatic Meniscus Injuries; ClinicalTrials.gov: Bethesda, MD, USA, 2024. [Google Scholar]
- Ra, H.J.; Ha, J.K.; Jang, S.H.; Lee, D.W.; Kim, J.G. Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 2126–2130. [Google Scholar] [CrossRef]
- Henning, C.E.; Lynch, M.A.; Yearout, K.M.; Vequist, S.W.; Stallbaumer, R.J.; Decker, K.A. Arthroscopic meniscal repair using an exogenous fibrin clot. Clin. Orthop. Relat. Res. 1990, 252, 64–72. [Google Scholar] [CrossRef]
- van Trommel, M.F.; Simonian, P.T.; Potter, H.G.; Wickiewicz, T.L. Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy 1998, 14, 360–365. [Google Scholar] [CrossRef]
- Nakayama, H.; Kanto, R.; Kambara, S.; Iseki, T.; Onishi, S.; Yoshiya, S. Successful treatment of degenerative medial meniscal tears in well-aligned knees with fibrin clot implantation. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3466–3473. [Google Scholar] [CrossRef]
- Kale, S.; Deore, S.; Gunjotikar, A.; Singh, S.; Ghodke, R.; Agrawal, P. Arthroscopic meniscus repair and augmentation with autologous fibrin clot in Indian population: A 2-year prospective study. J. Clin. Orthop. Trauma 2022, 32, 101969. [Google Scholar] [CrossRef] [PubMed]
- Martinkėnienė, V.B.; Austys, D.; Šaikus, A.; Brazaitis, A.; Bernotavičius, G.; Makulavičius, A.; Sveikata, T.; Verkauskas, G. Do MRI Results Represent Functional Outcomes Following Arthroscopic Repair of an Isolated Meniscus Tear in Young Patients?—A Prospective Comparative Cohort Study. Clin. Pract. 2024, 14, 602–613. [Google Scholar] [CrossRef] [PubMed]
- Vance, K.; Meredick, R.; Schweitzer, M.E.; Lubowitz, J.H. Magnetic Resonance Imaging of the Postoperative Meniscus. Arthrosc. J. Arthrosc. Relat. Surg. 2009, 25, 522–530. [Google Scholar] [CrossRef] [PubMed]
Variables | FC-Augmented Group, N = 29 (49.2%) | Non-FC-Augmented Group, N = 30 (50.8%) | p-Value | ||
---|---|---|---|---|---|
N (%) | Median (Q1–Q3) | N (%) | Median (Q1–Q2) | ||
Sex boys/girls | 14/15 (48.3/51.7) | 17/13 (56.7/43.3) | 0.606 | ||
Age (years) | 16 (14–17) | 15 (15–17) | 0.779 | ||
Meniscal side | 15/14 | 16/14 | |||
medial/lateral | (51.7/48.3) | (53.3/46.7) | 0.554 | ||
Follow-up (months) | 12 (11–14) | 12 (11.75–15) | 0.383 | ||
BMI | 21.63 (19.6–23.7) | 21.27 (20.2–23.3) | 0.862 | ||
Location of the tear | |||||
Posterior horn | 9 (31.0) | 13 (43.3) | 0.422 | ||
Posterior horn and body | 14 (43.8) | 13(43.3) | 0.796 | ||
Body | 6 (20.7) | 4 (13.3) | 0.506 | ||
Tear type | |||||
Longitudinal | 5 (17.2) | 7 (23.3) | 0.748 | ||
Bucket-handle | 9 (31.0) | 13 (43.3) | 0.422 | ||
Complex | 15 (1.7) | 10 (33.3) | 0.192 | ||
Time to operation (weeks) | 12 (4–24) | 12 (4–24) | 0.614 | ||
Stability of the tear | |||||
stable/unstable | 14/15 (48.3/51.7) | 13/17 (43.3/56.7) | 0.796 | ||
Suturing Technique | |||||
all-inside/hybrid | 10/19 (34.5/65.5) | 15/15 (50.0/50.0) | 0.295 | ||
Location of the tear | |||||
due to vascularity | |||||
red-red zone | 10 (34.5) | 9 (30.0) | 0.785 | ||
mixed zones | 19 (65.5) | 21 (70.0) | |||
Operation time (min) | 95 (87.5–107.5) | 70 (60–90) | <0.001 |
Score | FC-Augmented Group, N = 29 (49.2%) | Non-FC-Augmented Group, N = 30 (50.8%) | p-Value | ||
---|---|---|---|---|---|
subgroups | Median (Q1–Q3) | Median (Q1–Q3) | |||
Pedi-IKDC | |||||
Before the repair | 53.26 (39.67–61.40) | 45.65 (24.32–60.59) | 0.585 | ||
At the last follow-up | 93.47 (85.32–97.27) | 86.99 (80.73–96.73) | 0.264 | ||
Unstable-type tears N = 32 | N = 15, 93.47 (89.43–96.73) | N = 17, 85.75 (75.0–95.1) | 0.053 | ||
Tears in mixed zones of vascularity N = 40 | N = 19, 92.39 (76.08–96.73) | N = 21, 85.86 (74.75–95.65) | 0.497 | ||
Bucket handle-type tears N = 22 | N = 9, 92.39 (84.78–97.81) | N = 13, 85.95 (74.45–96.19 | 0.366 | ||
Complex-type tears N = 25 | N = 15, 95.65 (91.30–96.73) | N = 10, 86.41 (80.73–96.46) | 0.132 | ||
Complex- and bucket handle-type tears N = 47 | N = 24, 94.01 (89.20–96.73) | N = 23, 85.95 (75–95.65) | 0.066 | ||
Lysholm | |||||
Before the repair | 64 (47.50–74) | 65.55 (46.75–73.50) | 0.826 | ||
At the last follow-up | 94 (85–100) | 89.50 (84.75–100) | 0.607 | ||
Unstable-type tears N = 32 | N = 15, 94 (85–99) | N = 17, 89 (82.50–97) | 0.303 | ||
Tears in mixed zones of vascularity N = 40 | N = 19, 90 (82–100) | N = 21, 85 (79.50–97) | 0.428 | ||
Bucket handle-type tears N = 32 | N = 9, 94 (88.50–98) | N = 13, 94 (74–99) | 0.502 | ||
Complex-type tears N = 25 | N = 15, 90 (86–100) | N = 10, 89 (84.75–100) | 0.593 | ||
Complex- and bucket handle-type tears N = 47 | N = 24, 94 (86.75–99.75) | N = 23, 89 (84–99) | 0.397 | ||
Tegner | |||||
Before the repair | 4 (3–6) | 5.5 (3–7) | 0.149 | ||
At the last follow-up | 4 (2.5–5.5) | 4 (2.75–7) | 0.379 | ||
Unstable-type tears N = 32 | N = 15, 4 (3–6) | N = 17, 3 (2–5.5) | 0.375 | ||
Tears in mixed zones of vascularity N = 40 | N = 19, 4 (2–5) | N = 21, 4 (2.5–6.5) | 0.391 | ||
Bucket-handle-type tears N = 32 | N = 9, 4 (3–5) | N = 13, 4 (2–6) | 0.845 | ||
Complex-type tears N = 25 | N = 15, 5 (2–6) | N = 10, 4 (2.75–7) | 0.821 | ||
Complex- and bucket handle-type tears N = 47 | N = 24, 4 (2.75–5.75) | N = 23, 4 (2–6) | 0.957 |
Clinical Symptom | FC-Augmented Group, N = 29 (49.2%) | Non-FC-Augmented Group, N = 30 (50.8%) | p-Value | |
---|---|---|---|---|
N (%) | N/% | |||
Any pain at the last follow-up | ||||
Overall | 8 (27.5%) | 11 (36.6%) | 0.580 | |
Subgroups | ||||
Unstable-type tears N = 32 | 1 (6.6%) | 6 (35.2%) | 0.088 | |
Tears in mixed zones of vascularity N = 40 | 7 (36.8%) | 10 (47.6%) | 0.538 | |
Bucket handle-type tear N = 22 | 1 (11.1%) | 5 (38.4%) | 0.333 | |
Complex-type tears N = 25 | 4 (27.6%) | 4 (40.0%) | 0.667 | |
Complex- and bucket handle-type tears N = 47 | 5 (20.8%) | 9 (39.1%) | 0.212 | |
Swelling at the last follow-up | ||||
Overall | 4 (13.7%) | 3 (10%) | 0.706 | |
Subgroups | ||||
Unstable-type tears N = 32 | 2 (13.3%) | 2 (11.7%) | 1.0 | |
Tears in mixed zones of vascularity N = 40 | 3 (15.7%) | 2 (9.5%) | 0.654 | |
Bucket handle-type tears N = 22 | 2 (22.2%) | 1 (7.6%) | 0.544 | |
Complex-type tears N = 25 | 2 (13.3%) | 2 (20%) | 1.0 | |
Complex- and bucket handle-type tears N = 47 | 4 (16.7%) | 3 (13%) | 1.0 | |
Restriction of ROM at the last follow-up | ||||
Overall | 2 (6.8%) | 4 (13.3%) | 0.671 | |
Subgroups | ||||
Unstable-type tears N = 32 | 0 (0%) | 3 (17.6%) | 0.229 | |
Tears in mixed zones of vascularity N = 40 | 2 (10.5%) | 4 (19.0%) | 0.664 | |
Bucket handle-type tears N = 22 | 0 (0%) | 2 (15.3%) | 0.494 | |
Complex-type tears N = 25 | 1 (6.7%) | 2 (20.0%) | 0.543 | |
Complex- and bucket handle-type tears N = 47 | 1 (4.2%) | 4 (17.4%) | 0.188 | |
Any clinical symptoms at last follow-up | ||||
Overall | 11 (37.9%) | 16 (53.3%) | 0.299 | |
Subgroups | ||||
Unstable-type tears N = 32 | 2 (13.3%) | 10 (58.8%) | 0.012 | |
Tears in mixed zones of vascularity N = 40 | 9 (47.3%) | 14 (66.6%) | 0.337 | |
Bucket handle-type tears N = 22 | 2 (22.2%) | 7 (53.8%) | 0.203 | |
Complex-type tears N = 25 | 5 (33.3%) | 7 (70.0%) | 0.111 | |
Complex and bucket handle-type tears N = 47 | 7 (29.2%) | 14 (60.7%) | 0.041 |
MRI Grades | FC-Augmented Group, N = 29 (49.2%) | Non-FC-Augmented Group, N = 30 (50.8%) | p-Value | |
---|---|---|---|---|
N (%) | N/% | |||
Group with MRI grade 1 (fully healed) and MRI grade 2 (partially healed) compared to group with MRI grade 3 (unhealed) | ||||
Overall | 16/13 (55.2/44.8) | 13/17 (43.3/56.7) | 0.439 | |
Subgroups | ||||
Unstable-type tears N = 32 | 10/5 (66.7/33.3) | 6/11 (35.3/64.7) | 0.159 | |
Tears in mixed zones of vascularity N = 40 | 8/11 (42.1/57.9) | 7/14 (33.3/66.7) | 0.745 | |
Bucket handle-type tears N = 22 | 7/2 (77.8/22.2) | 6/7 (46.2/53.8) | 0.203 | |
Complex-type tears N = 25 | 6/9 (40.0/60.0) | 2/8 (20.0/80.0) | 0.402 | |
Complex and bucket handle-type tears N = 47 | 13/11 (54.2/45.8) | 8/15 (34.8/65.2) | 0.244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinkėnienė, V.B.; Austys, D.; Brazaitis, A.; Makulavičius, A.; Aukštikalnis, T.; Dockienė, I.; Verkauskas, G. The Use of Fibrin Clot During Meniscus Repair in Young Patients Reduces Clinical Symptom Rates at 12-Month Follow-Up: A Pilot Randomized Controlled Trial. Medicina 2025, 61, 1616. https://doi.org/10.3390/medicina61091616
Martinkėnienė VB, Austys D, Brazaitis A, Makulavičius A, Aukštikalnis T, Dockienė I, Verkauskas G. The Use of Fibrin Clot During Meniscus Repair in Young Patients Reduces Clinical Symptom Rates at 12-Month Follow-Up: A Pilot Randomized Controlled Trial. Medicina. 2025; 61(9):1616. https://doi.org/10.3390/medicina61091616
Chicago/Turabian StyleMartinkėnienė, Viktorija Brogaitė, Donatas Austys, Andrius Brazaitis, Aleksas Makulavičius, Tomas Aukštikalnis, Ilona Dockienė, and Gilvydas Verkauskas. 2025. "The Use of Fibrin Clot During Meniscus Repair in Young Patients Reduces Clinical Symptom Rates at 12-Month Follow-Up: A Pilot Randomized Controlled Trial" Medicina 61, no. 9: 1616. https://doi.org/10.3390/medicina61091616
APA StyleMartinkėnienė, V. B., Austys, D., Brazaitis, A., Makulavičius, A., Aukštikalnis, T., Dockienė, I., & Verkauskas, G. (2025). The Use of Fibrin Clot During Meniscus Repair in Young Patients Reduces Clinical Symptom Rates at 12-Month Follow-Up: A Pilot Randomized Controlled Trial. Medicina, 61(9), 1616. https://doi.org/10.3390/medicina61091616