Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches—A Literature Review
Abstract
1. Introduction
1.1. Overview
1.2. Current Treatment Landscape
2. Pathophysiology
2.1. Genetic Mutations
2.2. Mechanisms of Retinal Degeneration
2.3. Genetic Heterogeneity
3. Genetic Therapy Strategies
3.1. Gene Replacement Therapy
3.2. Gene Editing Approaches
3.3. RNA-Based Therapies
3.4. Optogenetic Therapy
4. Challenges in Genetic Therapy
4.1. Delivery Mechanisms
4.2. Long-Term Efficacy and Safety
4.3. Personalized Medicine and Genetic Variability
5. Recent Advances and Clinical Trials
5.1. Overview of Key Clinical Trials
5.2. AI-Driven Precision Medicine and Retinal Prosthetics
5.3. Cell-Based Therapies
6. Future Directions and Perspectives
6.1. Improving Delivery Systems
6.2. Combination Therapies
6.3. Regulatory and Ethical Issues
6.4. The Path Forward for RP Patients
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAV | Adeno-Associated Virus |
AI | Artificial Intelligence |
AON | Antisense Oligonucleotide |
BCVA | Best-Corrected Visual Acuity |
CEP290 | Centrosomal Protein of 290 kDa |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
ERGs | Electroretinograms |
FST | Full-Field Light Sensitivity Threshold |
ILM | Inner Limiting Membrane |
IRDs | Inherited Retinal Diseases |
LCA | Leber Congenital Amaurosis |
MLMT | Multi-Luminance Mobility Test |
MSNs | Mesoporous Silica Nanoparticles |
ONL | Outer Nuclear Layer |
P3HT | Poly(3-Hexylthiophene) |
PRPF31 | Pre-mRNA Processing Factor 31 |
RHO | Rhodopsin |
RP | Retinitis Pigmentosa |
RPGR | Retinitis Pigmentosa GTPase Regulator |
RPE | Retinal Pigment Epithelium |
siRNA | Small Interfering RNA |
shRNA | Short Hairpin RNA |
UPR | Unfolded Protein Response |
USH2A | Usher Syndrome Type 2A |
References
- Verbakel, S.K.; van Huet, R.A.C.; Boon, C.J.F.; den Hollander, A.I.; Collin, R.W.J.; Klaver, C.C.W.; Hoyng, C.B.; Roepman, R.; Klevering, B.J. Non-syndromic retinitis pigmentosa. Prog. Retin. Eye Res. 2018, 66, 157–186. [Google Scholar] [CrossRef] [PubMed]
- Boughman, J.A.; Conneally, P.M.; Nance, W.E. Population Genetic Studies of Retinitis Pigmentosa. Am. J. Hum. Genet. 1980, 32, 223–235. [Google Scholar] [PubMed]
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis Pigmentosa Prevalence and Inheritance Patterns. 2006; Volume 368. Available online: www.ncbi.nlm.nih.gov/ (accessed on 3 February 2025).
- Birtel, J.; Gliem, M.; Mangold, E.; Müller, P.L.; Holz, F.G.; Neuhaus, C.; Lenzner, S.; Zahnleiter, D.; Betz, C.; Eisenberger, T.; et al. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS ONE 2018, 13, e0207958. [Google Scholar] [CrossRef] [PubMed]
- Daiger, S.P.; Bowne, S.J.; Sullivan, L.S. Perspective on Genes and Mutations Causing Retinitis Pigmentosa. Arch. Ophthalmol. 2007, 125, 151–158. [Google Scholar] [CrossRef]
- Sandberg, M.A.; Rosner, B.; Weigel-DiFranco, C.; McGee, T.L.; Dryja, T.P.; Berson, E.L. Disease course in patients with autosomal recessive retinitis pigmentosa due to the USH2A Gene. Investig. Opthalmol. Vis. Sci. 2008, 49, 5532–5539. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, H.; Wang, L.; Tao, T.; Xu, J.; Sun, X.; Yang, L.; Li, G. Novel mutations of RPGR in Chinese families with X-linked retinitis pigmentosa. BMC Ophthalmol. 2019, 19, 1–7. [Google Scholar] [CrossRef]
- Liu, W.; Liu, S.; Li, P.; Yao, K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int. J. Mol. Sci. 2022, 23, 4883. [Google Scholar] [CrossRef]
- Berson, E.L.; Rosner, B.; Sandberg, M.A.; Hayes, K.C.; Nicholson, B.W.; Weigel-DiFranco, C.; Willett, W. A Randomized Trial of Vitamin A and Vitamin E Supplementation for Retinitis Pigmentosa. Arch. Ophthalmol. 1993, 111, 761–772. [Google Scholar] [CrossRef]
- de Castro, C.T.M.; Berezovsky, A.; de Castro, D.D.M.; Salomão, S.R. Visual Rehabilitation in Patients with Retinitis Pigmentosa. Arq. Bras. Oftalmol. 2006, 69, 687–690. (In Portuguese) [Google Scholar]
- Colombo, L.; Baldesi, J.; Martella, S.; Quisisana, C.; Antico, A.; Mapelli, L.; Montagner, S.; Primon, A.; Rossetti, L. Managing Retinitis Pigmentosa: A Literature Review of Current Non-Surgical Approaches. J. Clin. Med. 2025, 14, 330. [Google Scholar] [CrossRef]
- Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; Cunha, A.d.S.; Woo, S.J.; Kwon, Y.J. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog. Retin. Eye Res. 2018, 63, 107–131. [Google Scholar] [CrossRef] [PubMed]
- MacLaren, R.E.; Bennett, J.; Schwartz, S.D. Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. Ophthalmology 2016, 123, S98–S106. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, F.S.; E Gallenga, C.; Bonifazzi, C.; Perri, P. A challenge to the striking genotypic heterogeneity of retinitis pigmentosa: A better understanding of the pathophysiology using the newest genetic strategies. Eye 2016, 30, 1542–1548. [Google Scholar] [CrossRef] [PubMed]
- Moiseyev, G.; Chen, Y.; Takahashi, Y.; Wu, B.X.; Ma, J.-X. RPE65 is the isomerohydrolase in the retinoid visual cycle. Proc. Natl. Acad. Sci. 2005, 102, 12413–12418. [Google Scholar] [CrossRef]
- Huang, W.C.; Wright, A.F.; Roman, A.J.; Cideciyan, A.V.; Manson, F.D.; Gewaily, D.Y.; Schwartz, S.B.; Sadigh, S.; Limberis, M.P.; Bell, P.; et al. RPGR-associated retinal degeneration in human X-linked RP and a murine model. Investig. Opthalmol. Vis. Sci. 2012, 53, 5594–5608. [Google Scholar] [CrossRef]
- Tebbe, L.; Mwoyosvi, M.L.; Crane, R.; Makia, M.S.; Kakakhel, M.; Cosgrove, D.; Al-Ubaidi, M.R.; Naash, M.I. The usherin mutation c.2299delG leads to its mislocalization and disrupts interactions with whirlin and VLGR1. Nat. Commun. 2023, 14, 972. [Google Scholar] [CrossRef]
- Athanasiou, D.; Aguila, M.; Bellingham, J.; Li, W.; McCulley, C.; Reeves, P.J.; Cheetham, M.E. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog. Retin. Eye Res. 2018, 62, 1–23. [Google Scholar] [CrossRef]
- Olivares-González, L.; Velasco, S.; Campillo, I.; Millán, J.M.; Rodrigo, R. Redox Status in Retinitis Pigmentosa. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2023; Volume 1415, pp. 443–448. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Mir, T.A. The mechanism of cone cell death in Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018, 62, 24–37. [Google Scholar] [CrossRef]
- Kanan, Y.; Hackett, S.F.; Hsueh, H.T.; Khan, M.; Ensign, L.M.; Campochiaro, P.A. Reduced Inspired Oxygen Decreases Retinal Superoxide Radicals and Promotes Cone Function and Survival in a Model of Retinitis Pigmentosa. Free. Radic. Biol. Med. 2023, 198, 118–122. [Google Scholar] [CrossRef]
- Zabel, M.K.; Zhao, L.; Zhang, Y.; Gonzalez, S.R.; Ma, W.; Wang, X.; Fariss, R.N.; Wong, W.T. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 2016, 64, 1479–1491. [Google Scholar] [CrossRef]
- Di Iorio, V.; Karali, M.; Melillo, P.; Testa, F.; Brunetti-Pierri, R.; Musacchia, F.; Condroyer, C.; Neidhardt, J.; Audo, I.; Zeitz, C.; et al. Spectrum of disease severity in patients with X-linked retinitis pigmentosa due to RPGR mutations. Investig. Opthalmol. Vis. Sci. 2020, 61, 36. [Google Scholar] [CrossRef] [PubMed]
- Fahim, A.T.; Bowne, S.J.; Sullivan, L.S.; Webb, K.D.; Williams, J.T.; Wheaton, D.K.; Birch, D.G.; Daiger, S.P.; Janecke, A.R. Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to rpgr mutations. PLoS ONE 2011, 6, e23021. [Google Scholar] [CrossRef] [PubMed]
- Dvoriantchikova, G.; Lypka, K.R.; Ivanov, D. The Potential Role of Epigenetic Mechanisms in the Development of Retinitis Pigmentosa and Related Photoreceptor Dystrophies. Front. Genet. 2022, 13, 827274. [Google Scholar] [CrossRef] [PubMed]
- Kutsyr, O.; Sánchez-Sáez, X.; Martínez-Gil, N.; de Juan, E.; Lax, P.; Maneu, V.; Cuenca, N. Gradual increase in environmental light intensity induces oxidative stress and inflammation and accelerates retinal neurodegeneration. Investig. Opthalmol. Vis. Sci. 2020, 61, 1. [Google Scholar] [CrossRef]
- Wang, J.-H.; Zhan, W.; Gallagher, T.L.; Gao, G. Recombinant adeno-associated virus as a delivery platform for ocular gene therapy: A comprehensive review. Mol. Ther. 2024, 32, 4185–4207. [Google Scholar] [CrossRef]
- Russell, S.; Bennett, J.; A Wellman, J.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Cehajic-Kapetanovic, J.; Xue, K.; de la Camara, C.M.-F.; Nanda, A.; Davies, A.; Wood, L.J.; Salvetti, A.P.; Fischer, M.D.; Aylward, J.W.; Barnard, A.R.; et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 2020, 26, 354–359. [Google Scholar] [CrossRef]
- Drag, S.; Dotiwala, F.; Upadhyay, A.K. Gene Therapy for Retinal Degenerative Diseases: Progress, Challenges, and Future Directions. Investig. Opthalmol. Vis. Sci. 2023, 64, 39. [Google Scholar] [CrossRef]
- Bucher, K.; Rodríguez-Bocanegra, E.; Dauletbekov, D.; Fischer, M.D. Immune responses to retinal gene therapy using adeno-associated viral vectors–Implications for treatment success and safety. Prog. Retin. Eye Res. 2021, 83, 100915. [Google Scholar] [CrossRef]
- Datta, P.; Rhee, K.-D.; Staudt, R.J.; Thompson, J.M.; Hsu, Y.; Hassan, S.; Drack, A.V.; Seo, S. Delivering large genes using adeno-associated virus and the CRE-lox DNA recombination system. Hum. Mol. Genet. 2024, 33, 2094–2110. [Google Scholar] [CrossRef]
- Tornabene, P.; Trapani, I. Can Adeno-Associated Viral Vectors Deliver Effectively Large Genes? Hum. Gene Ther. 2020, 31, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I. CRISPR/Cas9—A Promising Therapeutic Tool to Cure Blindness: Current Scenario and Future Prospects. Int. J. Mol. Sci. 2022, 23, 11482. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in Genome Editing and beyond. Annu. Rev. Biochem. 2016, 85, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.A.; Aleman, T.S.; Jayasundera, K.T.; Ashimatey, B.S.; Kim, K.; Rashid, A.; Jaskolka, M.C.; Myers, R.L.; Lam, B.L.; Bailey, S.T.; et al. Gene Editing for CEP290 -Associated Retinal Degeneration. N. Engl. J. Med. 2024, 390, 1972–1984. [Google Scholar] [CrossRef]
- Hu, S.; Du, J.; Chen, N.; Jia, R.; Zhang, J.; Liu, X.; Yang, L. In vivo CRISPR/Cas9-mediated genome editing mitigates photoreceptor degeneration in a mouse model of X-linked retinitis pigmentosa. Investig. Opthalmol. Vis. Sci. 2020, 61, 31. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR Ethics: Moral Considerations for Applications of a Powerful Tool. J. Mol. Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef]
- Xue, K.; MacLaren, R.E. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin. Investig. Drugs 2020, 29, 1163–1170. [Google Scholar] [CrossRef]
- Grainok, J.; Pitout, I.L.; Chen, F.K.; McLenachan, S.; Jeffery, R.C.H.; Mitrpant, C.; Fletcher, S. A Precision Therapy Approach for Retinitis Pigmentosa 11 Using Splice-Switching Antisense Oligonucleotides to Restore the Open Reading Frame of PRPF31. Int. J. Mol. Sci. 2024, 25, 3391. [Google Scholar] [CrossRef]
- Slijkerman, R.W.; Vaché, C.; Dona, M.; García-García, G.; Claustres, M.; Hetterschijt, L.; A Peters, T.; Hartel, B.P.; Pennings, R.J.; Millan, J.M.; et al. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. Mol. Ther. Nucleic Acids 2016, 5, e381. [Google Scholar] [CrossRef]
- Guzman-Aranguez, A.; Loma, P.; Pintor, J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br. J. Pharmacol. 2013, 170, 730–747. [Google Scholar] [CrossRef]
- O’rEilly, M.; Palfi, A.; Chadderton, N.; Millington-Ward, S.; Ader, M.; Cronin, T.; Tuohy, T.; Auricchio, A.; Hildinger, M.; Tivnan, A.; et al. RNA Interference–mediated suppression and replacement of human rhodopsin in vivo. Am. J. Hum. Genet. 2007, 81, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Lindner, M.; Gilhooley, M.J.; Hughes, S.; Hankins, M.W. Optogenetics for visual restoration: From proof of principle to translational challenges. Prog. Retin. Eye Res. 2022, 91, 101089. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S.R.; Moore, A.T.; De Silva, S.R.; Moore, A.T. Physiology 2021 symposium ’Photoreceptors in Health and Monogenic Disease. J. Physiol. 2022, 600, 4623–4632. [Google Scholar] [CrossRef] [PubMed]
- Sahel, J.-A.; Boulanger-Scemama, E.; Pagot, C.; Arleo, A.; Galluppi, F.; Martel, J.N.; Degli Esposti, S.; Delaux, A.; de Saint Aubert, J.-B.; de Montleau, C.; et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 2021, 27, 1223–1229. [Google Scholar] [CrossRef]
- Batabyal, S.; Kim, S.; Carlson, M.; Narcisse, D.; Tchedre, K.; Dibas, A.; Sharif, N.A.; Mohanty, S. Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2024, 13, 25. [Google Scholar] [CrossRef]
- Toms, M.; Toualbi, L.; Almeida, P.V.; Harbottle, R.; Moosajee, M. Successful large gene augmentation of USH2A with non-viral episomal vectors. Mol. Ther. 2023, 31, 2755–2766. [Google Scholar] [CrossRef]
- Trapani, I.; Colella, P.; Sommella, A.; Iodice, C.; Cesi, G.; de Simone, S.; Marrocco, E.; Rossi, S.; Giunti, M.; Palfi, A.; et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 2013, 6, 194–211. [Google Scholar] [CrossRef]
- Dalkara, D.; Kolstad, K.D.; Caporale, N.; Visel, M.; Klimczak, R.R.; Schaffer, D.V.; Flannery, J.G. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol. Ther. 2009, 17, 2096–2102. [Google Scholar] [CrossRef]
- Gamlin, P.D.; Alexander, J.J.; Boye, S.L.; Witherspoon, C.D.; Boye, S.E. SubILM injection of AAV for gene delivery to the retina. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2019; Volume 1950, pp. 249–262. [Google Scholar] [CrossRef]
- Maguire, A.M.; Russell, S.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; Marshall, K.A.; et al. Efficacy, Safety, and Durability of Voretigene Neparvovec-rzyl in RPE65 Mutation–Associated Inherited Retinal Dystrophy: Results of Phase 1 and 3 Trials. Ophthalmology 2019, 126, 1273–1285. [Google Scholar] [CrossRef]
- Adam, M.P.; Feldman, J.; Mirzaa, G.M. RPE65-Related Leber Congenital Amaurosis/Early-Onset Severe Retinal Dystrophy. In GeneReviews; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Nguyen, X.-T.; Moekotte, L.; Plomp, A.S.; Bergen, A.A.; van Genderen, M.M.; Boon, C.J.F. Retinitis Pigmentosa: Current Clinical Management and Emerging Therapies. Int. J. Mol. Sci. 2023, 24, 7481. [Google Scholar] [CrossRef]
- Arbabi, A.; Liu, A.; Ameri, H. Gene Therapy for Inherited Retinal Degeneration. J. Ocul. Pharmacol. Ther. 2019, 35, 79–97. [Google Scholar] [CrossRef] [PubMed]
- Fenner, B.J.; Tan, T.-E.; Barathi, A.V.; Tun, S.B.B.; Yeo, S.W.; Tsai, A.S.H.; Lee, S.Y.; Cheung, C.M.G.; Chan, C.M.; Mehta, J.S.; et al. Gene-Based Therapeutics for Inherited Retinal Diseases. Front. Genet. 2022, 12, 794805. [Google Scholar] [CrossRef] [PubMed]
- Ito, N.; Miura, G.; Shiko, Y.; Kawasaki, Y.; Baba, T.; Yamamoto, S.; Nakazawa, M. Progression Rate of Visual Function and Affecting Factors at Different Stages of Retinitis Pigmentosa. BioMed Res. Int. 2022, 2022, 7204954. [Google Scholar] [CrossRef] [PubMed]
- Maguire, A.M.; Bennett, J.; Aleman, E.M.; Leroy, B.P.; Aleman, T.S. Clinical Perspective: Treating RPE65-Associated Retinal Dystrophy. Mol. Ther. 2021, 29, 442–463. [Google Scholar] [CrossRef]
- Michaelides, M.; Besirli, C.G.; Yang, Y.; DE Guimaraes, T.A.; Wong, S.C.; Huckfeldt, R.M.; Comander, J.I.; Sahel, J.-A.; Shah, S.M.; Tee, J.J.; et al. Phase 1/2 AAV5-hRKp.RPGR (Botaretigene Sparoparvovec) Gene Therapy: Safety and Efficacy in RPGR-Associated X-Linked Retinitis Pigmentosa. Arch. Ophthalmol. 2024, 267, 122–134. [Google Scholar] [CrossRef]
- Gumerson, J.D.; Alsufyani, A.; Yu, W.; Lei, J.; Sun, X.; Dong, L.; Wu, Z.; Li, T. Restoration of RPGR expression in vivo using CRISPR/Cas9 gene editing. Gene Ther. 2021, 29, 81–93. [Google Scholar] [CrossRef]
- Esteban-Medina, M.; Loucera, C.; Rian, K.; Velasco, S.; Olivares-González, L.; Rodrigo, R.; Dopazo, J.; Peña-Chilet, M. The mechanistic functional landscape of retinitis pigmentosa: A machine learning-driven approach to therapeutic target discovery. J. Transl. Med. 2024, 22, 139. [Google Scholar] [CrossRef]
- Gomes, B.; Ashley, E.A.; Drazen, J.M.; Kohane, I.S.; Leong, T.-Y. Artificial Intelligence in Molecular Medicine. N. Engl. J. Med. 2023, 388, 2456–2465. [Google Scholar] [CrossRef]
- Fujinami-Yokokawa, Y.; Ninomiya, H.; Liu, X.; Yang, L.; Pontikos, N.; Yoshitake, K.; Iwata, T.; Sato, Y.; Hashimoto, T.; Tsunoda, K.; et al. Prediction of causative genes in inherited retinal disorder from fundus photography and autofluorescence imaging using deep learning techniques. Br. J. Ophthalmol. 2021, 105, 1272–1279. [Google Scholar] [CrossRef]
- Issa, M.; Sukkarieh, G.; Gallardo, M.; Sarbout, I.; Bonnin, S.; Tadayoni, R.; Milea, D. Applications of artificial intelligence to inherited retinal diseases: A systematic review. Surv. Ophthalmol. 2024, 70, 255–264. [Google Scholar] [CrossRef]
- Wu, K.Y.; Mina, M.; Sahyoun, J.-Y.; Kalevar, A.; Tran, S.D. Retinal Prostheses: Engineering and Clinical Perspectives for Vision Restoration. Sensors 2023, 23, 5782. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.C.; Humayun, M.S.; Dorn, J.D.; da Cruz, L.; Dagnelie, G.; Handa, J.; Barale, P.-O.; Sahel, J.-A.; Stanga, P.E.; Hafezi, F.; et al. Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind. Ophthalmology 2015, 122, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Z.; Gu, P. Stem/progenitor cell-based transplantation for retinal degeneration: A review of clinical trials. Cell Death Dis. 2020, 11, 793. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, N.; Li, J.; Zhao, M.; Huang, L. Stem cell therapy for inherited retinal diseases: A systematic review and meta-analysis. Stem Cell Res. Ther. 2023, 14, 286. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, S.J.; Li, S.Y.; Qu, L.H.; Meng, X.H.; Wang, Y.; Xu, H.W.; Liang, Z.Q.; Yin, Z.Q. Long-Term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res. Ther. 2017, 8, 209. [Google Scholar] [CrossRef]
- Pavlou, M.; Schön, C.; Occelli, L.M.; Rossi, A.; Meumann, N.; Boyd, R.F.; Bartoe, J.T.; Siedlecki, J.; Gerhardt, M.J.; Babutzka, S.; et al. Novel AAV capsids for intravitreal gene therapy of photoreceptor disorders. EMBO Mol. Med. 2021, 13, e13392. [Google Scholar] [CrossRef]
- He, X.; Fu, Y.; Xu, Y.; Ma, L.; Chai, P.; Shi, H.; Yao, Y.; Ge, S.; Jia, R.; Wen, X.; et al. A Penetrable AAV2 Capsid Variant for Efficient Intravitreal Gene Delivery to the Retina. Investig. Opthalmol. Vis. Sci. 2025, 66, 6. [Google Scholar] [CrossRef]
- Valdés-Sánchez, L.; Borrego-González, S.; Montero-Sánchez, A.; Massalini, S.; de la Cerda, B.; Díaz-Cuenca, A.; Díaz-Corrales, F.J. Mesoporous Silica-Based Nanoparticles as Non-Viral Gene Delivery Platform for Treating Retinitis Pigmentosa. J. Clin. Med. 2022, 11, 2170. [Google Scholar] [CrossRef]
- Maya-Vetencourt, J.F.; Manfredi, G.; Mete, M.; Colombo, E.; Bramini, M.; Di Marco, S.; Shmal, D.; Mantero, G.; Dipalo, M.; Rocchi, A.; et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 2020, 15, 698–708. [Google Scholar] [CrossRef]
- Francia, S.; Shmal, D.; Di Marco, S.; Chiaravalli, G.; Maya-Vetencourt, J.F.; Mantero, G.; Michetti, C.; Cupini, S.; Manfredi, G.; DiFrancesco, M.L.; et al. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat. Commun. 2022, 13, 3677. [Google Scholar] [CrossRef]
- High, K.A.; Roncarolo, M.G. Gene Therapy. N. Engl. J. Med. 2019, 381, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Ormond, K.E.; Mortlock, D.P.; Scholes, D.T.; Bombard, Y.; Brody, L.C.; Faucett, W.A.; Garrison, N.A.; Hercher, L.; Isasi, R.; Middleton, A.; et al. Human Germline Genome Editing. Am. J. Hum. Genet. 2017, 101, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Malvasi, M.; Casillo, L.; Avogaro, F.; Abbouda, A.; Vingolo, E.M. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int. J. Mol. Sci. 2023, 24, 13756. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zong, X.; Cao, W.; Zhang, W.; Zhang, N.; Yang, N. Gene Therapy for Retinitis Pigmentosa: Current Challenges and New Progress. Biomolecules 2024, 14, 903. [Google Scholar] [CrossRef]
Therapy Strategy | Mechanism/Target | Delivery Method | Recent Outcomes | Limitations |
---|---|---|---|---|
Gene Replacement Therapy | AAV-delivered gene copies to restore function (e.g., RPE65, RPGR); dual/multi-vector recombination for large genes (e.g., IFT140) | Subretinal injection (AAV2); dual vectors for large genes | Luxturna®: 65% improved MLMT at 1 year; RPGR trials show structural/functional preservation; IFT140 dual AAV preserved function in mice | AAV packaging limits; subretinal surgery risks (detachment, inflammation) |
Gene Editing (CRISPR-Cas9) | DNA-level correction (e.g., CEP290, RPGR) via RNA-guided Cas9 to restore gene function | Subretinal delivery of CRISPR complexes via viral or non-viral systems | EDIT-101: 43% showed improved retinal sensitivity; RPGR editing in mice preserved photoreceptors without off-target effects | Risk of off-target edits; ethical/safety concerns; need for long-term monitoring |
RNA-Based Therapies (AON, RNAi) | AONs modify splicing (e.g., PRPF31, USH2A); siRNA/shRNA silence toxic mRNA (e.g., RHO) | Intravitreal injection of synthetic oligos or viral-delivered RNA tools | AONs corrected splicing in PRPF31 and USH2A models; RNAi achieved 90% RHO transcript suppression in photoreceptors | Transient effects; limited delivery efficiency; immune response potential |
Optogenetic Therapy | Introduces light-sensitive opsins (e.g., ChrimsonR, MCO-010) into bipolar/ganglion cells to bypass lost photoreceptors | Intravitreal injection of gene constructs (no viable photoreceptors needed) | RESTORE trial: mice showed improved optomotor and water-maze behavior; human case regained partial vision using ChrimsonR with engineered goggles; well tolerated | Low spatial resolution; dependent on assistive devices; requires intact downstream retinal circuitry |
Challenge | Advantage/Opportunity | Limitation | Proposed Solutions |
---|---|---|---|
Delivery Barriers | Subretinal injection allows precise targeting; capsid engineering improves vector spread | Invasive procedure; risk of detachment or inflammation; intravitreal injection has low efficiency | Use of suprachoroidal delivery, capsid optimization, and hybrid delivery systems |
Vector Capacity Limitations | Gene editing and RNA-based therapies allow payload minimization | AAVs cannot carry large genes (e.g., USH2A, ABCA4) | Dual/multi-vector approaches, split-intein recombination, or alternative vectors |
Immune Responses | Novel serotypes and immune modulation strategies enhance tolerability | Vector-induced immune activation may limit expression or cause inflammation | Pre-treatment with immunosuppressants, vector engineering, and monitoring biomarkers |
Gene and Mutation Specificity | Precision medicine enables mutation-matched therapy | Rare variants may be untargetable or underrepresented in clinical research | Integrate gene-agnostic methods (e.g., optogenetics); develop mutation-agnostic delivery platforms |
Long-Term Expression and Safety | Episomal vectors reduce genomic integration; regulatory elements can fine-tune expression | Concerns about sustained expression, gene silencing, or unforeseen effects | Use of biodegradable vectors, inducible promoters, and long-term clinical surveillance |
Ethical and Regulatory Concerns | Global consensus growing around clinical gene therapy governance | Issues around germline editing, patient autonomy, and equitable access | Clear ethical oversight, patient engagement, transparent consent processes, and international policy alignment |
Intervention/Technology | Target/Indication | Key Clinical Findings | Limitations/Considerations |
---|---|---|---|
Luxturna® (voretigene neparvovec) | RPE65-associated RP | 72% MLMT success at 1 lux; FST gain −2.04 log10 cd·s/m; sustained visual field and acuity improvements for 4+ years | Requires subretinal surgery; gene-specific; not generalizable to all RP genotypes |
RPGR Gene Therapy (XIRIUS trial) | X-linked RP (RPGR mutations) | Improved retinal sensitivity and partial visual field reversal in mid-dose groups; benefits observed as early as 1 month, sustained at 6 months | Mild subretinal inflammation at higher doses; limited to RPGR mutations |
EDIT-101 (BRILLIANCE trial) | CEP290 mutation (LCA10—CRISPR/Cas9 gene editing) | 64% had improvements in ≥1 visual function outcome (FST, BCVA, mobility); no serious adverse events | Still in early phases; LCA10 not classified as RP but establishes retinal CRISPR precedent |
AI Applications in RP | Gene identification, diagnosis, prognosis | Predicted causative genes (e.g., EYS, RP1L1) with 88.2% accuracy; AUROC 96.74% in retinal image-based classification | Not a therapy; dependent on algorithm quality, training data, and clinical integration |
Argus II Retinal Prosthesis System | Advanced RP with profound vision loss | Clinical safety and functional benefit in 30 patients; device longevity up to 7.2 years | Low visual resolution; surgical implantation complexity; limited adaptability |
Stem Cell Therapy (e.g., RPCs via Suprachoroidal Delivery) | RP with photoreceptor/RPE degeneration | 49% of eyes showed BCVA improvement at 6 months (n = 496); best results with suprachoroidal delivery; no rejection/tumors in long-term follow-up trials | Outcomes vary by protocol; long-term efficacy unclear; risk of immune rejection and graft survival limitations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murati Calderón, R.A.; Emanuelli, A.; Izquierdo, N. Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches—A Literature Review. Medicina 2025, 61, 1179. https://doi.org/10.3390/medicina61071179
Murati Calderón RA, Emanuelli A, Izquierdo N. Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches—A Literature Review. Medicina. 2025; 61(7):1179. https://doi.org/10.3390/medicina61071179
Chicago/Turabian StyleMurati Calderón, Ricardo A., Andres Emanuelli, and Natalio Izquierdo. 2025. "Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches—A Literature Review" Medicina 61, no. 7: 1179. https://doi.org/10.3390/medicina61071179
APA StyleMurati Calderón, R. A., Emanuelli, A., & Izquierdo, N. (2025). Retinitis Pigmentosa: From Genetic Insights to Innovative Therapeutic Approaches—A Literature Review. Medicina, 61(7), 1179. https://doi.org/10.3390/medicina61071179