Development and Validation of the CHDSI Questionnaire: A New Tool for Measuring Disease-Specific Quality of Life in Children and Adolescents with Congenital Heart Defects
Abstract
1. Introduction
2. Materials and Methods
2.1. Development Steps
2.2. Validation and Standardization Process
2.3. Patient Collective
2.4. Research Infrastructure
2.5. Overview of Questions, Question Complexes, and Postulated Scales
2.6. Data Analyses and Statistics
2.7. Scales and Scores
2.8. Statistical Methods Used
2.9. Testing the Postulated Model Using CFA
2.10. Calculation of Standard Values for Total Score and Subscales
2.11. Correlation Analyses
2.12. Adequate Sample Size
3. Results
3.1. Mean Value Differences
3.2. Model Testing
3.3. Standard Values for Total Score and Subscales
3.4. Correlation Analyses
3.5. Short Version of the CHDSI
4. Discussion
4.1. Model Fit
4.2. Factors Influencing DsQoL
4.3. Representativeness and Generalizability
4.4. Additional Benefits of the CHDSI
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, G.; Hess, J.; Bühlmeyer, K. Klinische Kinderkardiologie: Diagnostik und Therapie der Angeborenen Herzfehler; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Kaltman, J.R.; Burns, K.M.; Pearson, G.D. Perspective on Congenital Heart Disease Research. Circ. Res. 2017, 120, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Hinton, R.B.; Ware, S.M. Heart Failure in Pediatric Patients With Congenital Heart Disease. Circ. Res. 2017, 120, 978–994. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, G.; Lindinger, A.; Lange, P.E.; Sax, U.; Olchvary, J.; Peters, B.; Bauer, U.; Hense, H.-W. Frequency and spectrum of congenital heart defects among live births in Germany: A study of the Competence Network for Congenital Heart Defects. Clin. Res. Cardiol. 2011, 100, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Diller, G.-P.; Breithardt, G.; Baumgartner, H. Congenital heart defects in adulthood. Dtsch. Ärzteblatt Int. 2011, 108, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Bovijn, L.; Budts, W.; Belmans, A.; Gewillig, M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation 2010, 122, 2264–2272. [Google Scholar] [CrossRef] [PubMed]
- Marelli, A.J.; Mackie, A.S.; Ionescu-Ittu, R.; Rahme, E.; Pilote, L. Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation 2007, 115, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, A.H.; Verstappen, A. The whole adult congenital heart disease patient. Prog. Cardiovasc. Dis. 2011, 53, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Sable, C.; Foster, E.; Uzark, K.; Bjornsen, K.; Canobbio, M.M.; Connolly, H.M.; Graham, T.P.; Gurvitz, M.Z.; Kovacs, A.; Meadows, A.K.; et al. Best practices in managing transition to adulthood for adolescents with congenital heart disease: The transition process and medical and psychosocial issues: A scientific statement from the American Heart Association. Circulation 2011, 123, 1454–1485. [Google Scholar] [CrossRef] [PubMed]
- Marian, A.J. Congenital Heart Disease: The Remarkable Journey From the “Post-Mortem Room” to Adult Clinics. Circ. Res. 2017, 120, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Dulfer, K.; Helbing, W.A.; Duppen, N.; Utens, E.M. Associations between exercise capacity, physical activity, and psychosocial functioning in children with congenital heart disease: A systematic review. Eur. J. Prev. Cardiol. 2014, 21, 1200–1215. [Google Scholar] [CrossRef] [PubMed]
- Holst, K.A.; Said, S.M.; Nelson, T.J.; Cannon, B.C.; Dearani, J.A. Current Interventional and Surgical Management of Congenital Heart Disease: Specific Focus on Valvular Disease and Cardiac Arrhythmias. Circ. Res. 2017, 120, 1027–1044. [Google Scholar] [CrossRef] [PubMed]
- Bouma, B.J.; Mulder, B.J. Changing Landscape of Congenital Heart Disease. Circ. Res. 2017, 120, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Voss, C.; Harris, K.C. Physical activity evaluation in children with congenital heart disease. Heart 2017, 103, 1408–1412. [Google Scholar] [CrossRef] [PubMed]
- Amedro, P.; Dorka, R.; Moniotte, S.; Guillaumont, S.; Fraisse, A.; Kreitmann, B.; Borm, B.; Bertet, H.; Barrea, C.; Ovaert, C.; et al. Quality of Life of Children with Congenital Heart Diseases: A Multicenter Controlled Cross-Sectional Study. Pediatr. Cardiol. 2015, 36, 1588–1601. [Google Scholar] [CrossRef] [PubMed]
- Mellion, K.; Uzark, K.; Cassedy, A.; Drotar, D.; Wernovsky, G.; Newburger, J.W.; Mahony, L.; Mussatto, K.; Cohen, M.; Limbers, C.; et al. Health-related quality of life outcomes in children and adolescents with congenital heart disease. J. Pediatr. 2014, 164, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Drakouli, M.; Petsios, K.; Giannakopoulou, M.; Patiraki, E.; Voutoufianaki, I.; Matziou, V. Determinants of quality of life in children and adolescents with CHD: A systematic review. Cardiol. Young 2015, 25, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Fredriksen, P.M.; Diseth, T.H.; Thaulow, E. Children and adolescents with congenital heart disease: Assessment of behavioural and emotional problems. Eur. Child Adolesc. Psychiatry 2009, 18, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Oberhoffer, R.; Hock, J.; Giegerich, T.; Müller, J. Health-related quality of life in children and adolescents: Current normative data, determinants and reliability on proxy-report. J. Paediatr. Child Health 2016, 52, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Hess, J.; Hager, A. General anxiety of adolescents and adults with congenital heart disease is comparable with that in healthy controls. Int. J. Cardiol. 2013, 165, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Derridj, N.; Bonnet, D.; Calderon, J.; Amedro, P.; Bertille, N.; Lelong, N.; Goffinet, F.; Khoshnood, B.; Guedj, R. Quality of Life of Children Born with a Congenital Heart Defect. J. Pediatr. 2022, 244, 148–153.e145. [Google Scholar] [CrossRef] [PubMed]
- WHO. Constitution of the World Health Organization; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Radoschewski, M. Gesundheitsbezogene Lebensqualität—Konzepte und Maße. Bundesgesundheitsblatt—Gesundheitsforschung—Gesundheitsschutz 2000, 43, 165–189. [Google Scholar] [CrossRef]
- Post, M.W.M. Definitions of quality of life: What has happened and how to move on. Top. Spinal Cord Inj. Rehabil. 2014, 20, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, H.; Nicholson, A.; Stafford, M.; Roberts, R.; Marmot, M. The impact of socioeconomic status on health functioning as assessed by the SF-36 questionnaire: The Whitehall II Study. Am. J. Public Health 1997, 87, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.C.; Sticker, E.J.; Keuchen, R.; Koerten, M.-A.; Diller, G.-P.; Tutarel, O.; Bauer, U.M. Is having a job a protective factor? Employment status and state of medical care as subjectively perceived by adults with CHD in Germany. Cardiol. Young 2017, 27, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Moons, P.; Van Deyk, K.; Marquet, K.; Raes, E.; De Bleser, L.; Budts, W.; De Geest, S. Individual quality of life in adults with congenital heart disease: A paradigm shift. Eur. Heart J. 2005, 26, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Vigl, M.; Niggemeyer, E.; Hager, A.; Schwedler, G.; Kropf, S.; Bauer, U. The importance of socio-demographic factors for the quality of life of adults with congenital heart disease. Qual. Life Res. 2011, 20, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Lesch, W.; Specht, K.; Lux, A.; Frey, M.; Utens, E.; Bauer, U. Disease-specific knowledge and information preferences of young patients with congenital heart disease. Cardiol. Young 2014, 24, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Hager, A.; Hess, J. Lebensqualität nach Operation angeborener Herzfehler. Monatsschrift Kinderheilkd. 2006, 154, 639–643. [Google Scholar] [CrossRef]
- von der Lippe, E.; Rattay, P. Association of partner, parental, and employment statuses with self-rated health among German women and men. SSM—Popul. Health 2016, 28, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.R.; Mount, B.M.; MacDonald, N. Defining quality of life. Eur. J. Cancer 1996, 32A, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, M. Erfassung der gesundheitsbezogenen Lebensqualität mit dem SF-36 Health Survey [Assessment of health related quality of life with the SF-36 Health Survey]. Die Rehabil. 1996, 35, XVII–XXVII, quiz XXVII–XXIX. [Google Scholar]
- Geigle, R.; Jones, S.B. Outcomes measurement: A report from the front. Inquiry 1990, 27, 7–13. [Google Scholar] [PubMed]
- Codman, E.A. The product of a hospital. 1914. Arch. Pathol. Lab. Med. 1990, 114, 1106–1111. [Google Scholar] [PubMed]
- Silver, G.A. Paul Anthony Lembcke, MD, MPH: A pioneer in medical care evaluation. Am. J. Public Health 1990, 80, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Almy, T. Comprehensive functional assessment for elderly patients: Position paper by Health and Public Policy Committee, American College of Physicians. Ann. Intern. Med. 1988, 109, 70–72. [Google Scholar]
- Cluff, L.E. Chronic disease, function and the quality of care. J. Chronic Dis. 1981, 34, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.A. Outcome assessment 70 years later: Are we ready? N. Engl. J. Med. 1987, 316, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, P.M. Shattuck lecture--outcomes management. A technology of patient experience. N. Engl. J. Med. 1988, 318, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Tarlov, A.R. Shattuck lecture—The increasing supply of physicians, the changing structure of the health-services system, and the future practice of medicine. N. Engl. J. Med. 1983, 308, 1235–1244. [Google Scholar] [CrossRef] [PubMed]
- McDermott, W. Absence of indicators of the influence of its physicians on a society’s health: Impact of physician care on society. Am. J. Med. 1981, 70, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Hays, R.D.; Stewart, A.L. The structure of self-reported health in chronic disease patients. Psychol. Assess. J. Consult. Clin. Psychol. 1990, 2, 22–30. [Google Scholar] [CrossRef]
- Liang, J. Self-Reported Physical Health Among Aged Adults. J. Gerontol. 1986, 41, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Ware Jr, J.E.; Brook, R.H.; Davies, A.R.; Lohr, K.N. Choosing measures of health status for individuals in general populations. Am. J. Public Health 1981, 71, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Bombardier, C.; Ware, J.; Russell, I.; Larson, M.; Chalmers, A.; Read, J. Auranofin therapy and quality of life in patients with rheumatoid arthritis. Results of a multicenter trial. Am. J. Med. 1986, 81, 565–578. [Google Scholar] [PubMed]
- Croog, S.; Levine, S.; Testa, M. The effects of antihypertensive therapy on the quality of life. N. Engl. J. Med. 1986, 314, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Fowler, F.J.; Wennberg, J.E.; Timothy, R.P.; Barry, M.J.; Mulley, A.G.; Hanley, D. Symptom status and quality of life following prostatectomy. JAMA 1988, 259, 3018–3022. [Google Scholar] [CrossRef] [PubMed]
- Mehrez, A.; Gafni, A. uality-adjusted life years, utility theory, and healthy-years equivalents. Med. Decis. Mak. 1989, 9, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Pedroni, G.; Zweifel, P. Wie Mißt Man Gesundheit? Pharma Information: Basel, Switzerland, 1990. [Google Scholar]
- Katz, S. The science of quality of life. J. Chronic Dis. 1987, 40, 459–463. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Seid, M.; Kurtin, P.S. PedsQL 4.0: Reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Med. Care 2001, 39, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Marino, B.S.; Shera, D.; Wernovsky, G.; Tomlinson, R.S.; Aguirre, A.; Gallagher, M.; Lee, A.; Cho, C.J.; Stern, W.; Davis, L.; et al. The development of the pediatric cardiac quality of life inventory: A quality of life measure for children and adolescents with heart disease. Qual. Life Res. 2008, 17, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Burwinkle, T.M.; Seid, M.; Skarr, D. The PedsQL 4.0 as a pediatric population health measure: Feasibility, reliability, and validity. Ambul. Pediatr. 2003, 3, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Burwinkle, T.M.; Seid, M. The PedsQL 4.0 as a school population health measure: Feasibility, reliability, and validity. Qual. Life Res. 2006, 15, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Limbers, C.A.; Burwinkle, T.M. Parent proxy-report of their children’s health-related quality of life: An analysis of 13,878 parents’ reliability and validity across age subgroups using the PedsQL 4.0 Generic Core Scales. Health Qual. Life Outcomes 2007, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Burwinkle, T.M.; Seid, M. The PedsQL as a pediatric patient-reported outcome: Reliability and validity of the PedsQL Measurement Model in 25,000 children. Expert Rev. Pharmacoecon. Outcomes Res. 2005, 5, 705–719. [Google Scholar] [CrossRef] [PubMed]
- Felder-Puig, R.; Frey, E.; Proksch, K.; Varni, J.W.; Gadner, H.; Topf, R. Validation of the German version of the Pediatric Quality of Life Inventory (PedsQL) in childhood cancer patients off treatment and children with epilepsy. Qual. Life Res. 2004, 13, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Seid, M.; Knight, T.S.; Uzark, K.; Szer, I.S. The PedsQL 4.0 Generic Core Scales: Sensitivity, responsiveness, and impact on clinical decision-making. J. Behav. Med. 2002, 25, 175–193. [Google Scholar] [CrossRef] [PubMed]
- Uzark, K.; Jones, K.; Slusher, J.; Limbers, C.A.; Burwinkle, T.M.; Varni, J.W. Quality of life in children with heart disease as perceived by children and parents. Pediatrics 2008, 121, e1060–e1067. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Limbers, C.A.; Burwinkle, T.M. Impaired health-related quality of life in children and adolescents with chronic conditions: A comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQL 4.0 Generic Core Scales. Health Qual. Life Outcomes 2007, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Marino, B.S.; Tomlinson, R.S.; Wernovsky, G.; Drotar, D.; Newburger, J.W.; Mahony, L.; Mussatto, K.; Tong, E.; Cohen, M.; Andersen, C.; et al. Validation of the pediatric cardiac quality of life inventory. Pediatrics 2010, 126, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Helm, P.C.; Koerten, M.-A.; Abdul-Khaliq, H.; Baumgartner, H.; Kececioglu, D.; Bauer, U.M. Representativeness of the German National Register for Congenital Heart Defects: A clinically oriented analysis. Cardiol. Young 2016, 26, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Franklin, R.C.G.; Béland, M.J.; Spicer, D.E.; Colan, S.D.; Walters, H.L., 3rd; Bailliard, F.; Houyel, L.; St Louis, J.D.; Lopez, L.; et al. Nomenclature for Pediatric and Congenital Cardiac Care: Unification of Clinical and Administrative Nomenclature—The 2021 International Paediatric and Congenital Cardiac Code (IPCCC) and the Eleventh Revision of the International Classification of Diseases (ICD-11). World J. Pediatr. Congenit. Heart Surg. 2021, 12, E1–E18. [Google Scholar] [CrossRef] [PubMed]
- Warnes, C.A.; Williams, R.G.; Bashore, T.M.; Child, J.S.; Connolly, H.M.; Dearani, J.A.; Del Nido, P.; Fasules, J.W.; Graham, T.P., Jr.; Hijazi, Z.M.; et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2008, 52, e143–e263. [Google Scholar] [CrossRef] [PubMed]
- Mayer, H.O. Interview und Schriftliche Befragung. Entwicklung, Durchführung und Auswertung; Oldenburg Wissenschaftsverlag: München, Germany, 2006. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum: New York, NY, USA, 1988. [Google Scholar]
- De Winter, J.C. Using the Student’s t-test with extremely small sample sizes. Pract. Assess. Res. Eval. 2013, 18, 10. [Google Scholar]
- Glass, G.V.; Peckham, P.D.; Sanders, J.R. Consequences of failure to meet assumptions underlying the fixed effects analyses of variance and covariance. Rev. Educ. Res. 1972, 42, 237–288. [Google Scholar] [CrossRef]
- Harwell, M.R.; Rubinstein, E.N.; Hayes, W.S.; Olds, C.C. Summarizing Monte Carlo results in methodological research: The one-and two-factor fixed effects ANOVA cases. J. Educ. Stat. 1992, 17, 315–339. [Google Scholar] [CrossRef]
- Lix, L.M.; Keselman, J.C.; Keselman, H.J. Consequences of assumption violations revisited: A quantitative review of alternatives to the one-way analysis of variance F test. Rev. Educ. Res. 1996, 66, 579–619. [Google Scholar] [PubMed]
- Bortz, J.; Schuster, C. Statistik für Human- und Sozialwissenschaftler; Springer Nature: Berlin, Germany, 2010. [Google Scholar]
- Herzog, M.H.; Francis, G.; Clarke, A. Understanding Statistics and Experimental Design: How to Not Lie with Statistics; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Stone, E.R. t Test, Independent Samples. In Encyclopedia of Research Design; Salkind, N.J., Ed.; SAGE: Los Angeles, CA, USA, 2010; pp. 1551–1556. [Google Scholar]
- Norušis, M.J. SPSS 14.0. Statistical Procedures Companion; Prentice Hall: Upper Saddle River, NJ, USA, 2005. [Google Scholar]
- Bühner, M.; Ziegler, M. Statistik für Psychologen und Sozialwissenschaftler; Pearson: München, Germany, 2009. [Google Scholar]
- Frey, B.B. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Amelang, M.; Schmidt-Atzert, L. Psychologische Diagnostik und Intervention, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Bühner, M. Einführung in Die Test- und Fragebogenkonstruktion; Pearson: München, Germany, 2011. [Google Scholar]
- Schermelleh-Engel, K.; Werner, C. Methoden der Reliabilitätsbestimmung. In Testtheorie und Fragebogenkonstruktion, Aktualisierte und Überarbeitete Auflage, 2nd ed.; Moosbrugger, H., Kelava, A., Eds.; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- Köhler, T. Statistik für Psychologen, Pädagogen und Mediziner: Ein Lehrbuch; Kohlhammer: Stuttgart, Germany, 2004. [Google Scholar]
- Schermelleh-Engel, K.; Schweizer, K. Multitrait-Multimethod-Analysen. In Testtheorie und Fragebogenkonstruktion; Moosbrugger, H., Kelava, A., Eds.; Springer: Heidelberg, Germany, 2007. [Google Scholar]
- Lang, F.R.; Wendt, V. Entwicklungspsychologische Grundlagen der Diagnostik. In Handbuch der Psychologischen Diagnostik; Petermann, F., Eid, M., Eds.; Hogrefe Verlag: Göttingen, Germany, 2006; pp. 57–67. [Google Scholar]
- Briggs, S.R.; Cheek, J.M. The role of factor analysis in the development and evaluation of personality scales. J. Personal. 1986, 54, 106–148. [Google Scholar] [CrossRef]
- Clark, L.A.; Watson, D. Constructing validity. Basic issues in objective scale development. Psychol. Assess. 1995, 7, 309–319. [Google Scholar] [CrossRef]
- Bortz, J.; Döring, N. Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler; Springer Medizin: Heidelberg, Germany, 2006. [Google Scholar]
- Smith, G.T. On Construct Validity: Issues of Method and Measurement. Psychol. Assess. 2005, 17, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Messick, S. Foundations of validity: Meaning and consequences in psychological assessment. Eur. J. Psychol. Assess. 1994, 10, 1–9. [Google Scholar] [CrossRef]
- Cook, T.D.; Campbell, D.T.; Shadish, W. Experimental and Quasi-Experimental Designs for Generalized Causal Inference; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- Zumbo, B.D. Validity: Foundational Issues and Statistical Methodology. In Handbook of Statistics; Rao, C.R., Sinharay, S., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2007; Volume 26. [Google Scholar]
- Mulaik, S.A. The Foundations of Factor Analysis; McGraw-Hill: New York, NY, USA, 1972. [Google Scholar]
- Finney, S.; DiStefano, C.; Kopp, J. Overview of estimation methods and preconditions for their application with structural equation modeling. In Principles and Methods of Test Construction: Standards and Recent Advances; Schweizer, K., DiStefano, C., Eds.; Hogrefe: Boston, MA, USA, 2016; pp. 135–165. [Google Scholar]
- DiStefano, C. The impact of categorization with confirmatory factor analysis. Struct. Equ. Model. 2002, 9, 327–346. [Google Scholar] [CrossRef]
- Sharma, S.; Mukherjee, S.; Kumar, A.; Dillon, W.R. A simulation study to investigate the use of cutoff values for assessing model fit in covariance structure models. J. Bus. Res. 2005, 58, 935–943. [Google Scholar] [CrossRef]
- Coenders, G.; Saris, W.E. Categorization and measurement quality. The choice between Pearson and Polychoric correlations. In The Multitrait-Multimethod Approach to Evaluate Measurement Instruments; Saris, W.E., Münnich, A., Eds.; Eötvös University Press: Budapest, Hungary, 1995; pp. 125–144. [Google Scholar]
- Flora, D.B.; Curran, P.J. An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychol. Methods 2004, 9, 466–491. [Google Scholar] [CrossRef] [PubMed]
- Freiberg, A.; Stover, J.A.; De la Iglesia, G.; Fernández, M. Correlaciones policóricas y tetracóricas en estudios factoriales exploratorios y confirmatorios. Cienc. Psicológicas 2013, 7, 151–164. [Google Scholar] [CrossRef]
- Bandalos, D.L. Relative Performance of Categorical Diagonally Weighted Least Squares and Robust Maximum Likelihood Estimation. Struct. Equ. Model. 2014, 21, 102–116. [Google Scholar] [CrossRef]
- Muthén, B.O.; du Toit, S.H.C.; Spisic, D. Robust Infoerince Using Weighted Least Squares and Quadratic Estimating Equations in Latent Variable Modeling with Categorical and Continuous Outcomes; B.O. Muthén: Los Angeles, CA, USA, 1997. [Google Scholar]
- Rhemtulla, M.; Brosseau-Liard, P.É.; Savalei, V. When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychol. Methods 2012, 17, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-T.; Bentler, P.M. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Barrett, P. Structural equation modeling: Adjudging model fit. Personal. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- Steiger, J.H. Structural Model Evaluation and Modification: An Interval Estimation Approach. Multivar. Behav. Res. 1990, 25, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.M. Structural Equation Modeling with LISREL, PRELIS, and SIMPLIS: Basic Concepts, Applications, and Programming; Psychology Press: New York, NY, USA, 1998. [Google Scholar]
- Hu, L.-t.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis. Conventional Criteria Versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Portela, D.M.P. Contributo das Técnicas de Análise Fatorial Para o Estudo do Programa “Ocupação Científica de Jovens Nas Férias”; Universidade Aberta: Lisboa, Portugal, 2012. [Google Scholar]
- Hair, J.F.; Black, W.C., Jr.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Tent, L.; Stelzl, I. Pädagogisch-Psychologische Diagnostik: Theoretische und methodische Grundlagen; Hogrefe: Göttingen, Germany, 1993. [Google Scholar]
- Wilcox, R.R. Statistics for the Social Sciences; Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Amelang, M.; Schmidt-Atzert, L. Psychologische Diagnostik und Intervention, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Schelten, A. Testbeurteilung und Testerstellung—Grundlagen der Teststatistik und Testtheorie für Pädagogen und Ausbilder in der Praxis, 2nd ed.; Franz Steiner Verlag: Stuttgart, Germany, 1997. [Google Scholar]
- Yu, C.-Y. Evaluating Cutoff Criteria of Model Fit Indices for Latent Variable Models with Binary and Continuous Outcomes; University of California: Los Angeles, CA, USA, 2002. [Google Scholar]
- Bentler, P.M.; Chou, C.P. Practical issues in structural modeling. Sociol. Methods Res. 1987, 16, 78–117. [Google Scholar] [CrossRef]
- Comrey, A.; Lee, H. A First Course in Factor Analysis; Erlbaum: Hillsdale, NJ, USA, 1992. [Google Scholar]
- Peterson, R.A. A Meta-analysis of Cronbach’s Coefficient Alpha. J. Consum. Res. 1994, 21, 381–391. [Google Scholar] [CrossRef]
- Cortina, J.M. What is Coefficient Alpha? An Examination of Theory and Applications. J. Appl. Psychol. 1993, 78, 98–104. [Google Scholar] [CrossRef]
- Cronbach, L.J. Coefficient alpha and the internal structure of tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Schmitt, N. Uses and abuses of coefficient alpha. Psychol. Assess. 1996, 8, 350–353. [Google Scholar] [CrossRef]
- van Griethuijsen, R.A.L.F.; van Eijck, M.W.; Haste, H.; den Brok, P.J.; Skinner, N.C.; Mansour, N.; Gencer, A.S.; BouJaoude, S. Global patterns in students’ views of science and interest in science. Res. Sci. Educ. 2014, 45, 581–603. [Google Scholar] [CrossRef]
- Fisseni, H.J. Lehrbuch der Psychologischen Diagnostik; Hogrefe: Göttingen, Germany, 1997. [Google Scholar]
- Schmidt-Atzert, L.; Amelang, M.; Freudenthaler, T. Psychologische Diagnostik; Springer: Berlin, Germany, 2012. [Google Scholar]
- Brown, T.A. Confirmatory Factor Analysis for Applied Research; Guildford Press: New York, NY, USA, 2006. [Google Scholar]
- O’Brien, R.M. The relationship between ordinal measures and their underlying values: Why all the disagreement? Qual. Quant. 1985, 19, 265–277. [Google Scholar] [CrossRef]
- Saris, W.E.; van Wijk, T.; Scherpenzeel, A. Validity and reliability of subjective social indicators: “The effect of different measures of association”. Soc. Indic. Res. 1998, 45, 173–199. [Google Scholar] [CrossRef]
- Holgado-Tello, F.P.; Chacón-Moscoso, S.; Barbero-García, I.; Vila-Abad, E. Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Qual. Quant. 2010, 44, 153–166. [Google Scholar] [CrossRef]
- Boomsma, A.; Hoogland, J.J. The robustness of lisrel modeling revisited. In Structural Equation Models: Present and Future. A Festschrift in Honor of Karl Jöreskog; Cudeck, R., du Toit, S., Sörbom, D., Eds.; Scientific Software International: Chicago, IL, USA, 2001; pp. 139–168. [Google Scholar]
- Muthén, L.K.; Muthén, B.O. How to use a Monte Carlo study to decide on sample size and determine power. Struct. Equ. Model. 2002, 9, 599–620. [Google Scholar] [CrossRef]
- Kaplan, D. Evaluating and modifying covariance structure models: A review and recommendation. Multivar. Behav. Res. 1990, 25, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Yang-Wallentin, F.; Jöreskog, K.G.; Luo, H. Confirmatory factor analysis of ordinal variables with misspecified models. Struct. Equ. Model. 2010, 17, 392–423. [Google Scholar] [CrossRef]
- Bollen, K.A. Structural Equations with Latent Variables; Wiley: New York, NY, USA, 1989. [Google Scholar]
- MacCallum, R.C.; Analysis, F. Factor analysis. In The SAGE Handbook of Quantitative Methods in Psychology; Millsap, R.E., Maydeu-Olivares, A., Eds.; Sage Publications Ltd.: Thousand Oaks, CA, USA, 2009; pp. 123–147. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Mulaik, S.A.; James, L.R.; van Alstine, J.; Bennet, N.; Lind, S.; Stilwell, C.D. Evaluation of Goodness-of-Fit Indices for Structural Equation Models. Psychol. Bull. 1989, 105, 430–445. [Google Scholar] [CrossRef]
- McIntosh, C. Rethinking fit assessment in structural equation modelling: A commentary and elaboration on Barrett (2007). Personal. Individ. Differ. 2006, 42, 859–867. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Sörbom, D. PRELIS2: User’s Reference Guide; Scientific Software International: Chicago, IL, USA, 1996. [Google Scholar]
- Kenny, D.A.; McCoach, D.B. Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling. Struct. Equ. Model. 2003, 10, 333–351. [Google Scholar] [CrossRef]
- Wheaton, B.; Muthen, B.; Alwin, D.F.; Summers, G. Assessing Reliability and Stability in Panel Models. Sociol. Methodol. 1977, 8, 84–136. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics; Allyn and Bacon: Boston, MA, USA, 2013. [Google Scholar]
- Diamantopoulos, A.; Siguaw, J.A. Introducing LISREL; SAGE Publications, Inc.: London, UK, 2000. [Google Scholar]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power analysis and determination of sample size for covariance structure modeling of fit involving a particular measure of model. Psychol. Methods 1996, 13, 130–149. [Google Scholar] [CrossRef]
- Steiger, J.H. Understanding the limitations of global fit assessment in structural equation modeling. Personal. Individ. Differ. 2007, 42, 893–898. [Google Scholar] [CrossRef]
- Fan, X.; Thompson, B.; Wang, L. Effects of sample size, estimation methods, and model specification on structural equation modeling fit indexes. Struct. Equ. Model. 1999, 6, 56–83. [Google Scholar] [CrossRef]
- Raykov, T. On the large-sample bias, variance, and mean squared error of the conventional noncentrality parameter estimator of covariance structure models. Struct. Equ. Model. 2000, 7, 431–441. [Google Scholar] [CrossRef]
- Raykov, T. Bias-corrected estimation of noncentrality parameters of covariance structure models. Struct. Equ. Model. 2005, 12, 120–129. [Google Scholar] [CrossRef]
- Finney, S.J.; DiStefano, C. Non-normal and categorical data in structural equation modeling. In Structural Equation Modeling: A Second Course, 2nd ed.; Hancock, G.R., Mueller, R.O., Eds.; Information Age Publishing: Charlotte, NC, USA, 2013; pp. 439–492. [Google Scholar]
- Nevitt, J.; Hancock, G.R. Performance of Bootstrapping Approaches to Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling. Struct. Equ. Model. 2001, 8, 353–377. [Google Scholar] [CrossRef]
- Beauducel, A.; Herzberg, P.Y. On the Performance of Maximum Likelihood Versus Means and Variance Adjusted Weighted Least Squares Estimation in CFA. Struct. Equ. Model. 2006, 13, 186–203. [Google Scholar] [CrossRef]
- Hutchinson, S.R.; Olmos, A. Behavior of descriptive fit indexes in confirmatory factor analysis using ordered categorical data. Struct. Equ. Model. 1998, 5, 344–364. [Google Scholar] [CrossRef]
- Wang, X. Health-Related Quality of Life in Adolescents with Congenital Heart Disease: Importance of Parental Hope. Iran. J. Public Health 2014, 43, 849–850. [Google Scholar] [PubMed]
- Abassi, H.; Huguet, H.; Picot, M.C.; Vincenti, M.; Guillaumont, S.; Auer, A.; Werner, O.; De La Villeon, G.; Lavastre, K.; Gavotto, A.; et al. Health-related quality of life in children with congenital heart disease aged 5 to 7 years: A multicentre controlled cross-sectional study. Health Qual. Life Outcomes 2020, 18, 366. [Google Scholar] [CrossRef] [PubMed]
- Bertoletti, J.; Marx, G.C.; Hattge Júnior, S.P.; Pellanda, L.C. Quality of life and congenital heart disease in childhood and adolescence. Arq. Bras. Cardiol. 2014, 102, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Niemitz, M.; Seitz, D.C.; Oebels, M.; Schranz, D.; Hövels-Gürich, H.; Hofbeck, M.; Kaulitz, R.; Galm, C.; Berger, F.; Nagdymann, N.; et al. The development and validation of a health-related quality of life questionnaire for pre-school children with a chronic heart disease. Qual. Life Res. 2013, 22, 2877–2888. [Google Scholar] [CrossRef] [PubMed]
- Villalonga-Olives, E.; von Steinbüchel, N.; Witte, C.; Kasten, E.; Kawachi, I.; Kiese-Himmel, C. Health related quality of life of immigrant children: Towards a new pattern in Germany? BMC Public Health 2014, 14, 790. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-J.; Zhao, K.; Fils-Aime, F. Response rates of online surveys in published research: A meta-analysis. Comput. Hum. Behav. Rep. 2022, 7, 100206. [Google Scholar] [CrossRef]
- Fosnacht, K.; Sarraf, S.; Howe, E.; Peck, L.K. How important are high response rates for college surveys? Rev. High. Educ. 2017, 40, 245–265. [Google Scholar] [CrossRef]
Feature | CHDSI | PedsQL (Generic and Cardiac) | PCQLI (Pediatric Cardiac) |
---|---|---|---|
Construct assessed | DsQoL of young CHD patients. | Pediatric HrQoL | HrQoL in pediatric cardiac patients |
Domains/subscales | Six disease-specific domains (physical limitations, stigma, sleep/recovery, peer relationships, healthcare experiences, and academic challenges) | The Generic Core Module covers four domains: physical, emotional, social, and school function. The Cardiac Module assesses six additional dimensions. | There are two scored subscales, Disease Impact (physical) and Psychosocial Impact, measuring the impact of the disease. |
Age range | Three age-specific versions: Preschool (31 items, 5 scales, for age 6), Children (36 items, 6 scales, ages 6 to under 14), and Adolescents (37 items, 6 scales, ages 14 to under 18) | Two main generic self-report versions: one for children aged 5–18 and a parent-proxy version for ages 2–18 (Cardiac Module is available for patients aged 5 to 18 years). | Two main versions: a self-report for 8 to 18 years and a parent-proxy version |
Normative sample | Validated and standardized in CHD patients aged 6 to <18 years nationwide in Germany through the National Register for Congenital Heart Defects (data collected online in 2022; N = 1201) | Validated in U.S. pediatric populations in the early 2000s on a sample of 1677 participants (963 children aged 5 to 18 and 1629 parents of children aged 2 to 18). | Validation in the early 2010s using an pediatric U.S. cardiac cohort of 1605 patients (8 to 18 years) |
Internal consistency (Cronbach’s α) | Cronbach’s alpha from 0.86 to 0.89 for kindergarten, 0.89 to 0.90 for children and adolescents (subscale alphas vary between 0.68 and 0.91) | Generic total score shows alpha range from 0.88 to 0.90 (subscale reliability varies between 0.70 and 0.90). | The total score alpha was up to 0.91 (disease-related subscale alphas around 0.90, psychosocial subscale around 0.85). |
Construct validity/Factor structure | CFA confirmed a six-domain model (CFI and TLI values above 0.99 and RMSEA around 0.05 with good discriminative validity for sex and CHD complexity). | Validation supports four generic domains (CFI between 0.945 and 0.956, NFI between 0.928 and 0.950, and RMSEA between 0.066 and 0.074 with good discrimination between healthy chronic conditions, disease severity, and health status). | Two primary subscales “Impact of Disease” (ID) and “Psychosocial Impact” (PI) together accounted for 55 to 60 percent of the total variance (PCA); there was a moderate to strong correlation (r ≈ 0.70) with PedsQL total scores in multicenter studies. |
Administration time | Full versions take 5 to 10 min and the short form takes 1 to 2 min. | PedsQL Generic Core (5 min), Cardiac Module adds 2 min | Full version takes 5 to 10 min |
Clinical vs. Research use | Designed for both routine clinical follow-up and research use in young CHD patients (stanine norms and a short form support efficient screening and help guide intervention decisions). | Widely used in both clinical practice and research (suitable for various conditions and comparative trials) | Primarily used in pediatric cardiology research and clinical settings (focuses on heart-specific effects, well suited for longitudinal follow-up) |
Scale | Children | Adolescents |
---|---|---|
MeHeartImpairments | ||
I could do everything without getting out of breath. | I could do everything without getting out of breath. | |
I had no physical pain. | I had no physical pain. | |
I have rarely felt ill. | I have rarely felt ill. | |
I was able to do my hobbies without any problems. | I was able to do my hobbies without any problems. | |
I felt physically fresh and alert. | I felt physically fresh and alert. | |
… quickly run out of breath. | … quickly run out of breath. | |
… often have to deal with dizziness. | … often have to deal with dizziness. | |
… also have pain in the chest. | … also feel pain in the chest. | |
… noticed that I get tired quickly. | … noticed that I get tired quickly. | |
… often feel a strange palpitation. | … often feel a strange palpitation. | |
I could do all the physical activities I wanted. | I could do all the physical activities I wanted. | |
MeHeartStigma | ||
… my parents worried a lot, I’m sorry about that. | … my parents worried a lot, I’m sorry about that. | |
* … teachers and classmates behave strangely toward me at school. | … teachers and classmates behave strangely toward me at school. | |
… my parents and other adults are overprotective of me. | … my parents and other adults are overprotective of me. | |
*… teachers and classmates made a special effort for me without me wanting it. | … teachers and classmates made a special effort for me without me wanting it. | |
… other children made fun of me. | … others made fun of me. | |
** I missed a lot of lessons because of medical examinations. | I missed a lot of lessons because of medical examinations. | |
I felt helpless and sad. | I felt helpless and sad. | |
** I was worried about whether I would make it through school. | I was worried about whether I would manage school/training. | |
I was worried about my future. | I wondered whether I would find a boyfriend/girlfriend with my heart defect. | |
** I couldn’t do everything in PE lessons. | I felt restricted in my independence due to my heart defect. | |
I was worried about what job I could do with my heart defect. | ||
I wasn’t worried about my future at all. | ||
MeHeartRecovery | ||
I couldn’t fall asleep well. | I couldn’t fall asleep well. | |
I often woke up at night. | I often woke up at night. | |
I struggled to get out of bed in the morning. | I struggled to get out of bed in the morning. | |
I woke up feeling refreshed. | I woke up feeling refreshed. | |
I had a peaceful, sound sleep. | I had a peaceful, sound sleep. | |
I recovered well after a strenuous day. | I recovered well after a strenuous day. | |
MeHeartFriends | ||
I was able to take part in activities with friends. | I was able to take part in activities with friends. | |
I had difficulties finding friends. | I had no difficulty making friends. | |
I felt equally good compared to my friends. | I felt just as independent as my friends. | |
I felt comfortable as I am. | ||
MeHeartTreatment | ||
I’m not afraid of the hospital. | I’m not afraid of the hospital. | |
I find visits to the doctor unpleasant. | I find visits to the doctor unpleasant. | |
I don’t like having my heart examined. | I don’t like having my heart examined. | |
MeHeartSchool | ||
** I did well with the homework. | I did well with the homework. | |
** I kept up well with the lesson material. | I kept up well with the lesson material. |
Invited CHD Patients N = 11,906 | Participated Patients N = 1201 | ||
---|---|---|---|
Overall response rate | 10.1% | ||
Sex | Male | 50.9% | 48% |
Female | 49.1% | 52% | |
Age (mean ± standard deviation) | In years | 12.76 ± 3.05 | 12.76 ± 3.12 |
CHD severity/complexity | Simple | 317 out of 4554 (6.97%) | |
Moderate | 417 out of 3091 (13.49%) | ||
Complex | 357 out of 2557 CHD (13.96%) | ||
Unclassified | 110 out of 1704 CHD (6.46%) |
CHDSI-Version | Comparison | Scale | p-Value | Mean ± SD (Group A) | Mean ± SD (Group B) |
---|---|---|---|---|---|
Children | Simple CHD (Group A) vs. Moderate CHD (Group B) | DsQoL Total | <0.01 | 121.35 ± 20.77 | 114.00 ± 23.20 |
MeHeartImpairments | <0.05 | 36.99 ± 8.68 | 34.76 ± 8.85 | ||
MeHeartStigma | <0.001 | 36.26 ± 5.29 | 33.45 ± 6.90 | ||
MeHeartFriends | <0.05 | 14.19 ± 2.50 | 13.56 ± 2.79 | ||
MeHeartSchool | <0.01 | 6.98 ± 1.64 | 6.39 ± 1.93 | ||
Simple CHD (Group A) vs. Complex CHD (Group B) | DsQoL Total | <0.001 | 121.35 ± 20.77 | 107.09 ± 23.65 | |
MeHeartImpairments | <0.001 | 36.99 ± 8.68 | 31.93 ± 9.29 | ||
MeHeartStigma | <0.001 | 36.26 ± 5.29 | 31.27 ± 7.16 | ||
MeHeartRecovery | <0.01 | 18.60 ± 5.18 | 16.94 ± 5.26 | ||
MeHeartFriends | <0.001 | 14.19 ± 2.50 | 12.89 ± 3.22 | ||
MeHeartSchool | <0.01 | 6.98 ± 1.64 | 6.29 ± 1.97 | ||
Moderate CHD (Group A) vs. Complex CHD (Group B) | DsQoL Total | <0.01 | 114.00 ± 23.20 | 107.09 ± 23.65 | |
MeHeartImpairments | <0.01 | 34.76 ± 8.85 | 31.93 ± 9.29 | ||
MeHeartStigma | <0.01 | 33.45 ± 6.90 | 31.27 ± 7.16 | ||
MeHeartFriends | <0.05 | 13.56 ± 2.79 | 12.89 ± 3.22 | ||
Adolescents | Male (Group A) vs. Female (Group B) | DsQoL Total | <0.001 | 118.40 ± 22.43 | 109.32 ± 26.46 |
MeHeartImpairments | <0.001 | 34.57 ± 8.70 | 30.18 ± 10.50 | ||
MeHeartStigma | <0.05 | 40.17 ± 8.01 | 38.79 ± 9.41 | ||
MeHeartRecovery | <0.001 | 18.31 ± 4.81 | 16.53 ± 5.84 | ||
MeHeartTreatment | <0.001 | 8.82 ± 2.98 | 7.68 ± 3.40 | ||
Simple CHD (Group A) vs. Moderate CHD (Group B) | DsQoL Total | <0.001 | 120.70 ± 22.27 | 113.09 ± 24.30 | |
MeHeartStigma | <0.001 | 42.81 ± 7.25 | 39.11 ± 8.74 | ||
MeHeartFriends | <0.05 | 10.46 ± 1.96 | 9.90 ± 2.66 | ||
Simple CHD (Group A) vs. Complex CHD (Group B) | DsQoL Total | <0.001 | 120.70 ± 22.27 | 108.38 ± 25.11 | |
MeHeartImpairments | <0.001 | 34.36 ± 9.53 | 30.48 ± 9.79 | ||
MeHeartStigma | <0.001 | 42.81 ± 7.25 | 36.46 ± 9.09 | ||
MeHeartFriends | <0.001 | 10.46 ± 1.96 | 9.58 ± 2.64 | ||
Moderate CHD (Group A) vs. Complex CHD (Group B) | MeHeartImpairments | <0.05 | 32.79 ± 9.44 | 30.48 ± 9.79 | |
MeHeartStigma | <0.01 | 39.11 ± 8.74 | 36.46 ± 9.09 |
Children’s Version of the CHDSI | Adolescent Version of the CHDSI | |||
---|---|---|---|---|
Estimator | DWLS | DWLS | ||
Optimization method | NLMINB | NLMINB | ||
Number of model parameters | 195 | 200 | ||
Number of observations | 530 | 625 | ||
Model Test User Model: | ||||
Standard | Robust | Standard | Robust | |
Test statistic | 1276.050 | 1492.876 | 1580.638 | 1806.846 |
Degrees of freedom | 579 | 579 | 614 | 614 |
p-Value (chi-square) | <0.001 | <0.001 | <0.001 | <0.001 |
Scaling correction factor | 1.072 | 1.061 | ||
Shift parameter | 302.352 | 316.623 | ||
Model Test Baseline Model: | ||||
Standard | Robust | Standard | Robust | |
Test statistic | 103,271.246 | 23,869.066 | 120,589.394 | 27,437.643 |
Degrees of freedom | 630 | 630 | 666 | 666 |
p-Value | <0.001 | <0.001 | <0.001 | <0.001 |
Scaling correction factor | 4.417 | 4.479 | ||
User Model versus Baseline Model: | ||||
Standard | Robust | Standard | Robust | |
Comparative Fit Index (CFI) | 0.993 | 0.961 | 0.992 | 0.955 |
Tucker–Lewis Index (TLI) | 0.993 | 0.957 | 0.991 | 0.952 |
Root Mean Square Error of Approximation: | ||||
Standard | Robust | Standard | Robust | |
RMSEA | 0.048 | 0.055 | 0.050 | 0.056 |
90 Percent confidence interval—lower | 0.044 | 0.051 | 0.047 | 0.053 |
90 Percent confidence interval—upper | 0.051 | 0.058 | 0.053 | 0.059 |
p-value RMSEA ≤ 0.05 | 0.855 | 0.013 | 0.446 | 0.001 |
Standardized Root Mean Square Residual: | ||||
Standard | Robust | Standard | Robust | |
SRMR | 0.052 | 0.052 | 0.054 | 0.054 |
Parameter Estimates: | ||||
Standard errors | Robust.sem | Robust.sem | ||
Information | Expected | Expected | ||
Information saturated (h1) model | Unstructured | Unstructured |
Interpretation of the DsQoL Scores Achieved | ||||||
---|---|---|---|---|---|---|
Kindergarten Children | ||||||
total N = 46 | ||||||
DsQoL total score (0–124 points) | ||||||
Critical range | 0–84 | |||||
Uncritical range | 85–124 | |||||
MeHeartImpairments (0–44 points) | ||||||
Critical range | 0–28 | |||||
Uncritical range | 29–44 | |||||
MeHeartStigma (0–28 points) | ||||||
Critical range | 0–18 | |||||
Uncritical range | 19–28 | |||||
MeHeartRecovery (0–24 points) | ||||||
Critical range | 0–15 | |||||
Uncritical range | 16–24 | |||||
MeHeartFriends (0–16 points) | ||||||
Critical range | 0–11 | |||||
Uncritical range | 12–16 | |||||
MeHeartTreatment (0–12 points) | ||||||
Critical range | 0–4 | |||||
Uncritical range | 5–12 | |||||
Children | ||||||
total N = 530 | male n = 248 | female n = 282 | simple CHD n = 119 | moderate CHD n = 194 | complex CHD n = 173 | |
DsQoL total score (0–144 points) | ||||||
Critical range | 0–95 | 0–96 | 0–95 | 0–108 | 0–96 | 0–89 |
Uncritical range | 96–144 | 97–144 | 96–144 | 109–144 | 97–144 | 90–144 |
MeHeartImpairments (0–44 points) | ||||||
Critical range | 0–27 | 0–26 | 0–27 | 0–29 | 0–28 | 0–24 |
Uncritical range | 28–44 | 27–44 | 28–44 | 30–44 | 29–44 | 25–44 |
MeHeartStigma (0–40 points) | ||||||
Critical range | 0–28 | 0–28 | 0–28 | 0–34 | 0–29 | 0–24 |
Uncritical range | 29–40 | 29–40 | 29–40 | 35–40 | 30–40 | 25–40 |
MeHeartRecovery (0–24 points) | ||||||
Critical range | 0–13 | 0–14 | 0–13 | 0–14 | 0–14 | 0–13 |
Uncritical range | 14–24 | 15–24 | 14–24 | 15–24 | 15–24 | 14–24 |
MeHeartFriends (0–16 points) | ||||||
Critical range | 0–11 | 0–11 | 0–11 | 0–12 | 0–11 | 0–10 |
Uncritical range | 12–16 | 12–16 | 12–16 | 13–16 | 12–16 | 11–16 |
MeHeartTreatment (0–12 points) | ||||||
Critical range | 0–5 | 0–5 | 0–5 | 0–5 | 0–5 | 0–5 |
Uncritical range | 6–12 | 6–12 | 6–12 | 6–12 | 6–12 | 6–12 |
MeHeartSchool (0–8 points) | ||||||
Critical range | 0–5 | 0–5 | 0–5 | 0–6 | 0–5 | 0–5 |
Uncritical range | 6–8 | 6–8 | 6–8 | 7–8 | 6–8 | 6–8 |
Adolescents | ||||||
total N = 625 | male n = 298 | female n = 327 | simple CHD n = 195 | moderate CHD n = 207 | complex CHD n = 165 | |
DsQoL total score (0–148 points) | ||||||
Critical range | 0–93 | 0–101 | 0–88 | 0–107 | 0–93 | 0–87 |
Uncritical range | 94–148 | 102–148 | 89–148 | 108–148 | 94–148 | 88–148 |
MeHeartImpairments (0–44 points) | ||||||
Critical range | 0–24 | 0–27 | 0–21 | 0–28 | 0–24 | 0–23 |
Uncritical range | 25–44 | 28–44 | 22–44 | 29–44 | 25–44 | 24–44 |
MeHeartStigma (0–48 points) | ||||||
Critical range | 0–33 | 0–34 | 0–32 | 0–40 | 0–33 | 0–29 |
Uncritical range | 34–48 | 35–48 | 33–48 | 41–48 | 34–48 | 30–48 |
MeHeartRecovery (0–24 points) | ||||||
Critical range | 0–13 | 0–14 | 0–12 | 0–14 | 0–13 | 0–13 |
Uncritical range | 14–24 | 15–24 | 13–24 | 15–24 | 14–24 | 14–24 |
MeHeartFriends (0–12 points) | ||||||
Critical range | 0–8 | 0–8 | 0–8 | 0–9 | 0–8 | 0–7 |
Uncritical range | 9–12 | 9–12 | 9–12 | 10–12 | 9–12 | 8–12 |
MeHeartTreatment (0–12 points) | ||||||
Critical range | 0–5 | 0–6 | 0–4 | 0–6 | 0–4 | 0–5 |
Uncritical range | 6–12 | 7–12 | 5–12 | 7–12 | 5–12 | 6–12 |
MeHeartSchool (0–8 points) | ||||||
Critical range | 0–5 | 0–5 | 0–5 | 0–5 | 0–5 | 0–5 |
Uncritical range | 6–8 | 6–8 | 6–8 | 6–8 | 6–8 | 6–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helm, P.C.; Bauer, U.M.M.; Ewert, P.; Remmele, J., on behalf of the German Competence Network for Congenital Heart Defects Investigators. Development and Validation of the CHDSI Questionnaire: A New Tool for Measuring Disease-Specific Quality of Life in Children and Adolescents with Congenital Heart Defects. Medicina 2025, 61, 1311. https://doi.org/10.3390/medicina61071311
Helm PC, Bauer UMM, Ewert P, Remmele J on behalf of the German Competence Network for Congenital Heart Defects Investigators. Development and Validation of the CHDSI Questionnaire: A New Tool for Measuring Disease-Specific Quality of Life in Children and Adolescents with Congenital Heart Defects. Medicina. 2025; 61(7):1311. https://doi.org/10.3390/medicina61071311
Chicago/Turabian StyleHelm, Paul C., Ulrike M. M. Bauer, Peter Ewert, and Julia Remmele on behalf of the German Competence Network for Congenital Heart Defects Investigators. 2025. "Development and Validation of the CHDSI Questionnaire: A New Tool for Measuring Disease-Specific Quality of Life in Children and Adolescents with Congenital Heart Defects" Medicina 61, no. 7: 1311. https://doi.org/10.3390/medicina61071311
APA StyleHelm, P. C., Bauer, U. M. M., Ewert, P., & Remmele, J., on behalf of the German Competence Network for Congenital Heart Defects Investigators. (2025). Development and Validation of the CHDSI Questionnaire: A New Tool for Measuring Disease-Specific Quality of Life in Children and Adolescents with Congenital Heart Defects. Medicina, 61(7), 1311. https://doi.org/10.3390/medicina61071311