Application of Interrupter Resistance and Spirometry Techniques in Pediatric Pulmonary Medicine: Feasibility and Concordance in Healthy Children Under 8 Years
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Size Calculation
- n is the required sample size,
- Z is the Z-value corresponding to the desired confidence level (1.96 for 95% confidence),
- p is the estimated proportion of the population (based on previous studies),
- d is the margin of error.
2.3. Participants
2.4. Experimental Design
2.5. Used Tests
2.5.1. Rint(e) Measurement
2.5.2. Spirometry
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Lung Function Characteristics
3.3. Feasibility of Pulmonary Function Tests
3.4. Relationship Between Rint(e) and Spirometry Values
4. Discussion
5. Limitations
6. Conclusions
7. Future Directions and Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jat, K.R.; Agarwal, S. Lung function tests in infants and children. Indian J. Pediatr. 2023, 90, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Devani, P.; Lo, D.K.; Gaillard, E.A. Practical approaches to the diagnosis of asthma in school-age children. Expert Rev. Respir. Med. 2022, 16, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Fainardi, V.; Lombardi, E. Lung function tests to monitor respiratory disease in preschool children. Acta Biomed. 2018, 89, 148–156. [Google Scholar] [PubMed]
- Kampschmidt, J.C.; Brooks, E.G.; Cherry, D.C.; Guajardo, J.R.; Wood, P.R. Feasibility of spirometry testing in preschool children. Pediatr. Pulmonol. 2016, 51, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Gut, G.; Bar-Yoseph, R.; Hanna, M.; Brandl, N.; Alisha, I.; Rizik, S.; Pollak, M.; Hakim, F.; Amirav, I.; Bentur, L.; et al. Pulmonary functions, nasal symptoms, and quality of life in patients with primary ciliary dyskinesia (PCD). Pediatr. Pulmonol. 2024, 59, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Fenu, G.; Calogero, C.; Lombardi, E. Lung Function Tests in Preschool Children. Turk. Thorac. J. 2015, 16, 185–188. [Google Scholar] [CrossRef]
- Stoimenova, P.; Mandadzhieva, S.; Marinov, B. Clinical applications of forced oscillation technique (FOT) for diagnosis and management of obstructive lung diseases in children. Folia. Med. 2024, 66, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Skylogianni, E.; Douros, K.; Anthracopoulos, M.B.; Fouzas, S. The Forced Oscillation Technique in Paediatric Respiratory Practice. Paediatr. Respir. Rev. Mars 2016, 18, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Koulouris, N.G. Negative expiratory pressure: A new tool. Monaldi Arch Chest Dis. 2002, 57, 69–75. [Google Scholar] [PubMed]
- Beydon, N.; Mahut, B.; Maingot, L.; Guillo, H.; La Rocca, M.; Medjahdi, N.; Koskas, M.; Boulé, M.; Delclaux, C. Baseline and post-bronchodilator interrupter resistance and spirometry in asthmatic children. Pediatr. Pulmonol. 2012, 47, 987–993. [Google Scholar] [CrossRef]
- Zuriarrain Reyna, Y.; López Neyra, A.; Sanz Santiago, V.; Almería Gil, E.; Villa Asensi, J.R. Assessing the measurement of airway resistance by the interrupter technique. Arch. Argent Pediatr. 2013, 111, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Gritti, L.A.; Barreto, S.S. A new approach to the determination of airway resistance: Interrupter technique vs. plethysmography. J. Bras. Pneumol. 2011, 37, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Boccaccino, A.; Peroni, D.G.; Pietrobelli, A.; Piacentini, G.; Bodini, A.; Chatzimichail, A.; Spinosa, E.; Boner, A.L. Assessment of variable obstruction by forced expiratory volume in 1 second, forced oscillometry, and interrupter technique. Allergy Asthma Proc. 2007, 28, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Merkus, P.J.; Mijnsbergen, J.Y.; Hop, W.C.; de Jongste, J.C. Interrupter resistance in preschool children: Measurement characteristics and reference values. Am. J. Respir. Crit. Care Med. 2001, 163, 1350–1355. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. Br. Med. J. 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Beydon, N.; Davis, S.D.; Lombardi, E.; Allen, J.L.; Arets, H.G.; Aurora, P.; Bisgaard, H.; Davis, G.M.; Ducharme, F.M.; Eigen, H.; et al. An official American Thoracic Society/European Respiratory Society statement: Pulmonary function testing in preschool children. Am. J. Respir. Crit. Care Med. 2007, 175, 1304–1345. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Tatar, S.A.; Man, S.C. The interrupter technique: Feasibility in children in acute asthma. Maedica 2010, 5, 7–12. [Google Scholar] [PubMed]
- Seddon, P.C.; Willson, R.; Olden, C.; Symes, E.; Lombardi, E.; Beydon, N. Bronchodilator response by interrupter technique to guide management of preschool wheeze. Arch. Dis. Child. 2023, 108, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Arets, H.G.; Brackel, H.J.; van der Ent, C.K. Applicability of interrupter resistance measurements using the MicroRint in daily practice. Respir. Med. 2003, 97, 366–374. [Google Scholar] [CrossRef]
- Loeb, J.S.; Blower, W.C.; Feldstein, J.F.; Koch, B.A.; Munlin, A.L.; Hardie, W.D. Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria. Pediatr. Pulmonol. 2008, 43, 1020–1024. [Google Scholar] [CrossRef]
- Veras, T.N.; Pinto, L.A. Feasibility of spirometry in preschool children. J. Bras. Pneumol. 2011, 37, 69–74. [Google Scholar] [CrossRef]
- Nystad, W.; Samuelsen, S.O.; Nafstad, P.; Edvardsen, E.; Stensrud, T.; Jaakkola, J.J. Feasibility of measuring lung function in preschool children. Thorax 2002, 57, 1021–1027. [Google Scholar] [CrossRef]
- Aurora, P.; Stocks, J.; Oliver, C.; Saunders, C.; Castle, R.; Chaziparasidis, G.; Bush, A. Quality control for spirometry in preschool children with and without lung disease. Am. J. Respir. Crit. Care Med. 2004, 169, 1152–1159. [Google Scholar] [CrossRef]
- Davies, P.L.; Doull, I.J.; Child, F. The interrupter technique to assess airway responsiveness in children with cystic fibrosis. Pediatr. Pulmonol. 2007, 42, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Delacourt, C.; Lorino, H.; Fuhrman, C.; Herve-Guillot, M.; Reinert, P.; Harf, A.; Housset, B. Comparison of the forced oscillation technique and the interrupter technique for assessing airway obstruction and its reversibility in children. Am. J. Respir. Crit. Care Med. 2001, 164, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Mahut, B.; Trinquart, L.; Bokov, P.; Le Bourgeois, M.; Waernessyckle, S.; Peiffer, C.; Delclaux, C.; Morty, R.E. Relationships between specific airway resistance and forced expiratory flows in asthmatic children. PLoS ONE 2009, 4, e5270. [Google Scholar] [CrossRef] [PubMed]
- Kaminsky, D.A. What does airway resistance tell us about lung function? Respir. Care 2012, 57, 85–96; discussion 96–99. [Google Scholar] [CrossRef]
- Ben Salah, N.; Bejar, D.; Snène, H.; Ouahchi, Y.; Mehiri, N.; Louzir, B. The Z-score: A new tool in the interpretation of spirometric data. Tunis. Med. 2017, 95, 767–771. [Google Scholar]
- Oswald-Mammosser, M.; Charloux, A.; Enache, I.; Lonsdorfer-Wolf, E. The opening interrupter technique for respiratory resistance measurements in children. Respirology 2010, 15, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, S.A.; Bridge, P.D.; Healy, M.J. Airway resistance and atopy in preschool children with wheeze and cough. Eur. Respir. J. 2000, 15, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Dergaa, I.; Ben Saad, H.; Glenn, J.M.; Ben Aissa, M.; Taheri, M.; Swed, S.; Guelmami, N.; Chamari, K. A thorough examination of ChatGPT-3.5 potential applications in medical writing: A preliminary study. Medicine 2024, 103, e39757. [Google Scholar] [CrossRef] [PubMed]
Total Sample | Girls | Boys | |
---|---|---|---|
N | 200 | 100 | 100 |
Age (years) | 5.1 (2.38–8.15) | 5.00 (2.81–8.00) | 5.08 (2.38–8.00) |
Child aged > 6 years | 33.5% | 32% | 35% |
BMI (kg/m2) | 16.54 (12.68–27.66) | 16.34 (13.08–26.23) | 16.87 (12.68–27.66) |
Weight (kg) | 21.30 (9.60–45.00) | 21.10 (13.40–39.10) | 21.90 (9.60–45.00) |
Height (cm) | 113.50 (80.00–143.00) | 113.00 (80.00–143.00) | 114.62 (80.00–136.00) |
Exposure to passive smoking | 41% (82) | 48% (48) | 34% (34) |
Physical stature | |||
Obesity | 14% (28) | 12% (12) | 16% (16) |
Overweight | 16% (32) | 15% (15) | 17% (17) |
Correct BMI | 70% (140) | 73% (73) | 67% (67) |
Settings | Values |
---|---|
Rint(e) Data (N = 165) | |
Rint(e) (Kpa/L/s) | 0.64 (0.15–1.37) |
Rint(e) (%) | 82.32 (26.69–252.83) |
Spirometric data (N = 69) | |
FEV1 (L/s) | 1.20 ± 0.32 |
FEV1 (%) | 87.92 ± 12.93 |
FVC (L) | 1.31 ± 0.38 |
FVC (%) | 86.85 ± 14.50 |
FEV1/FVC | 0.90 ± 0.04 |
MMEF (L/s) | 1.56 ± 0.41 |
FET (s) | 2.16 ± 0.80 |
Rint(e) Feasibility (%) (N) | p | Spirometry Feasibility (%) (N) | p | |
---|---|---|---|---|
Age | 0.007 | 0.000 | ||
>6 ans (67) | 94% (63) | 55% (37) | ||
<6 ans (133) | 77% (102) | 24% (32) | ||
Gender | 0.802 | 0.963 | ||
Boys (100) | 83% (83) | 35% (35) | ||
Girls (100) | 82% (82) | 34% (34) | ||
Passive smoking | 0.00 | 0.605 | ||
Exposed (82) | 94% (77) | 37% (30) | ||
Unexposed (118) | 75% (88) | 33% (39) | ||
Physical status | 0.918 | 0.302 | ||
Obesity (28) | 86% (24) | 47% (13) | ||
Overweight (32) | 87% (26) | 28% (9) | ||
Correct BMI (140) | 80% (115) | 34% (47) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kammoun, R.; Gargouri, F.; Haddar, A.; Ceylan, H.İ.; Stefanica, V.; Feki, W.; Ghouili, H.; Dergaa, I.; Masmoudi, K. Application of Interrupter Resistance and Spirometry Techniques in Pediatric Pulmonary Medicine: Feasibility and Concordance in Healthy Children Under 8 Years. Medicina 2025, 61, 1265. https://doi.org/10.3390/medicina61071265
Kammoun R, Gargouri F, Haddar A, Ceylan Hİ, Stefanica V, Feki W, Ghouili H, Dergaa I, Masmoudi K. Application of Interrupter Resistance and Spirometry Techniques in Pediatric Pulmonary Medicine: Feasibility and Concordance in Healthy Children Under 8 Years. Medicina. 2025; 61(7):1265. https://doi.org/10.3390/medicina61071265
Chicago/Turabian StyleKammoun, Rim, Farah Gargouri, Asma Haddar, Halil İbrahim Ceylan, Valentina Stefanica, Walid Feki, Hatem Ghouili, Ismail Dergaa, and Kaouthar Masmoudi. 2025. "Application of Interrupter Resistance and Spirometry Techniques in Pediatric Pulmonary Medicine: Feasibility and Concordance in Healthy Children Under 8 Years" Medicina 61, no. 7: 1265. https://doi.org/10.3390/medicina61071265
APA StyleKammoun, R., Gargouri, F., Haddar, A., Ceylan, H. İ., Stefanica, V., Feki, W., Ghouili, H., Dergaa, I., & Masmoudi, K. (2025). Application of Interrupter Resistance and Spirometry Techniques in Pediatric Pulmonary Medicine: Feasibility and Concordance in Healthy Children Under 8 Years. Medicina, 61(7), 1265. https://doi.org/10.3390/medicina61071265