The Effects of Pedaling-Based Progressive Resistance Training on Range of Motion, Muscle Strength, and Physical Function in Female Patients with Total Knee Arthroplasty: Single-Blind Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethical Statement
2.3. Study Procedure
2.3.1. Surgical Procedure
2.3.2. Experimental Procedure
2.4. Intervention
Pedaling-Based Progressive Resistance Training
2.5. Outcome Measurements
2.5.1. Primary Outcomes
2.5.2. Secondary Outcomes
2.6. Statistical Analysis
3. Results
3.1. Primary Outcomes
3.2. Secondary Outcome
4. Discussion
4.1. Primary Outcomes
4.2. Secondary Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dulgeroglu, D.; Ozen, N.; Tezel, N.; Tombak, Y.; Aykin, Z. Effectiveness of isokinetic exercise on paind and function in patiensts with total knee arthroplasty. Ann. Med. Res. 2022, 29, 538–544. [Google Scholar] [CrossRef]
- Ryan, S.P.; Stambough, J.B.; Huddleston III, J.I.; Levine, B.R. Highlights of the 2023 American joint replacement registry annual report. Arthroplast. Today 2024, 26, 101325. [Google Scholar] [CrossRef]
- Bade, M.J.; Kohrt, W.M.; Stevens-Lapsley, J.E. Outcomes before and after total knee arthroplasty compared to healthy adults. J. Orthop. Sports Phys. Ther. 2010, 40, 559–567. [Google Scholar] [CrossRef]
- DeFrance, M.J.; Scuderi, G.R. Are 20% of patients actually dissatisfied following total knee arthroplasty? A systematic review of the literature. J. Arthroplast. 2023, 38, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Ma, Z.H.; Teng, X.R. Isokinetic strength test of muscle strength and motor function in total knee arthroplasty. Orthop. Surg. 2020, 12, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, S.; Xie, J.; Lei, Y.; Cao, G.; Pei, F. Multiple doses of perioperative dexamethasone further improve clinical outcomes after total knee arthroplasty: A prospective, randomized, controlled study. J. Arthroplast. 2018, 33, 3448–3454. [Google Scholar] [CrossRef]
- Daugaard, R.; Tjur, M.; Sliepen, M.; Lipperts, M.; Grimm, B.; Mechlenburg, I. Are patients with knee osteoarthritis and patients with knee joint replacement as physically active as healthy persons? J. Orthop. Transl. 2018, 14, 8–15. [Google Scholar] [CrossRef]
- Bourgeois, B.; Fan, B.; Johannsen, N.; Gonzalez, M.C.; Ng, B.K.; Sommer, M.J.; Shepherd, J.A.; Heymsfield, S.B. Improved strength prediction combining clinically available measures of skeletal muscle mass and quality. J. Cachexia Sarcopenia Muscle 2019, 10, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Sawano, S.; Maegawa, S.; Ikezoe, T.; Ichihashi, N. Physical activity mediates the relationship between gait function and fall incidence after total knee arthroplasty. J. Knee Surg. 2021, 34, 1205–1211. [Google Scholar] [CrossRef]
- Mistry, J.B.; Elmallah, R.D.; Bhave, A.; Chughtai, M.; Cherian, J.J.; McGinn, T.; Harwin, S.F.; Mont, M.A. Rehabilitative guidelines after total knee arthroplasty: A review. J. Knee Surg. 2016, 29, 201–217. [Google Scholar] [CrossRef]
- Jette, D.U.; Hunter, S.J.; Burkett, L.; Langham, B.; Logerstedt, D.S.; Piuzzi, N.S.; Poirier, N.M.; Radach, L.J.; Ritter, J.E.; Scalzitti, D.A. Physical therapist management of total knee arthroplasty. Phys. Ther. 2020, 100, 1603–1631. [Google Scholar] [CrossRef] [PubMed]
- Castrodad, I.M.D.; Recai, T.M.; Abraham, M.M.; Etcheson, J.I.; Mohamed, N.S.; Edalatpour, A.; Delanois, R.E. Rehabilitation protocols following total knee arthroplasty: A review of study designs and outcome measures. Ann. Transl. Med. 2019, 7 (Suppl. S7), S255. [Google Scholar] [CrossRef] [PubMed]
- Bade, M.J.; Stevens-Lapsley, J.E. Restoration of physical function in patients following total knee arthroplasty: An update on rehabilitation practices. Curr. Opin. Rheumatol. 2012, 24, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Bakkum, A. A Randomised Control Trial for the Restoration of Functional Ability in Patients Post Total Knee Arthroplasty: A Comparison of Eccentric Versus Concentric Cycling Ergometry. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2015. [Google Scholar]
- Kubota, M.; Kokubo, Y.; Miyazaki, T.; Matsuo, H.; Naruse, H.; Shouji, K.; Shimada, S.; Matsumine, A. Effects of knee extension exercise starting within 4 h after total knee arthroplasty. Eur. J. Orthop. Surg. Traumatol. 2022, 32, 803–809. [Google Scholar] [CrossRef]
- Bock, P.; Schatz, K.; Wurnig, C. Physical activity after total knee replacement. Z. Fur Orthop. Und Ihre Grenzgeb. 2003, 141, 272–276. [Google Scholar] [CrossRef]
- Wen, C.; Cates, H.E.; Zhang, S. Is knee biomechanics different in uphill walking on different slopes for older adults with total knee replacement? J. Biomech. 2019, 89, 40–47. [Google Scholar] [CrossRef]
- O’Bryan, S.J.; Giuliano, C.; Woessner, M.N.; Vogrin, S.; Smith, C.; Duque, G.; Levinger, I. Progressive resistance training for concomitant increases in muscle strength and bone mineral density in older adults: A systematic review and meta-analysis. Sports Med. 2022, 52, 1939–1960. [Google Scholar] [CrossRef]
- An, J.; Ryu, H.-K.; Lyu, S.-J.; Yi, H.-J.; Lee, B.-H. Effects of preoperative telerehabilitation on muscle strength, range of motion, and functional outcomes in candidates for total knee arthroplasty: A single-blind randomized controlled trial. Int. J. Environ. Res. Public. Health 2021, 18, 6071. [Google Scholar] [CrossRef]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, G. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef]
- Sattler, L.N.; Hing, W.A.; Vertullo, C.J. Pedaling-based protocol superior to a 10-exercise, non-pedaling protocol for postoperative rehabilitation after total knee replacement: A randomized controlled trial. JBJS 2019, 101, 688–695. [Google Scholar] [CrossRef]
- Rezasoltani, Z.; Sanati, E.; Mofrad, R.K.; Azizi, S.; Dadarkhah, A.; Najafi, S. Randomized controlled trial of aquatic cycling for treatment of knee osteoarthritis in elderly people. Top. Geriatr. Rehabil. 2020, 36, 103–109. [Google Scholar] [CrossRef]
- Sanzo, P.; Niccoli, S.; Droll, K.; Puskas, D.; Cullinan, C.; Lees, S. The effects of exercise and active assisted cycle ergometry in post-operative total knee arthroplasty patients-a randomized controlled trial. J. Exp. Orthop. 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Courage, O.; Strom, L.; Van Rooij, F.; Lalevée, M.; Heuzé, D.; Papin, P.; Butnaru, M.; Müller, J. Higher rates of surgical and medical complications and mortality following TKA in patients aged≥ 80 years: A systematic review of comparative studies. Efort Open Rev. 2021, 6, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-H.; Hsu, W.-B.; Shen, W.-J.; Lin, Z.-R.; Chang, S.-H.; Hsu, R.W.-W. Twenty-four-week hospital-based progressive resistance training on functional recovery in female patients post total knee arthroplasty. Knee 2019, 26, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Tanthanapanyakorn, P.; Sanguanchue, A.; Khuntikulanon, N.; Chanmalee, S.; Cetthakrikul, S.; Wongpituk, K. Effectiveness of the Self-Care Sandbag Exercise Program for the Osteoarthritis of Knee Patients in the Secondary Care in Thailand: Randomized Control Trial. Int. J. Geoinform. 2021, 17, 195–204. [Google Scholar]
- Alkatan, M.; Baker, J.R.; Machin, D.R.; Park, W.; Akkari, A.S.; Pasha, E.P.; Tanaka, H. Improved function and reduced pain after swimming and cycling training in patients with osteoarthritis. J. Rheumatol. 2016, 43, 666–672. [Google Scholar] [CrossRef]
- Berghmans, D.; Lenssen, A.; Emans, P.; de Bie, R. A progressive strength training program starting 3 months post total knee arthroplasty surgery improves strength but not functional outcome. J. Orthop. Ther: JORT-1118. DOI 2018, 10, 2575–8241. [Google Scholar]
- Lind, V.; Svensson, M.; Harringe, M.L. Reliability and validity of a digital goniometer for measuring knee joint range of motion. Meas. Phys. Educ. Exerc. Sci. 2022, 26, 191–198. [Google Scholar] [CrossRef]
- Jacobs, H.; Seeber, G.H.; Allers, K.; Hoffmann, F. Utilisation of outpatient physiotherapy in patients following total knee arthroplasty–a systematic review. BMC Musculoskelet. Disord. 2021, 22, 711. [Google Scholar] [CrossRef]
- Stratford, P.W.; Kennedy, D.M.; Robarts, S.F. Modelling knee range of motion post arthroplasty: Clinical applications. Physiother. Can. 2010, 62, 378–387. [Google Scholar] [CrossRef]
- Alvares, J.B.d.A.R.; Rodrigues, R.; de Azevedo Franke, R.; da Silva, B.G.C.; Pinto, R.S.; Vaz, M.A.; Baroni, B.M. Inter-machine reliability of the Biodex and Cybex isokinetic dynamometers for knee flexor/extensor isometric, concentric and eccentric tests. Phys. Ther. Sport. 2015, 16, 59–65. [Google Scholar] [CrossRef]
- Kim, S.-H.; Park, H.-K.; Lee, W.-H. The Effect of adding Hip Abductor Strengthening to Conventional Rehabilitation on Muscular Strength and Physical Function following Total Knee Replacement. Phys. Ther. Rehabil. Sci. 2022, 11, 16–23. [Google Scholar] [CrossRef]
- Jo, H.; Kim, K.; Im, S.-C. Study of the reliability and validity of the WOMAC Index in patients with total knee replacement. Korean Soc. Phys. Med. 2023, 18, 93–101. [Google Scholar] [CrossRef]
- Tüzün, E.; Eker, L.; Aytar, A.; Daşkapan, A.; Bayramoğlu, M. Acceptability, reliability, validity and responsiveness of the Turkish version of WOMAC osteoarthritis index. Osteoarthr. Cartil. 2005, 13, 28–33. [Google Scholar] [CrossRef]
- MacKay, C.; Clements, N.; Wong, R.; Davis, A. A systematic review of estimates of the minimal clinically important difference and patient acceptable symptom state of the Western Ontario and McMaster Universities Osteoarthritis Index in patients who underwent total hip and total knee replacement. Osteoarthr. Cartil. 2019, 27, 1408–1419. [Google Scholar] [CrossRef] [PubMed]
- Coleman, S.A.; Cunningham, C.J.; Walsh, J.B.; Coakley, D.; Harbison, J.; Casey, M.; Murphy, N.; Horgan, N.F. Outcomes among older people in a post-acute inpatient rehabilitation unit. Disabil. Rehabil. 2012, 34, 1333–1338. [Google Scholar] [CrossRef]
- Yuksel, E.; Kalkan, S.; Cekmece, S.; Unver, B.; Karatosun, V. Assessing minimal detectable changes and test-retest reliability of the timed up and go test and the 2-minute walk test in patients with total knee arthroplasty. J. Arthroplast. 2017, 32, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Mizner, R.L.; Petterson, S.C.; Stevens, J.E.; Vandenborne, K.; Snyder-Mackler, L. Early quadriceps strength loss after total knee arthroplasty: The contributions of muscle atrophy and failure of voluntary muscle activation. JBJS 2005, 87, 1047–1053. [Google Scholar] [CrossRef]
- Labraca, N.S.; Castro-Sánchez, A.M.; Matarán-Peñarrocha, G.A.; Arroyo-Morales, M.; Sánchez-Joya, M.d.M.; Moreno-Lorenzo, C. Benefits of starting rehabilitation within 24 hours of primary total knee arthroplasty: Randomized clinical trial. Clin. Rehabil. 2011, 25, 557–566. [Google Scholar] [CrossRef]
- Luan, L.; Bousie, J.; Pranata, A.; Adams, R.; Han, J. Stationary cycling exercise for knee osteoarthritis: A systematic review and meta-analysis. Clin. Rehabil. 2021, 35, 522–533. [Google Scholar] [CrossRef]
- Pozzi, F.; White, D.K.; Snyder-Mackler, L.; Zeni, J.A. Restoring physical function after knee replacement: A cross sectional comparison of progressive strengthening vs. standard physical therapy. Physiother. Theory Pract. 2020, 36, 122–133. [Google Scholar] [CrossRef]
- Bandholm, T.; Kehlet, H. Physiotherapy exercise after fast-track total hip and knee arthroplasty: Time for reconsideration? Arch. Phys. Med. Rehabil. 2012, 93, 1292–1294. [Google Scholar] [CrossRef]
- Hummer, E.T. Efficacy of a Cycling Intervention with Pedal Reaction Force Augmented Feedback on Reducing Inter-Limb Asymmetries in Patients with Unilateral Total Knee Arthroplasty. PhD Thesis, University of Tennessee, Knoxville, TN, USA, 2020. [Google Scholar]
- Rafiq, M.T.; A Hamid, M.S.; Hafiz, E. Effect of progressive resistance strength training on body mass index, quality of life and functional capacity in knee osteoarthritis: A randomized controlled trial. J. Multidiscip. Healthc. 2021, 14, 2161–2168. [Google Scholar] [CrossRef]
- Angst, F.; Aeschlimann, A.; Stucki, G. Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities. Arthritis Care Res. Off. J. Am. Coll. Rheumatol. 2001, 45, 384–391. [Google Scholar]
- Bellumori, M.; Uygur, M.; Knight, C.A. High-speed cycling intervention improves rate-dependent mobility in older adults. Med. Sci. Sports Exerc. 2017, 49, 106. [Google Scholar] [CrossRef]
Week | Contents of the Program | Intensity |
---|---|---|
1st week | 1. Ankle Exercise 2. Straight Leg Raises 3. Quadricep Sets 4. Quadricep Arcs 5. Thigh Squeezes 6. Knee ROM Exercise 7. Pedal Exercise | 10 times, 3 sets Pedal Exercise 30 min |
2nd–3rd week | 1. Ankle Exercise 2. Straight Leg Raises 3. Quadricep Sets 4. Quadricep Arcs 5. Thigh Squeezes 6. Knee ROM Exercise 7. Pedal Exercise | 10 times, 3 sets (50% of 1RM) Pedal Exercise 30 min 30–40% of heart rate reserve |
4th week | 1. Ankle Exercise 2. Straight Leg Raises 3. Quadricep Sets 4. Quadricep Arcs 5. Thigh Squeezes 6. Knee ROM Exercise 7. Pedal Exercise | 10 times, 3 sets (70% of 1RM) Pedal Exercise 30 min 70% of heart rate reserve |
Total training time is 60 min, and rest time between sets is 30–40 s. |
Characteristics | PPRT Group (n = 24) | Control Group (n = 24) | t(p) | X2(p) |
---|---|---|---|---|
Age (years) | 71.25 ± 6.22 | 71.83 ± 4.44 | −0.374 (0.711) | |
Height (cm) | 154.84 ± 7.39 | 152.82 ± 5.60 | 1.067 (0.292) | |
Weight (kg) | 63.90 ± 7.18 | 62.73 ± 7.26 | 0.563 (0.576) | |
BMI | 26.63 ± 2.27 | 26.78 ± 2.18 | −2.26 (0.822) | |
Kellgren–Lawrence grade (III: IV) | 9/15 | 8/16 | 0.091 (0.763) | |
Affected Side (Left: Right) | 17/7 | 13/11 | 1.422 (0.233) |
Variable | PPRT Group (n = 24) | Control Group (n = 24) | Cohen’s d (95% CI) | Time | Group | Time × Group | |
---|---|---|---|---|---|---|---|
F(p) | F(p) | F(p) | |||||
ROM (°) | Pretest | 115.58 ± 13.95 | 120.83 ± 12.62 | 0.579 (−0.002~1.153) | 42.440 (0.000) | 0.345 (0.560) | 4.016 (0.051) |
Posttest | 131.97 ± 5.35 | 129.51 ± 8.07 | |||||
Mean difference | 16.39 ± 11.73 | 8.67 ± 14.75 | |||||
t(p) | −6.844 (0.000) | −2.881 (0.008) | |||||
Effect size (η2p) | 0.480 | 0.007 | 0.080 |
Variable | PPRT Group (n = 24) | Control Group (n = 24) | Cohen’s d (95% CI) | Time | Group | Time × Group | |
---|---|---|---|---|---|---|---|
F(p) | F(p) | F(p) | |||||
EX60°/s PT(N-M) | Pretest | 38.49 ± 16.04 | 42.18 ± 17.69 | 1.447 (0.803~2.079) | 21.989 (0.000) | 4.186 (0.047) | 24.651 (0.000) |
Posttest | 39.10 ± 13.87 | 20.88 ± 8.65 | |||||
Mean difference | 0.81 ± 9.53 | −21.30 ± 19.39 | |||||
t(p) | −0.312 (0.758) | 5.381 (0.000) | |||||
Effect size (η2p) | 0.323 | 0.083 | 0.349 | ||||
EX60°/s PT/BW (%) | Pretest | 59.17 ± 20.37 | 73.92 ± 32.63 | 1.567 (0.911~2.210) | 25.944 (0.000) | 0.944 (0.336) | 29.456 (0.000) |
Posttest | 60.39 ± 17.62 | 35.31 ± 14.45 | |||||
Mean difference | 1.22 ± 14.72 | −38.61 ± 32.80 | |||||
t(p) | −0.4.08 (0.687) | 5.766 (0.000) | |||||
Effect size (η2p) | 0.361 | 0.020 | 0.390 | ||||
EX180°/s PT(N-M) | Pretest | 28.35 ± 9.97 | 28.97 ± 11.27 | 0.797 (0.205~1.382) | 63.544 (0.000) | 2.271 (0.139) | 7.628 (0.008) |
Posttest | 21.03 ± 6.93 | 13.90 ± 6.66 | |||||
Mean difference | −7.31 ± 7.53 | −15.07 ± 11.51 | |||||
t(p) | 4.757 (0.000) | 6.414 (0.000) | |||||
Effect size (η2p) | 0.580 | 0.047 | 0.142 | ||||
EX180°/s PT/BW (%) | Pretest | 43.63 ± 12.08 | 50.85 ± 21.19 | 1.006 (0.400~1.603) | 68.520 (0.000) | 0.071 (0.792) | 12.155 (0.001) |
Posttest | 32.50 ± 8.38 | 23.50 ± 11.35 | |||||
Mean difference | −11.13 ± 10.71 | −27.34 ± 20.09 | |||||
t(p) | 5.091 (0.000) | 6.666 (0.000) | |||||
Effect size (η2p) | 0.598 | 0.002 | 0.209 |
Variable | PPRT Group (n = 24) | Control Group (n = 24) | Cohen’s d (95% CI) | Time | Group | Time × Group | |
---|---|---|---|---|---|---|---|
F(p) | F(p) | F(p) | |||||
FLX60°/s PT(N-M) | Pretest | 25.33 ± 8.15 | 26.46 ± 11.62 | 0.743 (0.154~1.325) | 6.686 (0.013) | 2.160 (0.148) | 6.660 (0.013) |
Posttest | 25.32 ± 11.90 | 17.73 ± 5.05 | |||||
Mean difference | 0.03 ± 12.54 | −8.73 ± 10.98 | |||||
t(p) | 0.003 (0.997) | 3.893 (0.001) | |||||
Effect size (η2p) | 0.127 | 0.045 | 0.126 | ||||
FLX60°/s PT/BW (%) | Pretest | 39.19 ± 9.66 | 46.16 ± 20.69 | 0.815 (0.154~1.325) | 20.592 (0.000) | 0.026 (0.872) | 9.025 (0.004) |
Posttest | 35.89 ± 10.90 | 29.93 ± 7.78 | |||||
Mean difference | −3.30 ± 11.32 | −15.69 ± 18.27 | |||||
t(p) | 1.428 (0.167) | 4.470 (0.000) | |||||
Effect size(η2p) | 0.309 | 0.001 | 0.164 | ||||
FLX180°/s PT(N-M) | Pretest | 19.71 ± 7.80 | 18.09 ± 9.52 | 0.003 (−0.563~0.569) | 26.464 (0.000) | 1.215 (0.276) | 0.056 (0.814) |
Posttest | 13.64 ± 5.64 | 11.44 ± 5.79 | |||||
Mean difference | −6.06 ± 6.29 | −6.09 ± 10.70 | |||||
t(p) | 4.725 (0.000) | 3.148 (0.005) | |||||
Effect size(η2p) | 0.365 | 0.026 | 0.001 | ||||
FLX180°/s PT/BW (%) | Pretest | 30.42 ± 10.09 | 32.01 ± 17.59 | 0.263 (−0.307~0.830) | 30.902 (0.000) | 0.014 (0.906) | 0.890 (0.350) |
Posttest | 21.00 ± 7.85 | 18.75 ± 9.96 | |||||
Mean difference | −9.60 ± 8.57 | −13.26 ± 17.78 | |||||
t(p) | 5.052 (0.000) | 3.655 (0.001) | |||||
Effect size(η2p) | 0.402 | 0.000 | 0.019 |
Variable | PPRT Group (n = 24) | Control Group (n = 24) | Cohen’s d (95% CI) | Time | Group | Time × Group | |
---|---|---|---|---|---|---|---|
F(p) | F(p) | F(p) | |||||
WOMAC Pain | Pretest | 13.41 ± 2.74 | 13.50 ± 2.41 | 0.807 (0.214~1.392) | 234.173 (0.000) | 6.642 (0.013) | 7.813 (0.008) |
Posttest | 5.45 ± 0.88 | 8.00 ± 2.75 | |||||
Mean difference | 7.95 ± 2.42 | 5.50 ± 3.56 | |||||
t(p) | 16.095 (0.000) | 7.562 (0.000) | |||||
Effect size (η2p) | 0.836 | 0.126 | 0.145 | ||||
WOMAC Stiffness | Pretest | 5.41 ± 1.41 | 4.66 ± 1.49 | 0.423 (−0.152~0.993) | 114.656 (0.000) | 2.495 (0.121) | 2.247 (0.141) |
Posttest | 3.04 ± 0.99 | 2.87 ± 0.79 | |||||
Mean difference | 2.29 ± 1.04 | 1.75 ± 1.48 | |||||
t(p) | 10.617 (0.000) | 5.627 (0.000) | |||||
Effect size (η2p) | 0.714 | 0.051 | 0.047 | ||||
WOMAC Physical function | Pretest | 49.62 ± 7.02 | 47.33 ± 5.96 | 0.660 (0.075~1.239) | 366.176 (0.000) | 0.029 (0.866) | 5.062 (0.029) |
Posttest | 30.41 ± 6.88 | 32.16 ± 5.41 | |||||
Mean difference | 18.87 ± 5.62 | 14.58 ± 7.27 | |||||
t(p) | 17.541 (0.000) | 10.651 (0.000) | |||||
Effect size (η2p) | 0.888 | 0.001 | 0.099 | ||||
WOMAC Total | Pretest | 68.46 ± 9.002 | 65.50 ± 6.29 | 0.967 (0.363~1.561) | 604.805 (0.000) | 0.108 (0.744) | 11.222 (0.002) |
Posttest | 38.92 ± 6.846 | 43.04 ± 6.097 | |||||
Mean difference | 29.54 ± 6.6 | 22.46 ± 7.984 | |||||
t(p) | 21.927 (0.000) | 13.781 (0.000) | |||||
Effect size (η2p) | 0.929 | 0.002 | 0.196 | ||||
TUG (s) | Pretest | 12.96 ± 1.79 | 12.75 ± 2.12 | 0.596 (0.014~1.171) | 106.67 (0.000) | 0.946 (0.336) | 4.216 (0.046) |
Posttest | 9.32 ± 1.29 | 10.31 ± 1.57 | |||||
Mean difference | 3.64 ± 1.41 | 2.42 ± 2.51 | |||||
t(p) | 12.629 (0.000) | 4.747 (0.000) | |||||
Effect size (η2p) | 0.699 | 0.020 | 0.084 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Seo, J.; Lee, B.-H. The Effects of Pedaling-Based Progressive Resistance Training on Range of Motion, Muscle Strength, and Physical Function in Female Patients with Total Knee Arthroplasty: Single-Blind Randomized Controlled Trial. Medicina 2025, 61, 1441. https://doi.org/10.3390/medicina61081441
An J, Seo J, Lee B-H. The Effects of Pedaling-Based Progressive Resistance Training on Range of Motion, Muscle Strength, and Physical Function in Female Patients with Total Knee Arthroplasty: Single-Blind Randomized Controlled Trial. Medicina. 2025; 61(8):1441. https://doi.org/10.3390/medicina61081441
Chicago/Turabian StyleAn, Jungae, Junseok Seo, and Byoung-Hee Lee. 2025. "The Effects of Pedaling-Based Progressive Resistance Training on Range of Motion, Muscle Strength, and Physical Function in Female Patients with Total Knee Arthroplasty: Single-Blind Randomized Controlled Trial" Medicina 61, no. 8: 1441. https://doi.org/10.3390/medicina61081441
APA StyleAn, J., Seo, J., & Lee, B.-H. (2025). The Effects of Pedaling-Based Progressive Resistance Training on Range of Motion, Muscle Strength, and Physical Function in Female Patients with Total Knee Arthroplasty: Single-Blind Randomized Controlled Trial. Medicina, 61(8), 1441. https://doi.org/10.3390/medicina61081441