Clinical and Genetic Characteristics of Patients with Essential Tremor Who Develop Parkinson’s Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Genetic Testing
2.1.1. DNA Isolation
2.1.2. Clinical Exome SEQUENCING (CES)
2.1.3. Variant Analysis
3. Results
Clinical Features of Patients with Pathogenic/Likely Pathogenic Variants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Liao, C.; Akimenko, I.; Li, H.-J.; Tilley, B.C.; Pellecchia, G.; Jo, B.; Simuni, T.; Tanner, C.M.; Gan-Or, Z.; Tröster, A.I.; et al. Association of essential tremor with novel risk loci: A genome-wide association study and meta-analysis. JAMA Neurol. 2022, 79, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Ünal Gulsuner, H.; Gulsuner, S.; Mercan, F.N.; Onat, O.E.; Walsh, T.; Shahin, H.; Lee, M.K.; Dogu, O.; Kansu, T.; Topaloglu, H.; et al. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc. Natl. Acad. Sci. USA 2014, 111, 18285–18290. [Google Scholar] [CrossRef]
- Ross, J.P.; Bernales, C.Q.; Rayaprolu, S.; I Soto-Ortolaza, A.; A Ross, O.; van Gerpen, J.; Uitti, R.J.; Wszolek, Z.K.; Rajput, A.; Vilariño-Güell, C. VPS35 and DNAJC13 disease-causing variants in essential tremor. Eur. J. Hum. Genet. 2015, 23, 887–888. [Google Scholar] [CrossRef]
- Liao, C.; Sarayloo, F.; Rochefort, D.; Houle, G.; Akçimen, F.; He, Q.; Laporte, A.D.; Spiegelman, D.; Poewe, W.; Berg, D.; et al. Multiomics analyses identify genes and pathways relevant to essential tremor. Mov. Disord. 2020, 35, 1153–1162. [Google Scholar] [CrossRef]
- Tio, M.; Tan, E.-K. Genetics of essential tremor. Disorders 2016, 22, S176–S178. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.D. Nonmotor symptoms in essential tremor: A review of the current data and state of the field. Park. Relat. Disord. 2015, 22, S115–S118. [Google Scholar] [CrossRef]
- Skuladottir, A.T.; Stefansdottir, L.; Halldorsson, G.H.; Stefansson, O.A.; Bjornsdottir, A.; Jonsson, P.; Palmadottir, V.; Thorgeirsson, T.E.; Walters, G.B.; Gisladottir, R.S.; et al. GWAS meta-analysis reveals key risk loci in essential tremor pathogenesis. Commun. Biol. 2024, 7, 504. [Google Scholar] [CrossRef] [PubMed]
- Saini, P.; Kumar, A.; Sharma, M.; Rani, K.; Singh, S.; Yadav, R.; Srivastava, A.K.; Garg, A.; Behari, M.; Thelma, B.K.; et al. Association study of DNAJC13, UCHL1, HTRA2, GIGYF2 and EIF4G1 with Parkinson’s disease. Neurobiol. Aging 2021, 100, 119.e7–119.e13. [Google Scholar] [CrossRef]
- Yoo, S.-W.; Ha, S.; Lyoo, C.H.; Kim, Y.; Yoo, J.-Y.; Kim, J.-S. Exploring the link between essential tremor and Parkinson’s disease. npj Park. Dis. 2023, 9, 134. [Google Scholar] [CrossRef]
- Louis, E.D. The Association Between Essential Tremor and Parkinson’s Disease: A Systematic Review of Clinical and Epidemiological Studies. J. Clin. Med. 2025, 14, 2637. [Google Scholar] [CrossRef]
- Deuschl, G.; Bain, P.; Brin, M. Consensus statement of the Movement Disorder Society on tremor. Mov. Disord. 1998, 13, 2–23. [Google Scholar] [CrossRef]
- Ondo, W.; Hashem, V.; LeWitt, P.A.; Pahwa, R.; Shih, L.; Tarsy, D.; Zesiewicz, T.; Elble, R. Comparison of the Fahn-Tolosa-Marin Clinical Rating Scale and the Essential Tremor Rating Assessment Scale. Mov. Disord. Clin. Pract. 2017, 5, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.B.; Dodel, R.; et al. Movement Disorder Society UPDRS Revision Task Force. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, mortality. Neurology 1967, 17, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 2010, 26, 589–595. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 11, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef]
- Candel-Parra, E.; Córcoles-Jiménez, M.P.; Delicado-Useros, V.; Hernández-Martínez, A.; Molina-Alarcón, M. Evolution of Quality of Life in Persons with Parkinson’s Disease: A Prospective Cohort Study. J. Clin. Med. 2021, 10, 1824. [Google Scholar] [CrossRef]
- Hoseinipalangi, Z.; Kan, F.P.; Hosseinifard, H.; Doustmehraban, M.; Masoumi, M.; Rafiei, S.; Barmayoon, P.; Ahmadi, N.; Dehnad, A.; Eshtod, H.; et al. Systematic review and meta-analysis of the quality-of-life of patients with Parkinson’s disease. East. Mediterr. Health J. 2023, 29, 63–70. [Google Scholar] [CrossRef]
- Louis, E.D. Essential tremor. Handb. Clin. Neurol. 2023, 196, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.D.; Berry, D.; Ghanem, A.; Cosentino, S.A. Conversion rate of essential tremor to essential tremor Parkinson disease data from a prospective longitudinal study. Neurol. Clin. Pract. 2023, 13, e200162. [Google Scholar] [CrossRef] [PubMed]
- Louis, E.D.; Benito-Leon, J.; Faust, P.L. Essential tremor is a risk factor for Parkinson’s disease. Park. Relat. Disord. 2016, 24, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Craigen, W.J.; Riley, D.J. Nek1 regulates cell death and mitochondrial membrane permeability through phosphorylation of VDAC1. Cell Cycle 2009, 8, 257–267. [Google Scholar] [CrossRef]
- Martins, M.B.; Perez, A.M.; Bohr, V.A.; Wilson, D.M., 3rd; Kobarg, J. NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. Mutagenesis 2021, 36, 223–236. [Google Scholar] [CrossRef]
- Liu, S.; Ho, C.K.; Ouyang, J.; Zou, L. Nek1 kinase associates with ATR-ATRIP and primes ATR for efficient DNA damage signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 2175–2180. [Google Scholar] [CrossRef]
- Chen, Y.; Gaczynska, M.; Osmulski, P.; Polci, R.; Riley, D.J. Phosphorylation by Nek1 regulates opening and closing of voltage dependent anion channel 1. Biochem. Biophys. Res. Commun. 2010, 394, 798–803. [Google Scholar] [CrossRef]
- Polci, R.; Peng, A.; Chen, P.L.; Riley, D.J.; Chen, Y. NIMA-related protein kinase 1 is involved early in the ionizing radiation-induced DNA damage response. Cancer Res. 2004, 64, 8800–8803. [Google Scholar] [CrossRef]
- Kenna, K.P.; van Doormaal, P.T.C.; Dekker, A.M.; Ticozzi, N.; Kenna, B.J.; Diekstra, F.P.; van Rheenen, W.; van Eijk, K.R.; Jones, A.R.; Keagle, P.; et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 2016, 48, 1037–1042. [Google Scholar] [CrossRef]
- Brenner, D.; Müller, K.; Wieland, T.; Weydt, P.; Böhm, S.; Lulé, D.; Hübers, A.; Neuwirth, C.; Weber, M.; Borck, G.; et al. NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 2016, 139, e28. [Google Scholar] [CrossRef] [PubMed]
- Hallett, M. Parkinson’s disease tremor: Pathophysiology. Park. Relat. Disord. 2012, 18, S85–S86. [Google Scholar] [CrossRef]
- Smith, L.; Schapira, A.H.V. GBA variants and Parkinson disease: Mechanisms and treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.C.C.; Mano, G.B.C.; Barreto-Vianna, A.R.d.C.; Garcia, T.F.M.; de Vasconcelos, A.V.; Sá, C.S.G.; Santana, S.L.d.S.; Farias, A.G.P.; Seimaru, B.; Lima, M.P.P.; et al. The molecular impact of glucosyl ceramidase Beta 1 (Gba1) in Parkinson’s disease: A new genetic state of the art. Mol. Neurobiol. 2024, 61, 6754–6770. [Google Scholar] [CrossRef]
- Sidransky, E.; Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012, 11, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Gan-Or, Z.; Amshalom, I.; Kilarski, L.L.; Bar-Shira, A.; Gana-Weisz, M.; Mirelman, A.; Marder, K.; Bressman, S.; Giladi, N.; Orr-Urtreger, A. Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 2015, 84, 880–887. [Google Scholar] [CrossRef]
- Gegg, M.E.; Verona, G.; Schapira, A.H.V. Glucocerebrosidase deficiency promotes release of α-synuclein fibrils from cultured neurons. Hum. Mol. Genet. 2020, 29, 1716–1728. [Google Scholar] [CrossRef]
- Neumann, J.; Bras, J.; Deas, E.; O’Sullivan, S.S.; Parkkinen, L.; Lachmann, R.H.; Li, A.; Holton, J.; Guerreiro, R.; Paudel, R.; et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 2009, 132, 1783–1794. [Google Scholar] [CrossRef]
- Leocadi, M.; Bohnen, N.I.; Müller, M.L.T.M.; Guaglione, G.; Hu, M.; van Dyck, C.H.; Albin, R.L.; Seppi, K.; Poewe, W.; Antonini, A.; et al. Longitudinal clinical, cognitive, and neuroanatomical changes over 5 years in GBA-positive PD patients. J. Neurol. 2022, 269, 1485–1500. [Google Scholar] [CrossRef]
- Saunders-Pullman, R.; Hagenah, J.; Dhawan, V.; Stanley, K.; Pastores, G.; Sathe, S.; Tagliati, M.; Condefer, K.; Palmese, C.; Brüggemann, N.; et al. Gaucher disease ascertained through a Parkinson’s center: Imaging and clinical characterization. Mov. Disord. 2010, 25, 1364–1372. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Wan, J.; Zhao, Y.; Pan, H.; Zeng, Q.; Zhou, X.; He, R.; Zhou, X.; Xiang, Y.; et al. Mutational spectrum and clinical features of GBA1 variants in a Chinese cohort with Parkinson’s disease. npj Park. Dis. 2023, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Folk, J.E.; Chung, S.I. Molecular and catalytic properties of transglutaminases. Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 38, 109–191. [Google Scholar] [CrossRef] [PubMed]
- Andringa, G.; Lam, K.; Chegary, M.; Wang, X.; Chase, T.N.; Bennett, M.C. Tissue transglutaminase catalyzes the formation of alpha-synuclein crosslinks in Parkinson’s disease. FASEB J. 2004, 18, 932–934. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-C.; Lin, J.-J.; Liao, Y.-C.; Tsai, P.-C.; Lee, Y.-C.; Soong, B.-W.; Lee, I.-C.; Lu, Y.-C.; Wang, P.-S.; Lee, Y.-C.; et al. Spinocerebellar ataxia 35: Novel mutations in TGM6 with clinical and genetic characterization. Neurology 2014, 83, 1554–1561. [Google Scholar] [CrossRef]
- Chen, K.; Lu, Y.; Peng, F.; Yu, H.-L.; Wu, J.-Y.; Tan, Y.; Zhao, Y.-X. TGM6 variants in Parkinson’s disease: Clinical findings and functional evidence. J. Integr. Neurosci. 2020, 19, 51–64. [Google Scholar] [CrossRef]
Case | Gene | Exon/Intron | Variant Type | Nucleotide Change | Amino Acid Change | gnomAD v4.1.0 Allele Frequency | ClinVar | ACMG Classification | OMIM Phenotypes |
---|---|---|---|---|---|---|---|---|---|
1 | NEK1 (NM_001199397.3) | 31 | Nonsense | c.3107C>G | p.Ser1036Ter | 0.0002520 | Pathogenic | Pathogenic (PVS1, PP5, PM2) | Amyotrophic lateral sclerosis, susceptibility to 24-AD |
2 | GBA (NM_000157.4 | 10 | Missense | c.1448T>C | p.Leu483Pro | - | - | Likely Pathogenic (PS3,PP2,PP5) | Parkinson disease, late-onset, susceptibility to 24-AD |
3 | TGM6 (NM_198994.3) | Intron 6 | Splice-site | c.851-2A>C | - | 0.000007435 | VUS | Likely pathogenic (PVS1, BS2) | Spinocerebellar ataxia 35-AD |
4 | NOTCH3 (NM_000435.3) | 9 | Missense | c.1385C>T | p.Thr462Ile | 0.000006577 | VUS | VUS (PM2) | Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy 1- AD |
FIG4 (NM_014845.6) | 7 | Missense | c.670C>T | p.Pro224Ser | 0.000002489 | VUS | VUS (PM2) | Amyotrophic lateral sclerosis 11-AD | |
5 | PSEN1 (NM_000021.4) | 7 | Missense | c.566A>G | p.Tyr189Cys | 0.00006225 | VUS | VUS (BS2, PP3, PP2) | Alzheimer disease, type 3, with or without spastic paraparesis-AD, Dementia, frontotemporal-AD, Pick disease-AD |
6 | TOR1A (NM_000113.3) | 3 | Missense | c.467G>A | p.Arg156Gln | 0.000003718 | VUS | VUS (PM2, BP1) | Dystonia-1, torsion |
7 | CCDC88C (NM_001080414.4) | 15 | Missense | c.2554G>C | p.Asp852His | 0.00001611 | VUS | VUS (PM2, BP1) | Spinocerebellar ataxia 40-AD |
8 | LRRK2 (NM_198578.4) | 5 | Missense | c.470G>T | p.Ser157Ile | - | - | VUS (BP4, PM2) | Parkinson disease 8-AD |
9 | NOTCH3 (NM_000435.3) | 14 | Missense | c.2264G>A | p.Gly755Asp | - | - | VUS (PM2, BP4) | Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy 1- AD |
10 | SGCE (NM_003919.3) | 7 | Missense | c.907C>A | p.Pro303Thr | - | - | VUS (PM2, BP1, PP3) | Dystonia-11, myoclonic-AD |
11 | GRN (NM_002087.4 | 5 | Missense | c.430G>A | p.Asp144Asn | 0.00001239 | VUS | VUS (PM2, PP5, BP1, BP3) | Frontotemporal dementia 2-AD-AR |
12 | COL4A1 (NM_001845.6) | 52 | Missense | c.4966C>A | p.Arg1656Ser | 0.00002726 | VUS | VUS (PP2) | Microangiopathy and leukoencephalopathy, pontine, autosomal dominant-AD |
13 | SPAST (NM_014946.4) | 6 | Missense | c.925C>A | p.Arg309Ser | - | - | VUS (PM1, PM2, PM5, BP4) | Spastic paraplegia 4, autosomal dominant-AD |
14 | GBA1 (NM_001005741.3) | 9 | Missense | c.1103G>A | p.Arg368His | 0.00004213 | VUS | VUS (PM1, PM2, BS3, BS4) | Parkinson disease, late-onset, susceptibility to-AD-Mu |
15 | DNAJC13 (NM_015268.4) | 40 | Missense | c.4544C>G | p.Pro1515Arg | - | - | VUS (PP3, PM2, BP1) | Parkinson disease 21 |
16 | ADH1C (NM_000669.5) | 5 | Missense | c.539G>C | p.Gly180Ala | - | - | VUS (PM2, BP1) | Parkinson disease, susceptibility to-AD-Mu |
AGE | Gender | Duration of PD (Year) | Duration of ET (Year) | Consanguineous Marriage | Family History | Tremor of ET | Examination Findings of Parkinsonism | Medical Treatment | HOEHN JAHR Scale | Fahn–Tolosa–Marin Tremor Rating Scale | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 60 | M | 6 | 10 | - | Father has ET | Right |
|
| 1 | 19 |
2 | 70 | F | 2 | 30 | + | Mother and cousin have ET, another cousin has PD, son and daughter have myopathy. | Right |
|
| 1 | 38 |
3 | 66 | M | 5 | 20 | - | Mother has PD, father and grandfather have ET | Bilateral |
|
| 2 | 40 |
4 | 84 | M | 10 | 50 | - | Father, aunt-and sister and brother have ET | Bilateral |
|
| 1 | 38 |
5 | 54 | F | 1 | 3 | - | Father has PD | Bilateral |
|
| 1 | 36 |
6 | 70 | M | 6 | 8 | - | Mother, grandmother and sister have ET | Right |
|
| 2 | 48 |
7 | 43 | F | 1 | 6 | - | Father has ET. | Right |
|
| 1 | 36 |
8 | 20 | M | 1 | 11 | - | Grandfather has ET | Right |
|
| 1 | 42 |
9 | 85 | M | 1 | 15 | - | Father has ET | Left |
|
| 1 | 42 |
10 | 65 | M | 3 | 10 | - | Father has ET | Bilateral |
|
| 1 | 24 |
11 | 83 | M | 1 | 15 | + | Brother has ET | Bilateral |
|
| 1 | 48 |
12 | 54 | F | 1 | 2 | + | Aunt has ET | Bilateral |
|
| 1 | 52 |
13 | 67 | F | 4 | 10 | - | Father has ET | Bilateral |
|
| 2 | 48 |
14 | 61 | F | 9 | 22 | - | Brother and sister have PD | Left |
|
| 1 | 48 |
15 | 57 | M | 8 | 10 | + | Sister has epilepsy and ET | Bilateral |
|
| 1 | 44 |
16 | 56 | M | 1 | 10 | - | Mother and grandfather have ET | Bilateral |
|
| 1 | 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buyukserbetci, G.; Bolat, H.; Sari, U.S.; Turan, G.; Avcikurt, A.S.; Esmeli, F. Clinical and Genetic Characteristics of Patients with Essential Tremor Who Develop Parkinson’s Disease. Medicina 2025, 61, 1184. https://doi.org/10.3390/medicina61071184
Buyukserbetci G, Bolat H, Sari US, Turan G, Avcikurt AS, Esmeli F. Clinical and Genetic Characteristics of Patients with Essential Tremor Who Develop Parkinson’s Disease. Medicina. 2025; 61(7):1184. https://doi.org/10.3390/medicina61071184
Chicago/Turabian StyleBuyukserbetci, Gulseren, Hilmi Bolat, Ummu Serpil Sari, Gizem Turan, Ayla Solmaz Avcikurt, and Figen Esmeli. 2025. "Clinical and Genetic Characteristics of Patients with Essential Tremor Who Develop Parkinson’s Disease" Medicina 61, no. 7: 1184. https://doi.org/10.3390/medicina61071184
APA StyleBuyukserbetci, G., Bolat, H., Sari, U. S., Turan, G., Avcikurt, A. S., & Esmeli, F. (2025). Clinical and Genetic Characteristics of Patients with Essential Tremor Who Develop Parkinson’s Disease. Medicina, 61(7), 1184. https://doi.org/10.3390/medicina61071184