Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. The Principle of Radiomics
3.1.1. Data Acquisition and Curation
3.1.2. Feature Extraction and Selection
3.1.3. Model Development
3.1.4. Validation
3.2. Artificial Intelligence Technologies
3.3. Advances of Prediction in NPC Based on Radiomics and Deep Learning
3.3.1. MRI-Radiomics and Deep-Learning Prediction in NPC
3.3.2. CT Scan Radiomics Prediction in NPC
3.3.3. PET/CT-Radiomics and Deep Learning Prediction in NPC
3.3.4. Multi-Modality Radiomics and Deep Learning Prediction in NPC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NPC | Nasopharyngeal carcinoma |
AI | Artificial intelligence |
DL | Deep learning |
ML | Machine learning |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
PET | Positron emission tomography |
RT | Radiotherapy |
PFS | Progression-free survival |
DMFS | Distant metastasis-free survival |
OS | Overall survival |
DFS | Disease-free survival |
References
- Chen, Y.P.; Chan, A.T.C.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Bossi, P.; Chan, A.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 2021, 32, 452–465. [Google Scholar] [CrossRef]
- Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Anzai, Y.; Brizel, D.M.; Bruce, J.Y.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc Netw. 2020, 18, 873–898. [Google Scholar] [CrossRef]
- Sun, X.; Su, S.; Chen, C.; Han, F.; Zhao, C.; Xiao, W.; Deng, X.; Huang, S.; Lin, C.; Lu, T. Long-term outcomes of intensity-modulated radiotherapy for 868 patients with nasopharyngeal carcinoma: An analysis of survival and treatment toxicities. Radiother. Oncol. 2014, 110, 398–403. [Google Scholar] [CrossRef]
- Lee, N.; Harris, J.; Garden, A.S.; Straube, W.; Glisson, B.; Xia, P.; Bosch, W.; Morrison, W.H.; Quivey, J.; Thorstad, W.; et al. Intensity-Modulated Radiation Therapy With or Without Chemotherapy for Nasopharyngeal Carcinoma: Radiation Therapy Oncology Group Phase II Trial 0225. J. Clin. Oncol. 2009, 27, 3684–3690. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Ng, W.T.; Chan, L.L.; Hung, W.M.; Chan, C.C.; Sze, H.C.; Chan, O.S.; Chang, A.T.; Yeung, R.M. Evolution of treatment for nasopharyngeal cancer—Success and setback in the intensity-modulated radiotherapy era. Radiother. Oncol. 2014, 110, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Jiromaru, R.; Nakagawa, T.; Yasumatsu, R. Advanced Nasopharyngeal Carcinoma: Current and Emerging Treatment Options. Cancer Manag. Res. 2022, 14, 2681–2689. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA A Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.-F.; Chen, N.-Y.; Zhang, N.; Hu, G.-Q.; Xie, F.-Y.; Sun, Y.; Chen, X.-Z.; Li, J.-G.; Zhu, X.-D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: A phase 3, multicentre, randomised controlled trial. Lancet Oncol. 2016, 17, 1509–1520. [Google Scholar] [CrossRef]
- Du, X.-J.; Wang, G.-Y.; Zhu, X.-D.; Han, Y.-Q.; Lei, F.; Shen, L.-F.; Yang, K.-Y.; Chen, L.; Mao, Y.-P.; Tang, L.-L.; et al. Refining the 8th edition TNM classification for EBV related nasopharyngeal carcinoma. Cancer Cell 2024, 42, 464–473.e3. [Google Scholar] [CrossRef]
- Zeng, Y.-Y.; Xiang, Z.-Z.; He, T.; Liu, F.; Shao, B.-F.; Yan, R.-N.; Ma, J.-C.; Wang, X.-R.; Liu, L. The comparison of prognostic value of tumour volumetric regression ratio and RECIST 1.1 criteria after induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma. Oral. Oncol. 2020, 111, 104924. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.J.; Ng, W.T.; Zong, J.F.; Lee, S.W.M.; Choi, H.C.W.; Chan, L.L.K.; Lin, S.J.; Guo, Q.J.; Sze, H.C.K.; Bin Chen, Y.; et al. Prognostic nomogram for refining the prognostication of the proposed 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer 2016, 122, 3307–3315. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Vaidyanathan, A.; Deprez, L.; Zerka, F.; Danthine, D.; Frix, A.; Lambin, P.; Bottari, F.; Tsoutzidis, N.; Miraglio, B.; et al. A review in radiomics: Making personalized medicine a reality via routine imaging. Med. Res. Rev. 2022, 42, 426–440. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Zheng, B.-H.; Liu, L.-Z.; Zhang, Z.-Z.; Shi, J.-Y.; Dong, L.-Q.; Tian, L.-Y.; Ding, Z.-B.; Ji, Y.; Rao, S.-X.; Zhou, J.; et al. Radiomics score: A potential prognostic imaging feature for postoperative survival of solitary HCC patients. BMC Cancer 2018, 18, 1148. [Google Scholar] [CrossRef]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Medica 2017, 38, 122–139. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Gong, G.Z.; Qiu, Q.T.; Han, Y.W.; Lu, H.M.; Yin, Y. Radiomics for Diagnosis and Radiotherapy of Nasopharyngeal Carcinoma. Front. Oncol. 2022, 11, 767134. [Google Scholar] [CrossRef]
- Yip, S.S.F.; Aerts, H.J.W.L. Applications and limitations of radiomics. Phys. Med. Biol. 2016, 61, R150–R166. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Porz, N.; Bauer, S.; Pica, A.; Schucht, P.; Beck, J.; Verma, R.K.; Slotboom, J.; Reyes, M.; Wiest, R. Multi-Modal Glioblastoma Segmentation: Man versus Machine. Strack S, editor. PLoS ONE 2014, 9, e96873. [Google Scholar] [CrossRef]
- Polan, D.F.; Brady, S.L.; Kaufman, R.A. Tissue segmentation of computed tomography images using a Random Forest algorithm: A feasibility study. Phys. Med. Biol. 2016, 61, 6553–6569. [Google Scholar] [CrossRef]
- Antonelli, L.; Guarracino, M.R.; Maddalena, L.; Sangiovanni, M. Integrating imaging and omics data: A review. Biomed. Signal Process. Control. 2019, 52, 264–280. [Google Scholar] [CrossRef]
- Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H.J.W.L. Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep. 2015, 5, 13087. [Google Scholar] [CrossRef] [PubMed]
- Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W. Assessing the Performance of Prediction Models: A Framework for Traditional and Novel Measures. Epidemiology 2010, 21, 128–138. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Yang, X.; Wu, J.; Chen, X. Application of Artificial Intelligence to the Diagnosis and Therapy of Nasopharyngeal Carcinoma. J. Clin. Med. 2023, 12, 3077. [Google Scholar] [CrossRef]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Dong, D.; Fang, X.; Zhang, F.; Zhang, N.; Zhang, L.; Fang, M.; Jiang, W.; Liang, S.; Li, C.; et al. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study. EBioMedicine 2021, 70, 103522. [Google Scholar] [CrossRef] [PubMed]
- Ming, X.; Oei, R.W.; Zhai, R.; Kong, F.; Du, C.; Hu, C.; Hu, W.; Zhang, Z.; Ying, H.; Wang, J. MRI-based radiomics signature is a quantitative prognostic biomarker for nasopharyngeal carcinoma. Sci. Rep. 2019, 9, 10412. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-J.; Liu, L.-Z.; Huang, Y.; Jin, Y.-B.; Chen, X.-P.; Luo, W.; Su, J.-C.; Chen, K.; Zhang, J.; Zhang, G.-Y. Establishment and Validation of a Novel MRI Radiomics Feature-Based Prognostic Model to Predict Distant Metastasis in Endemic Nasopharyngeal Carcinoma. Front. Oncol. 2022, 12, 794975. [Google Scholar] [CrossRef]
- Lin, D.-F.; Li, H.-L.; Liu, T.; Lv, X.-F.; Xie, C.-M.; Ou, X.-M.; Guan, J.; Zhang, Y.; Yan, W.-B.; He, M.-L.; et al. Radiomic signatures associated with tumor immune heterogeneity predict survival in locally recurrent nasopharyngeal carcinoma. JNCI J. Natl. Cancer Inst. 2024, 116, 1294–1302. [Google Scholar] [CrossRef]
- Li, S.; Wan, X.; Deng, Y.Q.; Hua, H.L.; Li, S.L.; Chen, X.X.; Zeng, M.L.; Zha, Y.; Tao, Z.Z. Predicting prognosis of nasopharyngeal carcinoma based on deep learning: Peritumoral region should be valued. Cancer Imaging 2023, 23, 14. [Google Scholar] [CrossRef]
- Li, H.; Huang, W.; Wang, S.; Balasubramanian, P.S.; Wu, G.; Fang, M.; Xie, X.; Zhang, J.; Dong, D.; Tian, J.; et al. Comprehensive integrated analysis of MR and DCE-MR radiomics models for prognostic prediction in nasopharyngeal carcinoma. Vis. Comput. Ind. Biomed. Art 2023, 6, 23. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, G.; Song, X.; Wan, J.; Li, M.; Zhang, F.; Chen, Q.; Cao, X.; Li, S.; Wang, Y. Machine Learning Based on MRI DWI Radiomics Features for Prognostic Prediction in Nasopharyngeal Carcinoma. Cancers 2022, 14, 3201. [Google Scholar] [CrossRef]
- Intarak, S.; Chongpison, Y.; Vimolnoch, M.; Oonsiri, S.; Kitpanit, S.; Prayongrat, A.; Kannarunimit, D.; Chakkabat, C.; Sriswasdi, S.; Lertbutsayanukul, C.; et al. Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients. Front. Oncol. 2022, 12, 775248. [Google Scholar] [CrossRef]
- Gu, B.; Meng, M.; Bi, L.; Kim, J.; Feng, D.D.; Song, S. Prediction of 5-year progression-free survival in advanced nasopharyngeal carcinoma with pretreatment PET/CT using multi-modality deep learning-based radiomics. Front. Oncol. 2022, 12, 899351. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Xie, G.; Liao, G.; Wang, B.; Yan, M.; Li, H.; Yuan, Y. Prognostic value of 18F-FDG-PET/CT in patients with nasopharyngeal carcinoma: A systematic review and meta-analysis. Oncotarget 2017, 8, 33884–33896. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Yuan, Q.; Wang, Q.; Ma, J.; Feng, Q.; Chen, W.; Rahmim, A.; Lu, L. Radiomics Analysis of PET and CT Components of PET/CT Imaging Integrated with Clinical Parameters: Application to Prognosis for Nasopharyngeal Carcinoma. Mol. Imaging Biol. 2019, 21, 954–964. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Lv, W.; Feng, H.; Du, D.; Yuan, Q.; Wang, Q.; Dai, Z.; Yang, W.; Feng, Q.; Ma, J.; et al. Subregional Radiomics Analysis of PET/CT Imaging with Intratumor Partitioning: Application to Prognosis for Nasopharyngeal Carcinoma. Mol. Imaging Biol. 2020, 22, 1414–1426. [Google Scholar] [CrossRef]
- Gu, B.; Meng, M.; Xu, M.; Feng, D.D.; Bi, L.; Kim, J.; Song, S. Multi-task deep learning-based radiomic nomogram for prognostic prediction in locoregionally advanced nasopharyngeal carcinoma. Eur. J. Nucl. Med. 2023, 50, 3996–4009. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, X.; Liu, J.; Zhang, B.; Mo, X.; Chen, Q.; Fang, J.; Wang, F.; Li, M.; Chen, Z.; et al. MRI-Based Deep-Learning Model for Distant Metastasis-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma. J. Magn. Reson. Imaging 2021, 53, 167–178. [Google Scholar] [CrossRef]
- Kulanthaivelu, R.; Kohan, A.; Hinzpeter, R.; Liu, Z.A.; Hope, A.; Huang, S.H.; Waldron, J.; O’sullivan, B.; Ortega, C.; Metser, U.; et al. Prognostic value of PET/CT and MR-based baseline radiomics among patients with non-metastatic nasopharyngeal carcinoma. Front. Oncol. 2022, 12, 952763. [Google Scholar] [CrossRef]
- Zuo, Z.; Ma, J.; Yan, M.; Ge, W.; Yao, T.; Zhou, L.; Zeng, Y.; Liu, Y. Machine learning-derived prognostic signature for progression-free survival in non-metastatic nasopharyngeal carcinoma. Head. Neck. 2025, 47, 112–128. [Google Scholar] [CrossRef]
- Peng, H.; Dong, D.; Fang, M.J.; Li, L.; Tang, L.L.; Chen, L.; Li, W.F.; Mao, Y.P.; Fan, W.; Liu, L.Z.; et al. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2019, 25, 4271–4279. [Google Scholar] [CrossRef]
- Mao, J.; Fang, J.; Duan, X.; Yang, Z.; Cao, M.; Zhang, F.; Lu, L.; Zhang, X.; Wu, X.; Ding, Y.; et al. Predictive value of pretreatment MRI texture analysis in patients with primary nasopharyngeal carcinoma. Eur. Radiol. 2019, 29, 4105–4113. [Google Scholar] [CrossRef]
- Yang, K.X.; Tian, J.F.; Zhang, B.; Li, M.; Xie, W.J.; Zou, Y.T.; Tan, Q.Y.; Liu, L.H.; Zhu, J.B.; Shou, A.; et al. A multidimensional nomogram combining overall stage, dose volume histogram parameters and radiomics to predict progression-free survival in patients with locoregionally advanced nasopharyngeal carcinoma. Front. Oncol. 2021, 11, 774455. [Google Scholar] [CrossRef]
- Shen, H.; Wang, Y.; Liu, D.; Lv, R.; Huang, Y.; Peng, C.; Jiang, S.; Wang, Y.; He, Y.; Lan, X.; et al. Predicting Progression-Free Survival Using MRI-Based Radiomics for Patients With Nonmetastatic Nasopharyngeal Carcinoma. Front. Oncol. 2021, 11, 637687. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Zhao, Y.; Liu, Z.; Zhong, H.; Geng, Y.; Lin, M.; Li, L.; Zhao, X.; Luo, D. Prognostic and predictive value of radiomics features at MRI in nasopharyngeal carcinoma. Discov. Oncol. 2021, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Choi, Y.; Sung, Y.E.; Lee, Y.S.; Kim, Y.S.; Ahn, K.J.; Kim, M.S. Early risk-assessment of patients with nasopha-ryngeal carcinoma: The added prognostic value of MR-based radiomics. Transl. Oncol. 2021, 14, 101180. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Shen, D.S.; Chen, X.B.; Su, D.K.; Liang, Z.G.; Chen, K.H.; Li, L.; Liang, X.; Liao, H.; Zhu, X.D. CT-Based Radiomics Nomogram for Prediction of Progression-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma. Cancer Manag. Res. 2021, 13, 6911–6923. [Google Scholar] [CrossRef]
- Kang, L.; Niu, Y.; Huang, R.; Lin, S.; Tang, Q.; Chen, A.; Fan, Y.; Lang, J.; Yin, G.; Zhang, P. Predictive Value of a Combined Model Based on Pre-Treatment and Mid-Treatment MRI-Radiomics for Disease Progression or Death in Locally Advanced Nasopharyngeal Carcinoma. Front. Oncol. 2021, 11, 774455. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, H.; Liu, X.; Chen, H.; Jiang, H.; Liao, C.; Pang, Q.; Dang, J.; Liu, P.; Lu, H. A Clinical-Radiomics Nomogram Based on Computed Tomography for Predicting Risk of Local Recurrence After Radiotherapy in Nasopharyngeal Carcinoma. Front. Oncol. 2021, 11, 637687. [Google Scholar] [CrossRef]
- Zeng, F.; Lin, K.-R.; Jin, Y.-B.; Li, H.-J.; Quan, Q.; Su, J.-C.; Chen, K.; Zhang, J.; Han, C.; Zhang, G.-Y. MRI-based radiomics models can improve prognosis prediction for nasopharyngeal carcinoma with neoadjuvant chemotherapy. Magn. Reson. Im-aging 2022, 88, 108–115. [Google Scholar] [CrossRef]
- Sun, M.-X.; Zhao, M.-J.; Zhao, L.-H.; Jiang, H.-R.; Duan, Y.-X.; Li, G. A nomogram model based on pre-treatment and post-treatment MR imaging radiomics signatures: Application to predict progression-free survival for nasopharyngeal car-cinoma. Radiat. Oncol. 2023, 18, 67. [Google Scholar] [CrossRef]
- Long, Z.-C.; Ding, X.-C.; Zhang, X.-B.; Yu, S.; Fu, Z.; Sun, P.-P.; Hao, F.-R.; Li, Z.-R.; Hu, M. The Efficacy of Pretreatment 18F-FDG PET-CT-Based Deep Learning Network Structure to Predict Survival in Nasopharyngeal Carcinoma. Clin. Med. In-sights Oncol. 2023, 17, 11795549231171793. [Google Scholar] [CrossRef]
- Khongwirotphan, S.; Oonsiri, S.; Kitpanit, S.; Prayongrat, A.; Kannarunimit, D.; Chakkabat, C.; Lertbutsayanukul, C.; Sriswasdi, S.; Rakvongthai, Y.; Faggioni, L. Multimodality radiomics for tumor prognosis in nasopharyngeal carcinoma. PLoS ONE 2024, 19, e0298111. [Google Scholar] [CrossRef]
- Dang, L.H.; Hung, S.-H.; Le, N.T.N.; Chuang, W.-K.; Wu, J.-Y.; Huang, T.-C.; Le, N.Q.K. Enhancing Nasopharyngeal Carci-noma Survival Prediction: Integrating Pre- and Post-Treatment MRI Radiomics with Clinical Data. J. Imaging Inform. Med. 2024, 37, 2474–2489. [Google Scholar] [CrossRef]
- Xi, Y.; Dong, H.; Wang, M.; Chen, S.; Han, J.; Liu, M.; Jiang, F.; Ding, Z. Early prediction of long-term survival of patients with nasopharyngeal carcinoma by multi-parameter MRI radiomics. Eur. J. Radiol. Open 2024, 12, 100543. [Google Scholar] [CrossRef]
Author | Imaging Technique | Cohort/Sample Size | Feature Selection | Modeling | Endpoint | Algorithm Performance/Model Evaluation |
---|---|---|---|---|---|---|
Peng, H. et al., 2019 [49] | PET/CT | 707 patients | LASSO Cox regression Rad score | Nomogram 4 DCNN | DFS, OS, DMFS, LRRFS | C-index: 0.754 training, 0.722 validation |
Ming, X. et al., 2019 [34] | MRI | 303 patients | Non-negative matrix factorization | Chi-squared test, nomogram | DFS, OS, DMFS, LRFS | DFS C-index: 0.751 OS C-index: 0.845 |
Mao, J et al., 2019 [50] | MRI | 79 patients | Cox regression | Kaplan-Meier | PFS | AUC: 0.825 C-index: 0.794 |
Yang, K et al., 2019 [51] | MRI, clincial features | 224 patients | LASSO regression | Univariate Cox regression Nomogram | PFS | C-index: 0.811 |
Lv, W. et al., 2019 [43] | PET/CT | 128 patients | MATLAB R2016a package | Univariate analysis with FDR correction Spearmans’s correlation Cox regression | PFS | C-index: 0.71 training, 0.76 validation |
Xu, H. et al., 2020 [44] | PET/CT | 128 patients | Cox regression Pearson correlation | Kaplan-Meier Cox regression | PFS | C-index: 0.69 for biomarker S3, 0.58 for whole tumor |
Shen, H et al., 2020 [52] | MRI | 327 patients | LASSO regression | Kaplan-Meier | PFS | C-index: 0.749 training, 0.836 validation |
Bao, D. et al., 2021 [53] | MRI | 199 patients | Wilcoxon signed-rank test LASSO Cox regression | Rad Score Nomogram Cox regression | PFS | AUC: 0.604 training, 0.732 validation |
Kim, M-J. et al., 2021 [54] | MRI, clinical features | 81 patients | LASSO Cox regression | Univariate Cox regression Nomogram | PFS | iAUC: 0.76 training, 0.81 validation |
Yan, C et al., 2021 [55] | CT, clinical features | 311 patients | LASSO regression | Nomogram DeLong test | PFS | C-index: 0.873 |
Kang, L, et al. 2021 [56] | MRI | 243 patients | LASSO Pearson correlation SMOTE algorithm | Univariate and multivariate analysis | PFS | AUC: 0.773 training, 0.852 validation |
Zhu C et al., 2021 [57] | CT scan | 156 patients | LASSO regression t-test | Rad score Nomogram | Predict recurrence | C-index: 0.931 training, 0.799 validation |
Hu, Q. et al., 2022 [39] | MRI-DWI | 154 patients | Manual segmentation Relative feature extraction | Logistic regression, Naive Bayes Random Forest, XGB Classifier | Recurrence and metastasis | AUC: 0.80 (95% CI: 0.79–0.81) |
Gu, B. et al., 2022 [41] | PET/CT 3d CNN | 257 patients | DCNN | End-to-end multi-modality DLR model | 5-year PFS | AUC: 0.842 ± 0.034 training, 0.823 ± 0.012 validation |
Kulanthaivel R. et al., 2022 [47] | PET/CT, MR, clinical features | 124 patients | Semi-automatic | Cox regression Spearman’s correlation | OS, PFS | AUC: 0.86 for 21 months PFS and 0.96 for 24 months OS |
Zeng, F. et al., 2022 [58] | MRI, clinical features | 110 patients | Pearson correlation, univariate Cox, LASSO | Logistic regression Nomogram | PFS | C-index: 0.814 |
Li, H-J. et al., 2022 [35] | MRI | 260 patients | Pearson correlation Cox regression | Kaplan-Meier Cox regression | DMFS | C-index: 0.722 (95% CI = 0.632–0.811) |
Intarak et al., 2022 [40] | CT | 197 patients | Cox regression LASSO | Cox regression | PFS, OS, DMFS | AUC: 0.747 ± 0.062 C-index: 0.767 ± 0.074 |
Gu, B., et al., 2023 [41] | FDG-PET/CT, clinical features | 886 patients | LASSO Cox regression | MTDLRN integrating DeepMTS-score AutoRadio-score | PFS | C-index: 0.818 training, 0.752 validation AUC: 0.859 training, 0.769 validation |
Sun, M-X. et al., 2023 [59] | MRI, clinical features | 120 patients | LASSO regression | Random Forest, Harell’s concordance index, Nomogram, Kaplan-Meier | PFS | C-index: 0.953 |
Long, Z. et al., 2023 [60] | FDG PET-CT | 173 patients | LASSO regression Cox model | Harell’s concordance index, Kalpan-Meier, Log-rank | OS | C-index: 0.779 training, 0.744 validation |
Li, H. et al., 2023 [38] | DCE-MR | 434 patients | LASSO Cox regression | Pearson correlation Kaplan-Meier | PFS | C-index: 0.812 training, 0.808 validation |
Li, S. et al., 2023 [37] | MRI- peritumoral region | 381 patients | Deeplab v3 U-Net | Neural network | Prognosis | Dice coefficients: 0.741 and 0.737 |
Khongwirotphan, S. et al., 2024 [61] | CT/MRI | 183 patients | Cox regression | Cox regression | OS, PFS, DMFS | OS: C-index: 0.879 training, 0.827 test PFS: C-index: 0.721 training, 0.722 test DMFS: C-index: 0.802 training, 0.779 test |
Dang, L. et al., 2024 [62] | MRI | 276 patients | Cox regression | Kaplan-Meier Nomogram | PFS | AUC: 0.66 training, 0.717 validation |
Xi, YZ. et al., 2024 [63] | MRI | 313 patients | LASSO regression Rad score | Logistic regression Nomogram | 5 year PFS | AUC: 0.83 training, 0.81 validation |
Lin, D-F., et al., 2024 [36] | MRI | 921 patients | Cox regression Nomogram | Kaplan-Meier Cox regression | OS | C-index: 0.729 training, 0.718 internal validation, 0.731 external validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pușcaș, I.M.; Gâta, A.; Roman, A.; Albu, S.; Gâta, V.A.; Irimie, A. Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma. Medicina 2025, 61, 1310. https://doi.org/10.3390/medicina61071310
Pușcaș IM, Gâta A, Roman A, Albu S, Gâta VA, Irimie A. Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma. Medicina. 2025; 61(7):1310. https://doi.org/10.3390/medicina61071310
Chicago/Turabian StylePușcaș, Irina Maria, Anda Gâta, Alexandra Roman, Silviu Albu, Vlad Alexandru Gâta, and Alexandru Irimie. 2025. "Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma" Medicina 61, no. 7: 1310. https://doi.org/10.3390/medicina61071310
APA StylePușcaș, I. M., Gâta, A., Roman, A., Albu, S., Gâta, V. A., & Irimie, A. (2025). Integrating Radiomics and Deep-Learning for Prognostic Evaluation in Nasopharyngeal Carcinoma. Medicina, 61(7), 1310. https://doi.org/10.3390/medicina61071310