The Use of Imaging Techniques in the Diagnosis of Dermatoses of the Scalp
Abstract
1. Introduction
2. Non-Invasive Techniques
2.1. Trichoscopy
2.2. Optical Coherence Tomography Scalp Imaging
2.3. Phototrichogram
2.4. TrichoScan
2.5. Transmission Electron Microscopy and Scanning Electron Microscopy
2.6. Atomic Force Microscopy
2.7. Reflectance Confocal Microscopy
2.8. High-Frequency Ultrasonography
3. Semi-Invasive Techniques
3.1. Trichogram
3.2. Light Microscopy
3.3. Polarized Light Microscopy
4. Invasive Techniques
Ex Vivo Confocal Laser Scanning Microscopy (CLSM)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Broadley, D.; McElwee, K.J. A “Hair Raising” History of Alopecia Areata. Exp. Dermatol. 2020, 29, 208–222. [Google Scholar] [CrossRef]
- Dhurat, R.; Saraogi, P. Hair Evaluation Methods: Merits and Demerits. Int. J. Trichology 2009, 1, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, L.; Olszewska, M.; Majsterek, M.; Czuwara, J.; Slowinska, M. Presence and Future of Dermoscopy. Expert Rev. Dermatol. 2006, 1, 769–772. [Google Scholar] [CrossRef]
- Govindarajulu, S.M.; Srinivas, R.T.; Kuppuswamy, S.K.; Prem, P. Trichoscopic Patterns of Nonscarring Alopecias. Int. J. Trichology 2020, 12, 99–106. [Google Scholar] [CrossRef]
- Tosti, A. Atlas: Dermoscopy of Hair and Scalp Disorders: Pathological and Clinical Correlations; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Rudnicka, L.; Olszewska, M.; Rakowska, A. Atlas of Trichoscopy: Dermoscopy in Hair and Scalp Disease; Springer Verlag: London, UK, 2012. [Google Scholar]
- Rudnicka, L.; Olszewska, M.; Rakowska, A.; Oledzka, E.; Slowinsja, M. Trichoscopy: A New Method for Diagnosing Hair Loss. J. Drugs Dermatol. 2008, 7, 651–654. [Google Scholar] [PubMed]
- Rodrigues-Barata, A.R.; Moreno-Arrones, O.M.; Corralo, D.S.; Galvan, S.V. The “Starry Night Sky Sign” Using Ultraviolet Light Enhanced Trichoscopy: A New Sign That May Predict Efficacy of Treatment in Frontal Fibrosing Alopecia. Int. J. Trichology 2018, 10, 241–243. [Google Scholar] [CrossRef]
- Kołcz, K.; Kaznowska, E.; Reich, A.; Żychowska, M. Trichoscopy Guided Biopsy for the Evaluation of Scarring Alopecia Due to Discoid Lupus Erythematosus. Forum Dermatol. 2023, 9, 167–171. [Google Scholar] [CrossRef]
- Kołcz, K.; Reich, A.; Żychowska, M. Application of Ultraviolet Induced Fluorescence Trichoscopy (UVFT) in Hair and Scalp Diseases. Dermatol. Ther. 2025, 15, 269–289. [Google Scholar] [CrossRef]
- Olszewska, M.; Rudnicka, L.; Rakowska, A.; Kurzeja, M. Advances in Diagnosing Hair Loss. Dermatol. Rev./Przegl. Dermatol. 2009, 96, 247–253. [Google Scholar]
- Hedayati, B.; Horton, L.; Urso, B.; Ekelem, C.; Babadjouni, A.; Sharma, A.N.; Mesinkovska, N.A. In Vivo Imaging Techniques for the Human Scalp: A Systematic Review of the Literature. Lasers Surg. Med. 2024, 56, 741–754. [Google Scholar] [CrossRef]
- Yow, A.P.; Lee, W.Z.; Wong, D.W.K.; Tey, H.L. Subsurface Detection of Hair Follicles in Alopecia Areata Using Optical Coherence Tomography. Ski. Res. Technol. 2022, 28, 379–381. [Google Scholar] [CrossRef]
- Ekelem, C.; Feil, N.; Csuka, E.; Juhasz, M.; Lin, J.; Choi, F.; Asghari, A.; Heydarlou, D.; Mesinkovska, N.A. Optical Coherence Tomography in the Evaluation of the Scalp and Hair: Common Features and Clinical Utility. Lasers Surg. Med. 2021, 53, 129–140. [Google Scholar] [CrossRef]
- D’Amico, D.; Vaccaro, M.; Guarneri, F.; Borgia, F.; Cannavò, S.; Guarneri, B. Phototrichogram Using Videomicroscopy: A Useful Technique in the Evaluation of Scalp Hair. Eur. J. Dermatol. 2001, 11, 17–20. [Google Scholar] [PubMed]
- Van Neste, D.J. Contrast Enhanced Phototrichogram (CE-PTG): An Improved Non-Invasive Technique for Measurement of Scalp Hair Dynamics in Androgenetic Alopecia—Validation Study with Histology after Transverse Sectioning of Scalp Biopsies. Eur. J. Dermatol. 2001, 11, 326–331. [Google Scholar] [PubMed]
- Saraogi, P.P.; Dhurat, R.S. Automated Digital Image Analysis (TrichoScan®) for Human Hair Growth Analysis: Ease versus Errors. Int. J. Trichology 2010, 2, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R. TrichoScan: A Novel Tool for the Analysis of Hair Growth In Vivo. J. Investig. Dermatol. Symp. Proc. 2003, 8, 109–115. [Google Scholar] [CrossRef]
- Morioka, K. A Guide to Hair Follicle Analysis by Transmission Electron Microscopy: Technique and Practice. Exp. Dermatol. 2009, 18, 577–582. [Google Scholar] [CrossRef]
- Jeong, K.H.; Kim, K.S.; Lee, G.J.; Choi, S.J.; Jeong, T.J.; Shin, M.K.; Park, H.K.; Sim, W.Y.; Lee, M.H. Investigation of Aging Effects in Human Hair Using Atomic Force Microscopy. Ski. Res. Technol. 2011, 17, 63–68. [Google Scholar] [CrossRef]
- Bhattarai, D.; Banday, A.Z.; Sadanand, R.; Arora, K.; Kaur, G.; Sharma, S.; Rawat, A. Hair Microscopy: An Easy Adjunct to Diagnosis of Systemic Diseases in Children. Appl. Microsc. 2021, 51, 18. [Google Scholar] [CrossRef]
- Krawczyk-Wołoszyn, K.; Roczkowski, D.; Reich, A. Evaluation of Surface Structure and Morphological Phenomena of Caucasian Virgin Hair with Atomic Force Microscopy. Medicina 2024, 60, 297. [Google Scholar] [CrossRef]
- Rajadhyaksha, M.; Grossman, M.; Esterowitz, D.; Webb, R.H.; Anderson, R.R. In Vivo Confocal Scanning Laser Microscopy of Human Skin: Melanin Provides Strong Contrast. J. Investig. Dermatol. 1995, 104, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, L.; Olszewska, M.; Rakowska, A. In Vivo Reflectance Confocal Microscopy: Usefulness for Diagnosing Hair Diseases. J. Dermatol. Case Rep. 2008, 2, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Vladimirova, G.; Ruini, C.; Kapp, F.; Kendziora, B.; Ergün, E.Z.; Bağcı, I.S.; Krammer, S.; Jastaneyah, J.; Sattler, E.C.; Flaig, M.J.; et al. Ex Vivo Confocal Laser Scanning Microscopy: A Diagnostic Technique for Easy Real-Time Evaluation of Benign and Malignant Skin Tumours. J. Biophotonics 2022, 15, e202100372. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Lazo, E.; Velasco-Tamariz, V.; Saceda-Corralo, D.; Wortsman, X. [Translated article] Imaging techniques in trichology: Ultrasound, reflectance confocal microscopy, and optical coherence tomography. Actas Dermo-Sifiliográficas 2025, 116, T755–T763. [Google Scholar] [CrossRef]
- Kinoshita-Ise, M.; Ohyama, M.; Ramjist, J.M.; Foster, F.S.; Yang, V.X.D.; Sachdeva, M.; Sade, S.; Shear, N.H. Ultra high-frequency ultrasound with seventy-MHz transducer in hair disorders: Development of a novel noninvasive diagnostic methodology. J. Dermatol. Sci. 2021, 102, 167–176. [Google Scholar] [CrossRef]
- Polańska, A.; Dańczak-Pazdrowska, A.; Jałowska, M.; Żaba, R.; Adamski, Z. Current Applications of High-Frequency Ultrasonography in Dermatology. Adv. Dermatol. Allergol. 2017, 34, 535–542. [Google Scholar] [CrossRef]
- Serrano-Falcón, C.; Fernández-Pugnaire, M.A.; Serrano-Ortega, S. Hair and Scalp Evaluation: The Trichogram. Actas Dermosifiliogr. 2013, 104, 867–876. [Google Scholar] [CrossRef]
- Van Leeuwenhoek, A. Microscopical Observations of the Structure of Hair: Made Also and Communicated by the Abovesaid Mr. Anthony Leeuwenhoeck. Philos. Trans. R. Soc. 1678, 12, 1003–1005. [Google Scholar] [CrossRef]
- Weaver, R.L. Rediscovering Polarized Light Microscopy. Am. Lab. 2003, 35, 55–61. [Google Scholar]
- Oldenbourg, R. Polarized Light Microscopy: Principles and Practice. Cold Spring Harb. Protoc. 2013, 2013, pdb.top078600. [Google Scholar] [CrossRef]
- Ramanathan, J.; Sikorski, H.J.; Woods, D. Electron Microscope Studies of the Surface Structure of Wool and Other Fibres. Biochim. Biophys. Acta 1955, 18, 323. [Google Scholar] [CrossRef]
- de Cássia Comis Wagner, R.; Kiyohara, P.K.; Silveira, M.; Joekes, I. Electron Microscopic Observations of Human Hair Medulla. J. Microsc. 2007, 226, 54–63. [Google Scholar] [CrossRef]
- Kaliyadan, F.; Gosai, B.B.; Al Melhim, W.N.; Feroze, K.; Qureshi, H.A.; Ibrahim, S.; Kuruvilla, J. Scanning Electron Microscopy Study of Hair Shaft Damage Secondary to Cosmetic Treatments of the Hair. Int. J. Trichology 2016, 8, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.R.R.C.; Couto, R.A.A.; Freire, T.B.; Goshiyama, A.M.; Baby, A.R.; Velasco, M.V.R.; Constantino, V.R.L.; Matos, J.D.R. Heat-Damaged Evaluation of Virgin Hair. J. Cosmet. Dermatol. 2019, 18, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Swift, J.A.; Smith, J.R. Atomic Force Microscopy of Human Hair. Scanning 2000, 22, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic Force Microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef]
- Jazvinšćak Jembrek, M.; Vlainić, J.; Čadež, V.; Šegota, S. Atomic Force Microscopy Reveals New Biophysical Markers for Monitoring Subcellular Changes in Oxidative Injury: Neuroprotective Effects of Quercetin at the Nanoscale. PLoS ONE 2018, 13, e0200119. [Google Scholar] [CrossRef]
- Gaidash, A.A.; Sinitsa, L.N.; Babenko, O.A.; Lugovskoy, A.A. Nanoporous Structure of Bone Matrix at Osteoporosis from Data of Atomic Force Microscopy and IR Spectroscopy. J. Osteoporos. 2011, 2011, 162041. [Google Scholar] [CrossRef]
- Main, K.H.S.; Provan, J.I.; Haynes, P.J.; Wells, G.; Hartley, J.A.; Pyne, A.L.B. Atomic Force Microscopy—A Tool for Structural and Translational DNA Research. APL Bioeng. 2021, 5, 031504. [Google Scholar] [CrossRef]
- Horton, M.; Charras, G.; Lehenkari, P. Analysis of Ligand-Receptor Interactions in Cells by Atomic Force Microscopy. J. Recept. Signal Transduct. Res. 2002, 22, 169–190. [Google Scholar] [CrossRef]
- Breakspear, S.; Smith, J.R. Returning to the Same Area of Hair Surfaces before and after Treatment: A Longitudinal AFM Technique. J. Microsc. 2004, 215, 34–39. [Google Scholar] [CrossRef]
- Chen, N.; Bhushan, B. Morphological, Nanomechanical and Cellular Structural Characterization of Human Hair and Conditioner Distribution Using Torsional Resonance Mode with an Atomic Force Microscope. J. Microsc. 2005, 220, 96–112. [Google Scholar] [CrossRef] [PubMed]
- La Torre, C.; Bhushan, B. Nanotribological Effects of Silicone Type, Silicone Deposition Level, and Surfactant Type on Human Hair Using Atomic Force Microscopy. J. Cosmet. Sci. 2006, 57, 37–56. [Google Scholar] [PubMed]
- Chen, N.; Bhushan, B. Atomic Force Microscopy Studies of Conditioner Thickness Distribution and Binding Interactions on the Hair Surface. J. Microsc. 2006, 221, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Lodge, R.A.; Bhushan, B. Effect of Physical Wear and Triboelectric Interaction on Surface Charge as Measured by Kelvin Probe Microscopy. J. Colloid Interface Sci. 2007, 310, 321–330. [Google Scholar] [CrossRef]
- Aksoy, S.; Demircioglu, P.; Bogrekci, I. Advanced Artificial Intelligence Techniques for Comprehensive Dermatological Image Analysis and Diagnosis. Dermato 2024, 4, 173–186. [Google Scholar] [CrossRef]
- Poletti, G.; Orsini, F.; Lenardi, C.; Barborini, E. A Comparative Study between AFM and SEM Imaging on Human Scalp Hair. J. Microsc. 2003, 211, 249–255. [Google Scholar] [CrossRef]
- O’Connor, S.D.; Komisarek, K.L.; Baldeschwieler, J.D. Atomic Force Microscopy of Human Hair Cuticles: A Microscopic Study of Environmental Effects on Hair Morphology. J. Investig. Dermatol. 1995, 105, 96–99. [Google Scholar] [CrossRef]
- LaTorre, C.; Bhushan, B. Nanotribological Characterization of Human Hair and Skin Using Atomic Force Microscopy. Ultramicroscopy 2005, 105, 155–175. [Google Scholar] [CrossRef]
- Kim, K.S.; Shin, M.K.; Ahn, J.J.; Haw, C.R.; Park, H.K. A Comparative Study of Hair Shafts in Scalp Psoriasis and Seborrheic Dermatitis Using Atomic Force Microscopy. Ski. Res. Technol. 2013, 19, e60–e64. [Google Scholar] [CrossRef]
- Shin, M.K.; Kim, K.S.; Ahn, J.-J.; Kim, N.I.; Park, H.-K.; Haw, C.-R. Investigation of the Hair of Patients with Scalp Psoriasis Using Atomic Force Microscopy. Clin. Exp. Dermatol. 2012, 37, 156–163. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Yu, L. Atomic Force Microscopy as a Tool for Study of Human Hair. Scanning 1997, 19, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Inamadar, A.C.; Palit, A.; Shivanna, R.; Deshmukh, N.S.; Adya, K. Light Microscopy of the Hair: A Simple Tool to “Untangle” Hair Disorders. Int. J. Trichology 2011, 3, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Rubin, A.; Jamgochian, M.; Razi, S.; Truong, T.; Al-Tariq, K.; Rao, B. Reflectance Confocal Microscopy in the Treatment Monitoring of Androgenetic Alopecia Topical Combination Therapy: Reflectance Confocal Microscopy for Treatment Monitoring of Androgenetic Alopecia. J. Pak. Assoc. Dermatol. 2023, 33, 1293–1297. Available online: https://www.jpad.com.pk/index.php/jpad/article/view/2335 (accessed on 1 June 2024).
- Polańska, A.; Mikiel, D.; Szymoniak-Lipska, M.; Olszewska, B.; Dańczak-Pazdrowska, A. High-Frequency Ultrasonography in Hair and Nail Disorders—How It May Be Helpful. Diagnostics 2025, 15, 332. [Google Scholar] [CrossRef]
- Liang, C.; Kraemer, K.H.; Morris, A.; Schiffmann, R.; Price, V.H.; Menefee, E.; DiGiovanna, J.J. Characterization of Tiger-Tail Banding and Hair Shaft Abnormalities in Trichothiodystrophy. J. Am. Acad. Dermatol. 2005, 52, 224–232. [Google Scholar] [CrossRef]
- Sanderson, J. Fundamentals of Microscopy. Curr. Protoc. Mouse Biol. 2020, 10, e76. [Google Scholar] [CrossRef]
- Rakowska, A.; Slowinska, M.; Kowalska-Oledzka, E.; Rudnicka, L. Trichoscopy in Genetic Hair Shaft Abnormalities. J. Dermatol. Case Rep. 2008, 2, 14–20. [Google Scholar] [CrossRef]
- Chandravathi, P.L.; Karani, H.D.; Siddaiahgari, S.R.; Lingappa, L. Light Microscopy and Polarized Microscopy: A Dermatological Tool to Diagnose Gray Hair Syndromes. Int. J. Trichology 2017, 9, 38–41. [Google Scholar] [CrossRef]
- Itin, P.H.; Fistarol, S.K. Hair Shaft Abnormalities—Clues to Diagnosis and Treatment. Dermatology 2005, 211, 63–71. [Google Scholar] [CrossRef]
Technique | Advantages | Limitations | Resolution | Depth | Preparation | Evaluation | References |
---|---|---|---|---|---|---|---|
Trichoscopy | non-invasive real time, inexpensive, easy to use, and portable | limited depth, moderate resolution, and requires expertise for interpretation | at ×20 to ×160 magnifications | limited to the scalp surface; does not provide subsurface imaging | no special preparation | hair shafts, follicular openings, the epidermis surrounding the follicles, and small vessels in the skin | [4,7] |
Optical Coherence Tomography | non-invasive and real time | limited penetration depth, expensive, and limited availability | between 3 and 15 μm | 1–2 mm | no special preparation | hair shafts, follicular openings, small vessels in the skin, and sebaceous glands | [12,13,14] |
Phototrichogram | visual documentation of hair density and growth, can assess hair cycling | dependent on image quality and requires repeated imaging | ×20–×70 magnification | limited to the scalp surface; does not provide subsurface imaging | no special preparation | Hair shafts and follicular openings | [15,16] |
TrichoScan | digital, software-assisted, and quantitative hair density and growth analysis | similar to phototrichogram; requires shaving and software | ×20–×70 magnification | limited to the scalp surface; does not provide subsurface imaging | no special preparation | hair shafts and follicular openings | [17,18] |
Scanning Electron Microscopy | extremely high resolution detailed surface topography analysis | expensive, sensitivity to sample charging and distortion | 2–5 nm to 0.1–0.4 nm | 50–300 µm | wash with distilled water and detergent and then dry thoroughly; requires coating with conductive materials (gold/platinum) | hair shafts and hair follicles | [19,20] |
Transmission Electron Microscopy | exceptional resolution, reveals ultrastructural details, and enables intracellular imaging | expensive and inaccessible for routine use, time-consuming sample preparation, and invasive | between 0.1 and 0.2 nm | 50–100 nm | mechanical plucking of hair or a biopsy; the sample in added to glutaraldehyde and osmium tetroxide, washed with buffer, dehydrated in a graded ethanol or acetone series, embedded in resin, sectioned into ultra-thin slices, and stain with uranyl acetate and lead citrate | hair shafts and hair follicles | [19,20] |
Atomic Force Microscopy | atomic-scale resolution, 3D imaging, and can measure mechanical properties | slow imaging; expensive and inaccessible for routine use, non-dynamic | 0.1–1 nm | 10–20 µm | no special preparation | hair shafts and hair follicles | [21,22] |
Reflectance Confocal Microscopy | 3D high-resolution images, real-time and non-invasive | expensive, with limited depth of laser penetration | 0.5–1 μm and 3–5 μm | 200–250 μm | no special preparation, only oil immersion to reduce strong reflections from the hair surface | hair shafts, hair follicles, and blood vessels | [23,24,25] |
Ex vivo CLSM | comparison with histopathology (since the same sample can be analyzed), sample can be re-examined | requires biopsy or hair plucking, making it invasive, non-dynamic | horizontal < 1.25 μm, vertical < 5 μm | up to 200 μm (depends on tissue type) | sample is fixed in saline or culture medium immediately after excision, can use contrast agents or fluorescent dyes for enhanced imaging | hair shafts, hair follicle, sebaceous glands, melanin distribution, cuticle, cortex, and blood vessels | [25] |
High-Frequency Ultrasonography | non-invasive, safe, and accessible | limited depth of penetration | varies from 20–200 μm, depending on frequency | a 20 MHz probe can image structures 8–15 mm deep, depending on the manufacturer | no special preparation required; gel application enhances image quality | hair shafts, hair follicles, and sebaceous glands | [26,27,28] |
Trichogram | simple, inexpensive, and direct hair root analysis, distinguishes anagen/telogen phases | hair plucking, discomfort, sampling errors, and time consuming | at ×100–×400 | 0.5 to 3 µm, limited to the scalp surface, does not provide subsurface imaging | plucking 50–100 hairs from specific area, immediate wet mount or staining | hair shafts, hair bulbs, and root sheath | [29] |
Light Microscope | simple operation, good for basic structural analysis, and widely available | semi-invasive, limited depth, and sample preparation required, lower resolution than advanced tools and lower contrast for unstained samples | 200 nm | 0.5 to 3 µm | dry mount requires no special preparation, while wet mount involves using a potassium hydroxide solution for suspected fungal infections | hair shafts and hair follicles | [30,31] |
Polarized Light Microscope | 2D images, improves contrast | limited resolution, limited to birefringent structures | 200 nm | 0.5 to 3 µm | mounting medium for microscopy | hair shafts and hair follicles | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuźniak-Jodłowska, A.; Jałowska, M.; Nowaczyk, G.; Dańczak-Pazdrowska, A. The Use of Imaging Techniques in the Diagnosis of Dermatoses of the Scalp. Medicina 2025, 61, 1553. https://doi.org/10.3390/medicina61091553
Kuźniak-Jodłowska A, Jałowska M, Nowaczyk G, Dańczak-Pazdrowska A. The Use of Imaging Techniques in the Diagnosis of Dermatoses of the Scalp. Medicina. 2025; 61(9):1553. https://doi.org/10.3390/medicina61091553
Chicago/Turabian StyleKuźniak-Jodłowska, Aleksandra, Magdalena Jałowska, Grzegorz Nowaczyk, and Aleksandra Dańczak-Pazdrowska. 2025. "The Use of Imaging Techniques in the Diagnosis of Dermatoses of the Scalp" Medicina 61, no. 9: 1553. https://doi.org/10.3390/medicina61091553
APA StyleKuźniak-Jodłowska, A., Jałowska, M., Nowaczyk, G., & Dańczak-Pazdrowska, A. (2025). The Use of Imaging Techniques in the Diagnosis of Dermatoses of the Scalp. Medicina, 61(9), 1553. https://doi.org/10.3390/medicina61091553