Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Milk Sample Collection
2.2. Breast Milk Macronutrient Determination
2.3. Milk Fractionation
2.4. Exosome Extraction
2.5. Exosome Quantification and Size Profiling
2.6. Extraction of microRNAs
2.7. Amplification of microRNAs
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dror, D.K.; Allen, L.H. Overview of Nutrients in Human Milk. Adv. Nutr. Int. Rev. J. 2018, 9, 278S–294S. [Google Scholar] [CrossRef] [PubMed]
- Gartner, L.M.; Morton, J.; Lawrence, R.A.; Naylor, A.J.; O’Hare, D.; Schanler, R.J.; Eidelman, A.I.; American Academy of Pediatrics Section on Breastfeeding. Breastfeeding and the Use of Human Milk. Pediatrics 2005, 115, 496–506. [Google Scholar] [CrossRef] [PubMed]
- de la Torre Gomez, C.; Goreham, R.V.; Bech-Serra, J.J.; Nann, T.; Kussmann, M. “Exosomics”—A Review of Biophysics, Biology and Biochemistry of Exosomes with a Focus on Human Breast Milk. Front. Genet. 2018, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Bobrie, A.; Colombo, M.; Krumeich, S.; Raposo, G.; Théry, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 2012, 1, 18397. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [PubMed]
- Baier, S.R.; Nguyen, C.; Xie, F.; Wood, J.R.; Zempleni, J. MicroRNAs Are Absorbed in Biologically Meaningful Amounts from Nutritionally Relevant Doses of Cow Milk and Affect Gene Expression in Peripheral Blood Mononuclear Cells, HEK-293 Kidney Cell Cultures, and Mouse Livers. J. Nutr. 2014, 144, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Kahn, S.; Liao, Y.; Du, X.; Xu, W.; Li, J.; Lönnerdal, B. Exosomal MicroRNAs in Milk from Mothers Delivering Preterm Infants Survive in Vitro Digestion and Are Taken Up by Human Intestinal Cells. Mol. Nutr. Food Res. 2018, 62, e1701050. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yu, S.; Xu, M.; Li, P. Effects of microwave on extracellular vesicles and microRNA in milk. J. Dairy Sci. 2018, 101, 2932–2940. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Lozano, A.; Baier, S.; Grove, R.; Shu, J.; Giraud, D.; Leiferman, A.; Mercer, K.E.; Cui, J.; Badger, T.M.; Adamec, J.; et al. Concentrations of Purine Metabolites Are Elevated in Fluids from Adults and Infants and in Livers from Mice Fed Diets Depleted of Bovine Milk Exosomes and their RNA Cargos. J. Nutr. 2018, 148, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, S.; Rani, P.; Onteru, S.K.; Singh, D. Small Interfering RNA in Milk Exosomes Is Resistant to Digestion and Crosses the Intestinal Barrier In Vitro. J. Agric. Food Chem. 2017, 65, 9506–9513. [Google Scholar] [CrossRef] [PubMed]
- Paredes, P.T.; Gutzeit, C.; Johansson, S.; Admyre, C.; Stenius, F.; Alm, J.; Scheynius, A.; Gabrielsson, S. Differences in exosome populations in human breast milk in relation to allergic sensitization and lifestyle. Allergy 2014, 69, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.R.; Brede, G.; Johansen, J.; Johnsen, R.; Storrø, O.; Sætrom, P.; Øien, T.; Denning, P.W. Human Breast Milk miRNA, Maternal Probiotic Supplementation and Atopic Dermatitis in Offspring. PLoS ONE 2015, 10, e0143496. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, M.; Wang, X.; Li, Q.; Wang, T.; Zhou, X.; Wang, X.; Gao, X.; Li, X. Immune-related MicroRNAs are Abundant in Breast Milk Exosomes. Int. J. Biol. Sci. 2012, 8, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Kondracka, A.; Gil-Kulik, P.; Kondracki, B.; Frąszczak, K.; Oniszczuk, A.; Rybak-Krzyszkowska, M.; Staniczek, J.; Kwaśniewska, A.; Kocki, J. Occurrence, Role, and Challenges of MicroRNA in Human Breast Milk: A Scoping Review. Biomedicines 2023, 11, 248. [Google Scholar] [CrossRef] [PubMed]
- Carney, M.C.; Tarasiuk, A.; DiAngelo, S.L.; Silveyra, P.; Podany, A.; Birch, L.L.; Paul, I.M.; Kelleher, S.; Hicks, S.D. Metabolism-related microRNAs in maternal breast milk are influenced by premature delivery. Pediatr. Res. 2017, 82, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Lozano, E.; Sebastián-Valles, F.; Knott-Torcal, C. Circulating microRNAs in Breast Milk and Their Potential Impact on the Infant. Nutrients 2020, 12, 3066. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Ozdemir, T.; Katipoglu, N.; Akcan, A.B.; Turkmen, M.K. Comparison of Changes in Breast Milk Macronutrient Content During the First Month in Preterm and Term Infants. Breastfeed. Med. 2020, 15, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Yi, D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liang, M.; Hou, X.; Zhang, Y.; Zhang, H.; Guo, Z.; Jinyu, J.; Feng, Z.; Mei, Z. The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review. Biomed. Pharmacother. 2019, 112, 108583. [Google Scholar] [CrossRef] [PubMed]
- Moltó-Puigmartí, C.; Castellote, A.I.; Carbonell-Estrany, X.; López-Sabater, M.C. Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin. Nutr. 2011, 30, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-B.; Song, J.H.; Le, L.N.-H.; Kim, H.; Koh, J.W.; Seo, Y.; Jeong, H.R.; Kim, H.-T.; Ryu, S. Characterization of exosomal microRNAs in preterm infants fed with breast milk and infant formula. Front. Nutr. 2024, 11, 1339919. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Huo, Y.; Tang, Q.; Wang, X.; Wang, W.; Wu, D.; Li, Y.; Chen, L.; Wang, S.; Zhu, Y.; et al. Human Breast Milk Exosomal miRNAs are Influenced by Premature Delivery and Affect Neurodevelopment. Mol. Nutr. Food Res. 2024, 68, e2300113. [Google Scholar] [CrossRef] [PubMed]
- Lykken, E.A.; Li, Q.-J. The MicroRNA miR-191 Supports T Cell Survival Following Common γ Chain Signaling. J. Biol. Chem. 2016, 291, 23532–23544. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, W.; Lu, L.; Xie, Y.; Yan, J.; Chen, Y.; Di, C.; Gan, L.; Si, J.; Zhang, H.; et al. MicroRNA-16-5p regulates cell survival, cell cycle and apoptosis by targeting AKT3 in prostate cancer cells. Oncol. Rep. 2020, 44, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Sabbar, Z.S.; Kariminik, A.; Ghane, M. The roles played by hsa-miR-223-5p and mutations in the S gene of SARS-CoV-2 in COVID-19. Lab. Med. 2024, 56, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gaál, Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int. J. Mol. Sci. 2024, 25, 1942. [Google Scholar] [CrossRef] [PubMed]
- Buonfiglioli, A.; Efe, I.E.; Guneykaya, D.; Ivanov, A.; Huang, Y.; Orlowski, E.; Krüger, C.; Deisz, R.A.; Markovic, D.; Flüh, C.; et al. let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7. Cell Rep. 2019, 29, 3460–3471.e7. [Google Scholar] [CrossRef] [PubMed]
- Fadhil, R.S.; Wei, M.Q.; Nikolarakos, D.; Good, D.; Nair, R.G.; Ahmad, A. Salivary microRNA miR-let-7a-5p and miR-3928 could be used as potential diagnostic bio-markers for head and neck squamous cell carcinoma. PLoS ONE 2020, 15, e0221779. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Sun, Q.; Dai, L. Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells. Exp. Ther. Med. 2017, 14, 3299–3303. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Abraham, E. MicroRNAs in Immune Response and Macrophage Polarization. Arter. Thromb. Vasc. Biol. 2013, 33, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Sikora, M.; Śmieszek, A.; Pielok, A.; Marycz, K. MiR-21-5p regulates the dynamic of mitochondria network and rejuvenates the senile phenotype of bone marrow stromal cells (BMSCs) isolated from osteoporotic SAM/P6 mice. Stem Cell Res. Ther. 2023, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Lee, D.H.; Song, J.; Kim, K.-U.; Min, H.; Chung, S.-H.; Kim, T.H.; Kim, C.-Y.; Kang, I.; Lee, N.M.; et al. Relationship of MicroRNA according to Immune Components of Breast Milk in Korean Lactating Mothers. Pediatr. Gastroenterol. Hepatol. Nutr. 2024, 27, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Underwood, M.A. Human Milk for the Premature Infant. Pediatr. Clin. N. Am. 2013, 60, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Xu, R.; Zhang, J.; Yang, M.; Fan, J.; Huang, Y.; Sun, X. Composition of breast milk from mothers of premature and full-term infants and its influence in Z-Scores for infant physical growth. BMC Pediatr. 2024, 24, 292. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, C.; Okamoto, Y.; Aoyama, K.; Nakaki, T. MicroRNA: A Key Player for the Interplay of Circadian Rhythm Abnormalities, Sleep Disorders and Neurodegenerative Diseases. Clocks Sleep 2020, 2, 282–307. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Huang, Z.; Xu, Y.; Zhang, B.; Li, Y. Deep sequencing of microRNAs reveals circadian-dependent microRNA expression in the eyestalks of the Chinese mitten crab Eriocheir sinensis. Sci. Rep. 2023, 13, 5253. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.F.; Sakamoto, K.; Obrietan, K. MicroRNAs: A potential interface between the circadian clock and human health. Genome Med. 2011, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Kim, D.; Kim, J.; Jang, S.; Choi, M.; Choe, H.K.; Choe, Y.; Kim, K. microRNA-25 as a novel modulator of circadian Period2 gene oscillation. Exp. Mol. Med. 2020, 52, 1614–1626. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Saavedra, M.; Antoun, G.; Yanagiya, A.; Oliva-Hernandez, R.; Cornejo-Palma, D.; Perez-Iratxeta, C.; Sonenberg, N.; Cheng, H.-Y.M. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 2010, 20, 731–751. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Sehgal, A. Regulation of Circadian Behavioral Output via a MicroRNA-JAK/STAT Circuit. Cell 2012, 148, 765–779. [Google Scholar] [CrossRef] [PubMed]
- Floris, I.; Billard, H.; Boquien, C.-Y.; Joram-Gauvard, E.; Simon, L.; Legrand, A.; Boscher, C.; Rozé, J.-C.; Bolaños-Jiménez, F.; Kaeffer, B.; et al. MiRNA Analysis by Quantitative PCR in Preterm Human Breast Milk Reveals Daily Fluctuations of hsa-miR-16-5p. PLoS ONE 2015, 10, e0140488. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Stearns, A.T.; Park, P.J.; Dreyfuss, J.M.; Ashley, S.W.; Rhoads, D.B.; Tavakkolizadeh, A. MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts. Exp. Cell Res. 2010, 316, 3512–3521. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, D.d.S.; Gitaí, D.L.G.; de Andrade, T.G. Daily variations in the expression of miR-16 and miR-181a in human leukocytes. Blood Cells Mol. Dis. 2015, 54, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kim, W.; Lee, K.-H. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim. Cells Syst. 2023, 27, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-M.; Kim, T.S.; Jo, E.-K. MiR-146 and miR-125 in the regulation of innate immunity and inflammation. BMB Rep. 2016, 49, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Niu, L.; Wang, Y.; Zhao, G.; Tang, L.; Jiang, J.; Pan, S.; Ge, X. MicroRNA-17-5p alleviates sepsis-related acute kidney injury in mice by modulating inflammation and apoptosis. Mol. Med. Rep. 2024, 30, 139. [Google Scholar] [CrossRef] [PubMed]
- Leroux, C.; Chervet, M.L.; German, J.B. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv. Nutr. Int. Rev. J. 2021, 12, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, Y.; Zhu, S.; Wang, L.; Yang, L.; He, C. MiR-30 Family: A Novel Avenue for Treating Bone and Joint Diseases? Int. J. Med Sci. 2023, 20, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Godoy, P.M.; Bhakta, N.R.; Barczak, A.J.; Cakmak, H.; Fisher, S.; MacKenzie, T.C.; Patel, T.; Price, R.W.; Smith, J.F.; Woodruff, P.G.; et al. Large Differences in Small RNA Composition Between Human Biofluids. Cell Rep. 2018, 25, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.J.; Hu, H.T.; Li, H.L.; Chang, S. The Role of miRNAs in Immune Cell Development, Immune Cell Activation, and Tumor Immunity: With a Focus on Macrophages and Natural Killer Cells. Cells 2019, 8, 1140. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-P.; Yu, Y.-Z.; Zhao, H.; Xie, L.-J.; Wang, Q.-T.; Wang, Y.; Mu, Q. MicroRNA-454-5p promotes breast cancer progression by inducing epithelial-mesenchymal transition via targeting the FoxJ2/E-cadherin axis. Oncol. Rep. 2021, 46, 127. [Google Scholar] [CrossRef] [PubMed]
- Freiría-Martínez, L.; Iglesias-Martínez-Almeida, M.; Rodríguez-Jamardo, C.; Rivera-Baltanás, T.; Comís-Tuche, M.; Rodrígues-Amorím, D.; Fernández-Palleiro, P.; Blanco-Formoso, M.; Diz-Chaves, Y.; González-Freiria, N.; et al. Human Breast Milk microRNAs, Potential Players in the Regulation of Nervous System. Nutrients 2023, 15, 3284. [Google Scholar] [CrossRef] [PubMed]
- Yeruva, L.; Mulakala, B.K.; Rajasundaram, D.; Gonzalez, S.; Cabrera-Rubio, R.; Martínez-Costa, C.; Collado, M.C. Human milk miRNAs associate to maternal dietary nutrients, milk microbiota, infant gut microbiota and growth. Clin. Nutr. 2023, 42, 2528–2539. [Google Scholar] [CrossRef] [PubMed]
- Alsaweed, M.; Hartmann, P.E.; Geddes, D.T.; Kakulas, F. MicroRNAs in Breastmilk and the Lactating Breast: Potential Immunoprotectors and Developmental Regulators for the Infant and the Mother. Int. J. Environ. Res. Public Health 2015, 12, 13981–14020. [Google Scholar] [CrossRef] [PubMed]
- Słyk-Gulewska, P.; Kondracka, A.; Kwaśniewska, A. MicroRNA as a new bioactive component in breast milk. Non-Coding RNA Res. 2023, 8, 520–526. [Google Scholar] [CrossRef] [PubMed]
Term (5) | Preterm (5) | |
---|---|---|
Characteristics of mothers and infants | ||
Maternal age (years) | 33.01 ± 6.42 | 34.35 ± 2.84 |
Gestational age (week) * | 39.62 ± 1.82 | 31.58 ± 1.92 |
Birth weight (grams) * | 3445.65 ± 280.72 | 1748.45 ± 503 |
C-section (%) | 40 | 80 |
Males (%) | 20 | 80 |
Females (%) | 80 | 20 |
Nutritional components | ||
Fat (%) * | 0.86 ± 0.12 | 2.24 ± 0.51 |
Protein (%) | 1.21 ± 0.15 | 1.33 ± 0.12 |
Lactose (%) * | 4.48 ± 1.10 | 7.09 ± 0.48 |
ncRNA | Period | Mean | S. D. | p-Value |
---|---|---|---|---|
miR-17-5p | Morning milk preterm | 4.104 | 0.163 | 0.0090 * |
Morning milk term | 5.464 | 0.622 | ||
Noon milk preterm | 1.230 | 0.20 | 1.0000 | |
Noon milk term | 1.272 | 0.070 | ||
Night milk preterm | 4.616 | 0.457 | 0.0090 * | |
Night milk term | 1.140 | 0.212 | ||
miR-24 | Morning milk preterm | 2.158 | 0.231 | 0.0090 * |
Morning milk term | 1.098 | 0.220 | ||
Noon milk preterm | 1.324 | 0.467 | 0.0283 * | |
Noon milk term | 0.898 | 0.086 | ||
Night milk preterm | 1.946 | 0.223 | 0.0088 * | |
Night milk term | 0.98 | 0.133 | ||
miR-29b | Morning milk preterm | 1.926 | 0.144 | 0.0090 * |
Morning milk term | 13.26 | 1.477 | ||
Noon milk preterm | 2.154 | 0.153 | 0.0723 | |
Noon milk term | 2.004 | 0.023 | ||
Night milk preterm | 5.216 | 0.696 | 0.0090 * | |
Night milk term | 2.046 | 0.297 | ||
miR-30a-5p | Morning milk preterm | 1.988 | 0.090 | 0.7526 |
Morning milk term | 1.980 | 0.066 | ||
Noon milk preterm | 1.544 | 0.134 | 0.7540 | |
Noon milk term | 1.546 | 0.274 | ||
Night milk preterm | 6.850 | 0.468 | 0.0090 * | |
Night milk term | 1.530 | 0.307 | ||
miR-146a | Morning milk preterm | 2.424 | 0.323 | 0.0283 * |
Morning milk term | 1.578 | 0.618 | ||
Noon milk preterm | 2.266 | 0.103 | 0.2948 | |
Noon milk term | 2.200 | 0.166 | ||
Night milk preterm | 7.318 | 0.365 | 0.0090 * | |
Night milk term | 2.244 | 0.210 | ||
miR-150-5p | Morning milk preterm | 2.248 | 0.295 | 0.0090 * |
Morning milk term | 1.210 | 0.250 | ||
Noon milk preterm | 1.262 | 0.211 | 0.2506 | |
Noon milk term | 1.536 | 0.404 | ||
Night milk preterm | 1.686 | 0.240 | 0.6015 | |
Night milk term | 1.516 | 0.434 | ||
Mir-155-5p | Morning milk preterm | 1.828 | 0.271 | 0.0090 * |
Morning milk term | 6.392 | 0.453 | ||
Noon milk preterm | 1.152 | 0.306 | 0.0090 * | |
Noon milk term | 2.644 | 0.261 | ||
Night milk preterm | 1.586 | 0.418 | 0.0090 * | |
Night milk term | 3.352 | 0.535 | ||
miR-16-5p | Morning milk preterm | 1.49 | 0.445 | 0.7540 |
Morning milk term | 1.46 | 0.437 | ||
Noon milk preterm | 2.666 | 0.186 | 0.0090 * | |
Noon milk term | 3.078 | 0.120 | ||
Night milk preterm | 2.388 | 0.230 | 0.0090 * | |
Night milk term | 3.068 | 0.232 | ||
miR-191-5p | Morning milk preterm | 1.268 | 0.324 | 0.6752 |
Morning milk term | 1.426 | 0.481 | ||
Noon milk preterm | 2.092 | 0.178 | 0.0937 | |
Noon milk term | 2.372 | 0.284 | ||
Night milk preterm | 0.966 | 0.068 | 0.0090 * | |
Night milk term | 2.294 | 0.307 | ||
miR-223-5p | Morning milk preterm | 0.884 | 0.178 | 0.0090 * |
Morning milk term | 2.252 | 0.406 | ||
Noon milk preterm | 2.083 | 0.093 | 0.3443 | |
Noon milk term | 2.03 | 0.075 | ||
Night milk preterm | 1.146 | 0.111 | 0.0090 * | |
Night milk term | 1.936 | 0.073 | ||
miR-454-5p | Morning milk preterm | 2.054 | 0.694 | 0.0163 * |
Morning milk term | 1.656 | 0.464 | ||
Noon milk preterm | 0.71 | 0.134 | 0.0472 * | |
Noon milk term | 0.942 | 0.169 | ||
Night milk preterm | 0.412 | 0.118 | 0.0090 * | |
Night milk term | 0.868 | 0.176 | ||
Let-7a-5p | Morning milk preterm | 2.188 | 0.282 | 0.0090 * |
Morning milk term | 1.702 | 0.144 | ||
Noon milk preterm | 1.586 | 0.456 | 0.6015 | |
Noon milk term | 1.710 | 0.144 | ||
Night milk preterm | 2.278 | 0.310 | 0.0283 * | |
Night milk term | 1.670 | 0.181 | ||
Let-7b-5p | Morning milk preterm | 2.016 | 0.201 | 0.2087 |
Morning milk term | 1.890 | 0.139 | ||
Noon milk preterm | 2.016 | 0.201 | 0.6015 | |
Noon milk term | 1.890 | 0.139 | ||
Night milk preterm | 2.064 | 0.220 | 0.0090 | |
Night milk term | 1.194 | 0.357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villota Arcos, C.; Jeldes Jerez, E.; Carrasco Contreras, J.; Bittner Ortega, M.; Contreras Duarte, S.; Roco Videla, Á. Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study. Medicina 2025, 61, 1560. https://doi.org/10.3390/medicina61091560
Villota Arcos C, Jeldes Jerez E, Carrasco Contreras J, Bittner Ortega M, Contreras Duarte S, Roco Videla Á. Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study. Medicina. 2025; 61(9):1560. https://doi.org/10.3390/medicina61091560
Chicago/Turabian StyleVillota Arcos, Claudio, Emanuel Jeldes Jerez, Jorge Carrasco Contreras, Mauricio Bittner Ortega, Susana Contreras Duarte, and Ángel Roco Videla. 2025. "Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study" Medicina 61, no. 9: 1560. https://doi.org/10.3390/medicina61091560
APA StyleVillota Arcos, C., Jeldes Jerez, E., Carrasco Contreras, J., Bittner Ortega, M., Contreras Duarte, S., & Roco Videla, Á. (2025). Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study. Medicina, 61(9), 1560. https://doi.org/10.3390/medicina61091560