Association of Apolipoprotein C-III Gene Polymorphisms (rs2854116 and rs2854117) with Susceptibility to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Turkish Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Laboratory Findings
2.2. Determination of Liver Steatosis Grade
2.3. APOC-III Gene rs2854116 and rs2854117 Variant Analyses
2.4. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, S.K.; Baik, S.K.; Kim, M.Y. Non-alcoholic fatty liver disease: Definition and subtypes. Clin. Mol. Hepatol. 2023, 29, S5–S16. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Amini-Salehi, E.; Letafatkar, N.; Norouzi, N.; Joukar, F.; Habibi, A.; Javid, M.; Sattari, N.; Khorasani, M.; Farahmand, A.; Tavakoli, S.; et al. Global Prevalence of Nonalcoholic Fatty Liver Disease: An Updated Review Meta-Analysis comprising a Population of 78 million from 38 Countries. Arch. Med. Res. 2024, 55, 103043. [Google Scholar] [CrossRef]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef]
- Estes, C.; Razavi, H.; Loomba, R.; Younossi, Z.; Sanyal, A.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology 2018, 67, 123–133. [Google Scholar] [CrossRef]
- Değertekin, B.; Tözün, N.; Demir, F.; Söylemez, G.; Parkan, Ş.; Gürtay, E.; Mutlu, D.; Toraman, M.; Seymenoğlu, T.H. The Changing Prevalence of Non-Alcoholic Fatty Liver Disease (NAFLD) in Turkey in the Last Decade. Turk. J. Gastroenterol. 2021, 32, 302–312. [Google Scholar] [CrossRef]
- Duell, P.B.; Welty, F.K.; Miller, M.; Chait, A.; Hammond, G.; Ahmad, Z.; Cohen, D.E.; Horton, J.D.; Pressman, G.S.; Toth, P.P.; et al. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arter. Thromb. Vasc. Biol. 2022, 42, e168–e185. [Google Scholar] [CrossRef]
- Petersen, K.F.; Dufour, S.; Hariri, A.; Nelson-Williams, C.; Foo, J.N.; Zhang, X.M.; Dziura, J.; Lifton, R.P.; Shulman, G.I. Apolipoprotein C3 Gene Variants in Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 2010, 362, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Hiukka, A.; Fruchart-Najib, J.; Leinonen, E.; Hilden, H.; Fruchart, J.-C.; Taskinen, M.-R. Alterations of lipids and apolipoprotein CIII in very low density lipoprotein subspecies in type 2 diabetes. Diabetologia 2005, 48, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Recarte, D.; Palomer, X.; Vázquez-Carrera, M. Uncovering the role of apolipoprotein C-III in insulin resistance. Clin. Investig. Arter. 2021, 33, 108–115. [Google Scholar] [CrossRef]
- Koo, D.J.; Lee, W.Y. The crosstalk between insulin resistance and nonalcoholic fatty liver disease/metabolic dysfunction-associated fatty liver disease: A culprit or a consequence? Cardiovasc. Prev. Pharmacother. 2022, 4, 132–141. [Google Scholar] [CrossRef]
- Nogueira, J.P.; Cusi, K. Role of Insulin Resistance in the Development of Nonalcoholic Fatty Liver Disease in People with Type 2 Diabetes: From Bench to Patient Care. Diabetes Spectr. 2024, 37, 20–28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Dijk, K.W.; Rensen, P.C.; Voshol, P.J.; Havekes, L.M. The role and mode of action of apolipoproteins CIII and AV: Synergistic actors in triglyceride metabolism? Curr. Opin. Lipidol. 2004, 15, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, O.; Bassi, A.; Stranieri, C.; Trabetti, E.; Martinelli, N.; Pizzolo, F.; Girelli, D.; Friso, S.; Pignatti, P.F.; Corrocher, R. Apolipoprotein C-III, metabolic syndrome, and risk of coronary artery disease. J. Lipid Res. 2003, 44, 2374–2381. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, O.; Stranieri, C.; Bassi, A.; Zaia, B.; Girelli, D.; Pizzolo, F.; Trabetti, E.; Cheng, S.; Grow, M.A.; Pignatti, P.F.; et al. ApoC-III gene polymorphisms and risk of coronary artery disease. J. Lipid Res. 2002, 43, 1450–1457. [Google Scholar] [CrossRef] [PubMed]
- Guettier, J.M.; Georgopoulos, A.; Tsai, M.Y.; Radha, V.; Shanthirani, S.; Deepa, R.; Gross, M.; Rao, G.; Mohan, V. Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-III genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J. Clin. Endocrinol. Metab. 2005, 90, 1705–1711. [Google Scholar] [CrossRef]
- Miller, M.; Rhyne, J.; Chen, H.; Beach, V.; Ericson, R.; Luthra, K.; Dwivedi, M.; Misra, A. APOC3 promoter polymorphisms C-482T and T-455C are associated with the metabolic syndrome. Arch. Med. Res. 2007, 38, 444–451. [Google Scholar] [CrossRef]
- Li, W.W.; Dammerman, M.M.; Smith, J.D.; Metzger, S.; Breslow, J.L.; Leff, T. Common genetic variation in the promoter of the human apo CIII gene abolishes regulation by insulin and may contribute to hypertriglyceridemia. J. Clin. Investig. 1995, 96, 2601–2605. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- De Ritis, F.; Coltorti, M.; Giusti, G. An enzymic test for the diagnosis of viral hepatitis; the transaminase serum activities. Clin. Chim. Acta 1957, 2, 70–74. [Google Scholar] [CrossRef]
- Dasarathy, S.; Dasarathy, J.; Khiyami, A.; Joseph, R.; Lopez, R.; McCullough, A.J. Validity of real time ultrasound in the diagnosis of hepatic steatosis: A prospective study. J. Hepatol. 2009, 51, 1061–1067. [Google Scholar] [CrossRef]
- van Werven, J.R.; Marsman, H.A.; Nederveen, A.J.; Smits, N.J.; ten Kate, F.J.; van Gulik, T.M.; Stoker, J. Assessment of hepatic steatosis in patients undergoing liver resection: Comparison of US, CT, T1-weighted dual-echo MR imaging, and point-resolved 1H MR spectroscopy. Radiology 2010, 256, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Hernaez, R.; Lazo, M.; Bonekamp, S.; Kamel, I.; Brancati, F.L.; Guallar, E.; Clark, J.M. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: A meta-analysis. Hepatology 2011, 54, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Fu Df Chen, B. The relationship between the systemic immune inflammation index and the nonalcoholic fatty liver disease in American adolescents. BMC Gastroenterol. 2024, 24, 233. [Google Scholar] [CrossRef]
- Fricker, Z.P.; Pedley, A.; Massaro, J.M.; Vasan, R.S.; Hoffmann, U.; Benjamin, E.J.; Long, M.T. Liver Fat Is Associated With Markers of Inflammation and Oxidative Stress in Analysis of Data From the Framingham Heart Study. Clin. Gastroenterol. Hepatol. 2019, 17, 1157–1164.e4. [Google Scholar] [CrossRef]
- Duan, Y.; Pan, X.; Luo, J.; Xiao, X.; Li, J.; Bestman, P.L.; Luo, M. Association of Inflammatory Cytokines With Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 880298. [Google Scholar] [CrossRef]
- Patel, S.; Siddiqui, M.B.; Roman, J.H.; Zhang, E.; Lee, E.; Shen, S.; Faridnia, M.; Mintini, R.J.; Boyett, S.; Idowu, M.O.; et al. Association Between Lipoprotein Particles and Atherosclerotic Events in Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2021, 19, 2202–2204. [Google Scholar] [CrossRef]
- Isokuortti, E.; Zhou, Y.; Peltonen, M.; Bugianesi, E.; Clement, K.; Bonnefont-Rousselot, D.; Lacorte, J.M.; Gastaldelli, A.; Schuppan, D.; Schattenberg, J.M.; et al. Use of HOMA-IR to diagnose non-alcoholic fatty liver disease: A population-based and inter-laboratory study. Diabetologia 2017, 60, 1873–1882. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ye, C.; Fei, S. Association between APOC3 polymorphisms and non-alcoholic fatty liver disease risk: A meta-analysis. Afr. Health Sci. 2020, 20, 1800–1808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Niu, T.H.; Jiang, M.; Xin, Y.N.; Jiang, X.J.; Lin, Z.H.; Xuan, S.Y. Lack of association between apolipoprotein C3 gene polymorphisms and risk of nonalcoholic fatty liver disease in a Chinese Han population. World J. Gastroenterol. 2014, 20, 3655–3662. [Google Scholar] [CrossRef] [PubMed]
Participants Characteristics | Min–Max | Median | Mean ± SD | n (%) |
---|---|---|---|---|
Age | 19.0–71.0 | 44.0 | 43.8 ± 15.0 | |
Basal Metabolic Age | 17.0–79.0 | 47.0 | 46.3 ± 14.5 | |
Gender | ||||
Female | 150 (49.7%) | |||
Male | 152 (50.3%) | |||
Height (m) | 1.46–1.94 | 1.69 | 1.70 ± 0.10 | |
Weight (kg) | 46.0–130.0 | 81.0 | 80.4 ± 15.9 | |
Body Mass Index(BMI) (kg/m2) | 16.5–47.3 | 27.5 | 27.8 ± 5.0 | |
Underweight | 5 (1.7%) | |||
Normal | 86 (28.5%) | |||
Overweight | 121 (40.1%) | |||
Obese | 90 (29.8%) | |||
Body Density | 0.96–1.07 | 1.02 | 1.02 ± 0.02 | |
Fat Percentage % | 10.0–56.0 | 29.0 | 30.1 ± 8.6 | |
Water Percentage % | 1.0–69.0 | 51.0 | 50.7 ± 7.8 | |
Waist Circumference (cm) | 59.0–136.0 | 98.0 | 99.5 ± 13.6 | |
Neck Circumference (cm) | 24.0–98.0 | 36.0 | 36.2 ± 6.1 | |
Waist/Height Ratio | 0.36–0.80 | 0.55 | 0.56 ± 0.08 | |
Leg Circumference (cm) | 28.0–70.0 | 48.0 | 47.5 ± 6.8 | |
Arm Circumference (cm) | 17.0–91.0 | 28.0 | 28.3 ± 5.0 | |
Active Smoking | ||||
No | 210 (69.5%) | |||
Yes | 92 (30.5%) | |||
Cigarette Consumption (Pack/Year) | 1.0–90.0 | 15.0 | 19.7 ± 19.2 | |
Ex-Smoker | ||||
No | 281 (93.0%) | |||
Yes | 21 (7.0%) | |||
Ex-Smoker Duration (Months) | 1.0–360.0 | 120.0 | 136.8 ± 112.9 | |
Alcohol Use | ||||
No | 245 (81.1%) | |||
Yes | 57 (18.9%) | |||
Alcohol Consumption (Day/Week) | 0.0–175.0 | 25.0 | 53.8 ± 51.6 | |
Systolic Blood Pressure (mmHg) | 94.0–158.0 | 126.0 | 125.7 ± 11.6 | |
Diastolic Blood Pressure (mmHg) | 39.0–101.0 | 79.0 | 79.2 ± 9.4 |
Variable | Category | n | % |
---|---|---|---|
USG Steatosis | (−) | 102 | 33.8% |
Grade I | 91 | 30.1% | |
Grade II | 93 | 30.8% | |
Grade III | 16 | 5.3% | |
Liver Cirrhosis | (−) | 301 | 99.7% |
(+) | 1 | 0.3% | |
Dyslipidemia | (−) | 166 | 55.0% |
(+) | 136 | 45.0% | |
Hypertriglyceridemia | (−) | 230 | 76.2% |
(+) | 72 | 23.8% | |
Hypercholesterolemia | (−) | 202 | 66.9% |
(+) | 100 | 33.1% | |
Diabetes Status | (−) | 209 | 69.2% |
Diabetes | 62 | 20.5% | |
Impaired Fasting Glucose | 26 | 8.6% | |
Impaired Glucose Tolerance | 5 | 1.7% | |
Nephropathy | (−) | 295 | 97.7% |
(+) | 7 | 2.3% | |
Retinopathy | (−) | 297 | 98.3% |
(+) | 5 | 1.7% | |
Neuropathy | (−) | 294 | 97.4% |
(+) | 8 | 2.6% | |
Cardiovascular Disease | (−) | 293 | 97.0% |
(+) | 9 | 3.0% | |
ApoC-III rs2854116/Fokl | CC | 94 | 31.1% |
TC | 143 | 47.4% | |
TT | 65 | 21.5% | |
ApoC-III rs2854117 Mspl | CC | 135 | 44.7% |
TC | 108 | 35.8% | |
TT | 59 | 19.5% | |
FIB4 Score | 0.21–42.16 | 0.70 | 1.00 ± 0.70 |
FIB4 Risk Categories | |||
Low Risk | 269 (89.1%) | ||
Intermediate Risk | 29 (9.6%) | ||
High Risk | 4 (1.3%) | ||
MASLD Fibrosis Score | −6.07–1.45 | −2.61 | −2.58 ± 1.42 |
MASLD Risk Categories | |||
Low Risk | 241 (79.8%) | ||
Intermediate Risk | 57 (18.9%) | ||
High Risk | 4 (1.3%) |
Variable | Category | Control Group (n = 100) | Case Group (n = 202) | p-Value | Test | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | % | Mean ± SD | Median | n | % | Mean ± SD | Median | ||||
ApoC-III rs2854116/FokI | CC | 31 | 31.0% | - | - | 63 | 31.2% | - | - | 0.990 | X2 |
TC | 47 | 47.0% | - | - | 96 | 47.5% | - | - | |||
TT | 22 | 22.0% | - | - | 43 | 21.3% | - | - | |||
ApoC-III rs2854117 MspI | CC | 46 | 46.0% | - | - | 89 | 44.1% | - | - | 0.543 | X2 |
TC | 38 | 38.0% | - | - | 70 | 34.7% | - | - | |||
TT | 16 | 16.0% | - | - | 43 | 21.3% | - | - | |||
FIB4 Score | - | - | - | 0.84 ± 2.18 | 0.57 | - | - | 1.09 ± 2.94 | 0.80 | 0.000 | m |
FIB4 Score Categories | Low Risk | 97 | 97.0% | - | - | 172 | 85.1% | - | - | 0.002 | X2 |
Moderate Risk | 2 | 2.0% | - | - | 27 | 13.4% | - | - | |||
High Risk | 1 | 1.0% | - | - | 3 | 1.5% | - | - | |||
MASLD Fibrosis Score | - | - | - | −3.47 ± 1.02 | −3.67 | - | - | −2.14 ± 1.39 | −2.16 | 0.000 | m |
MASLD Fibrosis Score Categories | Low Risk | 97 | 97.0% | - | - | 144 | 71.3% | - | - | 0.000 | X2 |
Moderate Risk | 3 | 3.0% | - | - | 54 | 26.7% | - | - | |||
High Risk | 0 | 0.0% | - | - | 4 | 2.0% | - | - |
Parameter | Category | TT (n = 43) | CT/CC (n = 159) | p-Value/Test | ||
---|---|---|---|---|---|---|
n | % | n | % | |||
USG Steatosis | (−) | 0 | 0.0% | 3 | 1.9% | 1.000/X2 |
Grade I | 18 | 41.9% | 72 | 45.3% | ||
Grade II | 21 | 48.8% | 72 | 45.3% | ||
Grade III | 4 | 9.3% | 12 | 7.5% | ||
Liver Cirrhosis | (−) | 43 | 100.0% | 158 | 99.4% | 1.000/X2 |
(+) | 0 | 0.0% | 1 | 0.6% | ||
Dyslipidemia | (−) | 16 | 37.2% | 78 | 49.1% | 0.167/X2 |
(+) | 27 | 62.8% | 81 | 50.9% | ||
Hypertriglyceridemia | (−) | 26 | 60.5% | 112 | 70.4% | 0.212/X2 |
(+) | 17 | 39.5% | 47 | 29.6% | ||
Hypercholesterolemia | (−) | 23 | 53.5% | 97 | 61.0% | 0.373/X2 |
(+) | 20 | 46.5% | 62 | 39.0% | ||
Diabetes Status | (−) | 24 | 55.8% | 86 | 54.1% | 0.840/X2 |
Category | Group | CC (n = 89) | CT/TT (n = 113) | p-Value/Test | ||
---|---|---|---|---|---|---|
n | % | n | % | |||
Ultrasound Steatosis | No Steatosis | 2 | 2.2% | 1 | 0.9% | 0.584 X2 |
Grade I | 41 | 46.1% | 49 | 43.4% | ||
Grade II | 37 | 41.6% | 56 | 49.6% | ||
Grade III | 9 | 10.1% | 7 | 6.2% | ||
Liver Cirrhosis | No | 89 | 100.0% | 112 | 99.1% | 1.000 X2 |
Yes | 0 | 0.0% | 1 | 0.9% | ||
Dyslipidemia | No | 43 | 48.3% | 51 | 45.1% | 0.653 X2 |
Yes | 46 | 51.7% | 62 | 54.9% | ||
Hypertriglyceridemia | No | 59 | 66.3% | 79 | 69.9% | 0.583 X2 |
Yes | 30 | 33.7% | 34 | 30.1% | ||
Hypercholesterolemia | No | 51 | 57.3% | 69 | 61.1% | 0.589 X2 |
Yes | 38 | 42.7% | 44 | 38.9% | ||
Diabetes Status | No | 45 | 50.6% | 65 | 57.5% | 0.436 X2 |
Diabetes | 30 | 33.7% | 32 | 28.3% | ||
Impaired Fasting | 13 | 14.6% | 12 | 10.6% | ||
Impaired Glucos | 1 | 1.1% | 4 | 3.5% | ||
Nephropathy | No | 86 | 96.6% | 109 | 96.5% | 0.948 X2 |
Yes | 3 | 3.4% | 4 | 3.5% | ||
Retinopathy | No | 85 | 95.5% | 112 | 99.1% | 0.101 X2 |
Yes | 4 | 4.5% | 1 | 0.9% | ||
Neuropathy | No | 85 | 95.5% | 109 | 96.5% | 0.730 X2 |
Yes | 4 | 4.5% | 4 | 3.5% | ||
Cardiovascular Disease | No | 84 | 94.4% | 109 | 96.5% | 0.477 X2 |
Yes | 5 | 5.6% | 4 | 3.5% |
Parameter | CC (Mean ± SD) | CC (Median) | CT/TT (Mean ± SD) | CT/TT (Median) | p-Value |
---|---|---|---|---|---|
CRP | 3.15 ± 3.26 | 2.10 | 3.39 ± 4.26 | 2.40 | 694 |
AST | 23.0 ± 8.8 | 21.5 | 26.1 ± 19.3 | 22.0 | 665 |
ALT | 32.2 ± 22.5 | 25.9 | 34.1 ± 29.5 | 26.9 | 842 |
ALP | 77.1 ± 25.0 | 75.0 | 76.9 ± 21.8 | 76.0 | 688 |
GGT | 30.1 ± 22.0 | 23.0 | 32.7 ± 29.1 | 26.0 | 558 |
LDH | 191.8 ± 41.4 | 183.0 | 190.9 ± 47.6 | 180.0 | 665 |
Fasting Glucose | 107.4 ± 33.8 | 95.0 | 106.9 ± 40.4 | 96.0 | 575 |
HbA1c | 6.14 ± 1.39 | 5.80 | 6.08 ± 1.38 | 5.70 | 623 |
Homa-IR | 5.33 ± 8.12 | 3.46 | 4.71 ± 5.11 | 3.67 | 561 |
Insulin | 18.4 ± 17.3 | 14.5 | 16.9 ± 13.8 | 15.0 | 881 |
C-Peptide | 3.77 ± 2.30 | 3.43 | 3.55 ± 1.68 | 3.40 | 722 |
LDL | 123.4 ± 33.1 | 122.0 | 127.6 ± 40.4 | 126.0 | 557 |
Triglyceride | 177.9 ± 119.8 | 138.2 | 168.2 ± 113.5 | 142.0 | 421 |
HDL | 47.8 ± 16.4 | 44.4 | 45.1 ± 11.8 | 44.0 | 393 |
Total Cholesterol | 195.3 ± 36.7 | 190.0 | 198.7 ± 49.2 | 192.0 | 686 |
AST/ALT Ratio | 0.86 ± 0.31 | 0.85 | 0.91 ± 0.37 | 0.85 | 553 |
Disease Duration (Month) | 33.1 ± 68.6 | 0.0 | 23.5 ± 50.9 | 0.0 | 564 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karaagac, D.; Morkuzu, S.; Senkal, N.; Bilgin, E.; Oyacı, Y.; Tükek, T.; Pehlivan, S.; Medetalibeyoglu, A. Association of Apolipoprotein C-III Gene Polymorphisms (rs2854116 and rs2854117) with Susceptibility to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Turkish Population. Medicina 2025, 61, 1479. https://doi.org/10.3390/medicina61081479
Karaagac D, Morkuzu S, Senkal N, Bilgin E, Oyacı Y, Tükek T, Pehlivan S, Medetalibeyoglu A. Association of Apolipoprotein C-III Gene Polymorphisms (rs2854116 and rs2854117) with Susceptibility to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Turkish Population. Medicina. 2025; 61(8):1479. https://doi.org/10.3390/medicina61081479
Chicago/Turabian StyleKaraagac, Damla, Suat Morkuzu, Naci Senkal, Ersel Bilgin, Yasemin Oyacı, Tufan Tükek, Sacide Pehlivan, and Alpay Medetalibeyoglu. 2025. "Association of Apolipoprotein C-III Gene Polymorphisms (rs2854116 and rs2854117) with Susceptibility to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Turkish Population" Medicina 61, no. 8: 1479. https://doi.org/10.3390/medicina61081479
APA StyleKaraagac, D., Morkuzu, S., Senkal, N., Bilgin, E., Oyacı, Y., Tükek, T., Pehlivan, S., & Medetalibeyoglu, A. (2025). Association of Apolipoprotein C-III Gene Polymorphisms (rs2854116 and rs2854117) with Susceptibility to Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) in a Turkish Population. Medicina, 61(8), 1479. https://doi.org/10.3390/medicina61081479