Analysis of Massive Transfusion Protocol Utilization in Trauma Across Sociodemographic Groups
Abstract
1. Background
2. Methods
2.1. Data Collection
2.2. Univariable Analyses
2.3. Multivariable Analyses
- Weighting using inverse class frequencies—balancing by scaling the weight of each class to the inverse of its frequency, thereby assigning higher weights to the minority class and lower weights to the majority class.
- Weighting using means—balancing by scaling the weight of each class to the inverse of its frequency, similarly assigning higher weights to the minority class and lower weights to the majority class.
- Downsampling (undersampling)—randomly subsetting (removing or reducing) the majority classes in the training set so that their class frequency matches the minority class.
- Upsampling (oversampling)—randomly subsetting (and replacing with artificial or duplicate data points) the minority classes in the training set so that their class frequency matches the majority class.
- Synthetic minority oversampling technique (SMOTE)—a hybrid method that downsamples the majority class and synthesizes new data of the minority class using the k-nearest neighbor algorithm.
- Random oversampling examples (ROSE)—a hybrid method that utilizes majority downsampling and minority upsampling to synthesize new data from both classes.
2.4. Performance Evaluation
3. Results
4. Discussion
4.1. Age, Transfusion, and Mortality
4.2. Sex, Transfusion, and Mortality
4.3. Age, Ethnicity, Race, and Insurance Status
4.4. Clinical Significance
4.5. Strengths
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ang, D.; Fakhry, S.M.; Watts, D.D.; Liu, H.; Morse, J.L.; Armstrong, J.; Ziglar, M.; Restivo, J.; Plurad, D.; Kurek, S.; et al. Data-driven blood transfusion thresholds for severely injured patients during blood shortages. J. Surg. Res. 2023, 291, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Saillant, N.N.; Kornblith, L.Z.; Moore, H.; Barrett, C.; Schreiber, M.A.; Cotton, B.A.; Neal, M.D.; Makar, R.; Cap, A.P. The national blood shortage—An impetus for change. Ann. Surg. 2022, 275, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Saviano, A.; Perotti, C.; Zanza, C.; Longhitano, Y.; Ojetti, V.; Franceschi, F.; Bellou, A.; Piccioni, A.; Jannelli, E.; Ceresa, I.F.; et al. Blood transfusion for major trauma in emergency department. Diagnostics 2024, 14, 708. [Google Scholar] [CrossRef]
- Lin, V.S.; Sun, E.; Yau, S.; Abeyakoon, C.; Seamer, G.; Bhopal, S.; Tucker, H.; Doree, C.; Brunskill, S.J.; McQuilten, Z.K.; et al. Definitions of massive transfusion in adults with critical bleeding: A systematic review. Crit. Care 2023, 27, 265. [Google Scholar] [CrossRef]
- Patil, V.; Shetmahajan, M. Massive transfusion and massive transfusion protocol. Indian J. Anaesth. 2014, 58, 590. [Google Scholar] [CrossRef] [PubMed]
- Bawazeer, M.; Ahmed, N.; Izadi, H.; McFarlan, A.; Nathens, A.; Pavenski, K. Compliance with a massive transfusion protocol (MTP) impacts patient outcome. Injury 2015, 46, 21–28. [Google Scholar] [CrossRef]
- McQuilten, Z.K.; Flint, A.W.J.; Green, L.; Sanderson, B.; Winearls, J.; Wood, E.M. Epidemiology of massive transfusion–a common intervention in need of a definition. Transfus. Med. Rev. 2021, 35, 73–79. [Google Scholar] [CrossRef]
- Wijaya, R.; Cheng, H.M.G.; Chong, C.K. The use of massive transfusion protocol for trauma and non-trauma patients in a civilian setting: What can be done better? Singapore Med. J. 2016, 57, 238–241. [Google Scholar] [CrossRef]
- Jebbia, M.; Nguyen, J.; Marty, M.; Carcamo, R.; Alvarez, C.; Lasso, E.T.; Barrios, C.; Lugo, B. Predictors of mortality in trauma patients receiving massive transfusion protocol. Am. Surg. 2023, 89, 4089–4094. [Google Scholar] [CrossRef]
- Hsu, Y.M.; Haas, T.; Cushing, M. Massive transfusion protocols: Current best practice. Int. J. Clin. Transfus. Med. 2016, 4, 15–27. [Google Scholar] [CrossRef]
- Guerado, E.; Medina, A.; Mata, M.I.; Galvan, J.M.; Bertrand, M.L. Protocols for massive blood transfusion: When and why, and potential complications. Eur. J. Trauma Emerg. Surg. 2015, 42, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Nunez, T.C.; Voskresensky, I.V.; Dossett, L.A.; Shinall, R.; Dutton, W.D.; Cotton, B.A. Early prediction of massive transfusion in trauma: Simple as ABC (Assessment of Blood Consumption)? J. Trauma Inj. Infect. Crit. Care 2009, 66, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Nakamura, Y.; Nakano, M.; Izawa, Y.; Nakamura, M.; Fujizuka, K.; Suzukawa, M.; Lefor, A.T. Predicting the need for massive transfusion in trauma patients. J. Trauma Acute Care Surg. 2014, 76, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Schroll, R.; Swift, D.; Tatum, D.; Couch, S.; Heaney, J.B.; Llado-Farrulla, M.; Zucker, S.; Gill, F.; Brown, G.; Buffin, N.; et al. Accuracy of shock index versus ABC score to predict need for massive transfusion in trauma patients. Injury 2018, 49, 15–19. [Google Scholar] [CrossRef]
- Lo, B.D.; Merkel, K.R.; Dougherty, J.L.; Kajstura, T.J.; Cruz, N.C.; Sikorski, R.A.; Frank, S.M. Assessing predictors of futility in patients receiving massive transfusions. Transfusion 2021, 61, 2082–2089. [Google Scholar] [CrossRef]
- Mladinov, D.; Frank, S.M. Massive transfusion and severe blood shortages: Establishing and implementing predictors of futility. Br. J. Anaesth. 2022, 128, e71–e74. [Google Scholar] [CrossRef]
- Yücel, N.; Lefering, R.; Maegele, M.; Vorweg, M.; Tjardes, T.; Ruchholtz, S.; Neugebauer, E.A.M.; Wappler, F.; Bouillon, B.; Rixen, D.; et al. Trauma Associated Severe Hemorrhage (TASH)-score: Probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J. Trauma Inj. Infect. Crit. Care 2006, 60, 1228–1236. [Google Scholar] [CrossRef]
- Bhogadi, S.K.; Ditillo, M.; Khurshid, M.H.; Stewart, C.; Hejazi, O.; Spencer, A.L.; Anand, T.; Nelson, A.; Magnotti, L.J.; Joseph, B. Development and validation of futility of resuscitation measure in older adult trauma patients. J. Surg. Res. 2024, 301, 591–598. [Google Scholar] [CrossRef]
- Jeon, S.; Lee, G.J.; Lee, M.; Choi, K.K.; Lee, S.H.; Cho, J.; Yu, B. Predictive limitations of the geriatric trauma outcome score: A retrospective analysis of mortality in elderly patients with multiple traumas and severe traumatic brain injury. Diagnostics 2025, 15, 586. [Google Scholar] [CrossRef]
- Van Gent, J.M.; Clements, T.W.; Lubkin, D.T.; Wade, C.E.; Cardenas, J.C.; Kao, L.S.; Cotton, B.A. Predicting futility in severely injured patients: Using arrival lab values and physiology to support evidence-based resource stewardship. J. Am. Coll. Surg. 2023, 236, 874–880. [Google Scholar] [CrossRef]
- Loudon, A.M.; Rushing, A.P.; Hue, J.J.; Ziemak, A.; Sarode, A.L.; Moorman, M.L. When is enough enough? Odds of survival by unit transfused. J. Trauma Acute Care Surg. 2023, 94, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Clements, T.W.; Van Gent, J.M.; Lubkin, D.E.; Wandling, M.W.; Meyer, D.E.; Moore, L.J.; Cotton, B.A. The reports of my death are greatly exaggerated: An evaluation of futility cut points in massive transfusion. J. Trauma Acute Care Surg. 2023, 95, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Benhamed, A.; Emond, M.; Mercier, E.; Heidet, M.; Gauss, T.; Saint-Supery, P.; Yadav, K.; David, J.S.; Claustre, C.; Tazarourte, K. Accuracy of a prehospital triage protocol in predicting in-hospital mortality and severe trauma cases among older adults. Int. J. Environ. Res. Public Health 2023, 20, 1975. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.H.; Chang, D.C.; Efron, D.T.; Haut, E.R.; Crandall, M.; Cornwell, E.E. Race and insurance status as risk factors for trauma mortality. Arch. Surg. 2008, 143, 945–949. [Google Scholar] [CrossRef]
- Gong, F. Racial and ethnic disparities in health insurance coverage in the USA: Findings from the 2018 National Health Interview Survey. J. Racial Ethn. Health Disparities 2023, 10, 651–659. [Google Scholar] [CrossRef]
- Lee, D.-C.; Liang, H.; Shi, L. The convergence of racial and income disparities in health insurance coverage in the United States. Int. J. Equity Health 2021, 20, 96. [Google Scholar] [CrossRef]
- Hoffer, E.P. America′s health care system is broken: What went wrong and how we can fix it. Part 2: Health insurance. Am. J. Med. 2019, 132, 791–794. [Google Scholar] [CrossRef]
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A package for binary imbalanced learning. R J. 2014, 6, 79–89. [Google Scholar] [CrossRef]
- Menardi, G.; Torelli, N. Training and assessing classification rules with imbalanced data. Data Min. Knowl. Discov. 2014, 28, 92–122. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- U.S. Census Bureau. American Community Survey 5-Year Estimates, 2019–2023. Available online: https://data.census.gov/ (accessed on 15 June 2025).
- Brown, C.H., 4th; Savage, W.J.; Masear, C.G.; Walston, J.D.; Tian, J.; Colantuoni, E.; Hogue, C.W.; Frank, S.M. Odds of transfusion for older adults compared to younger adults undergoing surgery. Anesth. Analg. 2014, 118, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Murry, J.S.; Zaw, A.A.; Hoang, D.M.; Mehrzadi, D.; Tran, D.; Nuno, M.; Bloom, M.; Melo, N.; Margulies, D.R.; Ley, E.J. Activation of massive transfusion for elderly trauma patients. Am. Surg. 2015, 81, 945–949. [Google Scholar] [CrossRef]
- Lim, G.; Harper-Kirksey, K.; Parekh, R.; Manini, A.F. Efficacy of a massive transfusion protocol for hemorrhagic trauma resuscitation. Am. J. Emerg. Med. 2018, 36, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Niziolek, G.M.; Baker, J.E.; Huebner, B.R.; Hanseman, D.; Makley, A.T.; Pritts, T.A.; Goodman, M.D. Death by decade: Establishing a transfusion ceiling for futility in massive transfusion. J. Surg. Res. 2020, 252, 139–146. [Google Scholar] [CrossRef]
- Kojima, M.; Endo, A.; Shiraishi, A.; Shoko, T.; Otomo, Y.; Coimbra, R. Association between the plasma-to-red blood cell ratio and survival in geriatric and non-geriatric trauma patients undergoing massive transfusion: A retrospective cohort study. J. Intensive Care 2022, 10, 2. [Google Scholar] [CrossRef]
- Paganini, M.; Abowali, H.; Bosco, G.; Balouch, M.; Enten, G.; Deng, J.; Shander, A.; Ciesla, D.; Wilson, J.; Camporesi, E. Quality improvement project of a massive transfusion protocol (MTP) to reduce wastage of blood components. Int. J. Environ. Res. Public Health 2021, 18, 274. [Google Scholar] [CrossRef]
- Consunji, R.; Elseed, A.; El-Menyar, A.; Sathian, B.; Rizoli, S.; Al-Thani, H.; Peralta, R. The effect of massive transfusion protocol implementation on the survival of trauma patients: A systematic review and meta-analysis. Blood Transfus. 2020, 18, 434. [Google Scholar] [CrossRef]
- Baraniuk, S.; Tilley, B.C.; del Junco, D.J.; Fox, E.E.; van Belle, G.; Wade, C.E.; Podbielski, J.M.; Beeler, A.M.; Hess, J.R.; Bulger, E.M.; et al. Pragmatic Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial: Design, rationale and implementation. Injury 2014, 45, 1287–1295. [Google Scholar] [CrossRef]
- Barbosa, R.R.; Rowell, S.E.; Sambasivan, C.N.; Diggs, B.S.; Spinella, P.C.; Schreiber, M.A. A predictive model for mortality in massively transfused trauma patients. J. Trauma Inj. Infect. Crit. Care 2011, 71 (Suppl. 3), S370–S374. [Google Scholar] [CrossRef]
- Buchmueller, T.C.; Levinson, Z.M.; Levy, H.G.; Wolfe, B.L. Effect of the affordable care act on racial and ethnic disparities in health insurance coverage. Am. J. Public Health 2016, 106, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Kirby, J.B.; Taliaferro, G.; Zuvekas, S.H. Explaining racial and ethnic disparities in health care. Med. Care 2006, 44 (Suppl. 5), 64–72. [Google Scholar] [CrossRef] [PubMed]
- Lillie-Blanton, M.; Hoffman, C. The role of health insurance coverage in reducing racial/ethnic disparities in health care. Health Aff. 2005, 24, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Zuvekas, S.H.; Taliaferro, G.S. Pathways to access: Health insurance, the health care delivery system, and racial/ethnic disparities, 1996–1999. Health Aff. 2003, 22, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Hargraves, J.L.; Hadley, J. The contribution of insurance coverage and community resources to reducing racial/ethnic disparities in access to care. Health Serv. Res. 2003, 38, 809–829. [Google Scholar] [CrossRef]
- Profile of Medicare Beneficiaries by Race and Ethnicity: A Chartpack|KFF. Available online: https://www.kff.org/medicare/report/profile-of-medicare-beneficiaries-by-race-and-ethnicity-a-chartpack/ (accessed on 18 January 2024).
- Medicare Beneficiaries at a Glance—Centers for Medicare & Medicaid Services Data. Available online: https://data.cms.gov/infographic/medicare-beneficiaries-at-a-glance (accessed on 18 January 2024).
MTP Activated | MTP Transfused | ||||
---|---|---|---|---|---|
Characteristic | Overall, N = 8670 1 | NO, N = 8405 1 | YES, N = 265 1 | NO, N = 8618 1 | YES, N = 52 1 |
AGE | 53.05 (24.23) | 53.64 (24.30) | 38.60 (19.43) | 53.11 (24.26) | 43.81 (17.22) |
SEX | |||||
Female | 2909 (34%) | 2851 (34%) | 58 (22%) | 2896 (34%) | 13 (25%) |
Male | 5761 (66%) | 5554 (66%) | 207 (78%) | 5722 (66%) | 39 (75%) |
RACE | |||||
American Indian | 5 (<0.1%) | 5 (<0.1%) | 0 (0%) | 5 (<0.1%) | 0 (0%) |
Asian | 1138 (13%) | 1109 (13%) | 29 (11%) | 1131 (13%) | 7 (13%) |
Black | 809 (9.3%) | 780 (9.3%) | 29 (11%) | 805 (9.3%) | 4 (7.7%) |
Native Hawaiian or Another Pacific Islander | 7 (<0.1%) | 6 (<0.1%) | 1 (0.4%) | 7 (<0.1%) | 0 (0%) |
Other 2 | 4843 (56%) | 4681 (56%) | 162 (61%) | 4811 (56%) | 32 (62%) |
White | 1868 (22%) | 1824 (22%) | 44 (17%) | 1859 (22%) | 9 (17%) |
ETHNICITY | |||||
Hispanic Origin | 3154 (36%) | 3041 (36%) | 113 (43%) | 3133 (36%) | 21 (40%) |
Non-Hispanic Origin | 5516 (64%) | 5364 (64%) | 152 (57%) | 5485 (64%) | 31 (60%) |
INSURANCE STATUS | |||||
Medicaid | 2818 (33%) | 2717 (32%) | 101 (38%) | 2797 (32%) | 21 (40%) |
Medicare | 2338 (27%) | 2309 (27%) | 29 (11%) | 2334 (27%) | 4 (7.7%) |
No Charge | 889 (10%) | 847 (10%) | 42 (16%) | 879 (10%) | 10 (19%) |
Other | 1059 (12%) | 1022 (12%) | 37 (14%) | 1054 (12%) | 5 (9.6%) |
Private | 1566 (18%) | 1510 (18%) | 56 (21%) | 1554 (18%) | 12 (23%) |
TRAUMA TYPE | |||||
Blunt | 7789 (90%) | 7623 (91%) | 166 (63%) | 7752 (90%) | 37 (71%) |
Penetrating | 881 (10%) | 782 (9.3%) | 99 (37%) | 866 (10%) | 15 (29%) |
PROBABILITY OF SURVIVAL | 0.98 (0.10) | 0.98 (0.08) | 0.96 (0.29) | 0.98 (0.09) | 0.70 (0.33) |
ISS | 4.00 (6.92) | 4.00 (6.27) | 17.00 (13.25) | 4.00 (6.71) | 25.50 (13.23) |
PRBCs transfused | 0.00 (0.67) | 0.00 (0.16) | 2.00 (2.66) | 0.00 (0.38) | 5.00 (2.93) |
IN-ED MORTALITY | |||||
NO | 8647 (100%) | 8392 (100%) | 255 (96%) | 8603 (100%) | 44 (85%) |
YES | 23 (0.3%) | 13 (0.2%) | 10 (3.8%) | 15 (0.2%) | 8 (15%) |
MTP Activation | MTP Transfusion | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | OR 1 | SE 1 | 95% CI 1 | p-Value 2 | OR 1 | SE 1 | 95% CI 1 | p-Value 2 |
Age | 0.98 | 0.003 | 0.98, 0.99 | <0.001 *** | 0.99 | 0.006 | 0.98, 1.00 | 0.042 * |
Race = White | 0.14 | 0.96 | ||||||
American Indian | 0 | 239 | 0 | 1073 | ||||
Asian | 1.08 | 0.242 | 0.67, 1.73 | 1.28 | 0.505 | 0.46, 3.44 | ||
Black | 1.54 | 0.243 | 0.95, 2.47 | 1.03 | 0.602 | 0.28, 3.16 | ||
Native Hawaiian or Other Pacific Islander | 6.91 | 1.09 | 0.36, 41.6 | 0 | 907 | |||
Other | 1.43 | 0.172 | 1.03, 2.03 | 1.37 | 0.378 | 0.68, 3.06 | ||
Sex = Male | 1.83 | 0.15 | 1.37, 2.48 | <0.001 *** | 1.52 | 0.321 | 0.83, 2.96 | 0.18 |
Ethnicity = Non-Hispanic Origin | 0.76 | 0.126 | 0.60, 0.98 | 0.033 * | 0.84 | 0.284 | 0.49, 1.49 | 0.55 |
Mechanism = Penetrating Trauma | 5.81 | 0.132 | 4.47, 7.52 | <0.001 *** | 3.63 | 0.308 | 1.93, 6.50 | <0.001 *** |
ISS | 1.13 | 0.006 | 1.12, 1.15 | <0.001 *** | 1.12 | 0.01 | 1.10, 1.15 | <0.001 *** |
Ps | 0.01 | 0.256 | 0.01, 0.02 | <0.001 *** | 0.01 | 0.364 | 0.00, 0.02 | <0.001 *** |
Medicare | 0.32 | 0.198 | 0.22, 0.47 | <0.001 *** | 0.22 | 0.521 | 0.07, 0.55 | <0.001 *** |
Medicaid | 1.3 | 0.129 | 1.00, 1.66 | 0.046 * | 1.42 | 0.284 | 0.80, 2.46 | 0.22 |
In-ED Mortality | |||
---|---|---|---|
NO | YES | p-Value 1,2 | |
MTP Activation | <0.001 *** | ||
NO | 8392 (99.8%) | 13 (0.2%) | |
YES | 255 (96.2%) | 10 (3.8%) | |
Total | 8647 (99.7%) | 23 (0.3%) | |
MTP Transfusion | <0.001 *** | ||
NO | 8603 (99.8%) | 15 (0.2%) | |
YES | 44 (84.6%) | 8 (15.4%) | |
Total | 8647 (99.7%) | 23 (0.3%) |
MTP Activation | MTP Transfusion | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | OR 1 | SE 1 | 95% CI 1 | p-Value 2 | OR 1 | SE 1 | 95% CI 1 | p-Value 2 |
(Intercept) | 2.72 | 0.75 | 0.62, 11.8 | 0.18 | 0.26 | 1.16 | 0.03, 2.48 | 0.24 |
Age | 0.99 | 0.004 | 0.98, 1.00 | 0.006 ** | 1 | 0.009 | 0.98, 1.02 | 0.94 |
Race = White | ||||||||
American Indian | 0 | 387 | 0.98 | 0 | 1048 | >0.99 | ||
Asian | 0.84 | 0.269 | 0.49, 1.41 | 0.51 | 0.82 | 0.537 | 0.27, 2.34 | 0.71 |
Black | 0.89 | 0.284 | 0.50, 1.54 | 0.68 | 0.68 | 0.654 | 0.17, 2.31 | 0.55 |
Native Hawaiian or Other Pacific Islander | 2.51 | 1.39 | 0.09, 25.2 | 0.51 | 0 | 788 | 0.99 | |
Other | 0.76 | 0.233 | 0.48, 1.20 | 0.23 | 0.81 | 0.488 | 0.31, 2.15 | 0.66 |
Gender = Male | 0.84 | 0.179 | 0.60, 1.20 | 0.34 | 0.8 | 0.365 | 0.40, 1.69 | 0.55 |
Ethnicity = Non-Hispanic Origin | 0.87 | 0.189 | 0.60, 1.25 | 0.45 | 1.14 | 0.4 | 0.51, 2.47 | 0.74 |
Medicaid | 0.9 | 0.156 | 0.66, 1.22 | 0.5 | 1.38 | 0.326 | 0.72, 2.61 | 0.33 |
Medicare | 0.69 | 0.266 | 0.41, 1.16 | 0.17 | 0.37 | 0.621 | 0.10, 1.18 | 0.11 |
Mechanism = Penetrating | 9.79 | 0.183 | 6.86, 14.0 | <0.001 *** | 3.92 | 0.391 | 1.79, 8.36 | <0.001 *** |
ISS | 0.98 | 0.017 | 0.95, 1.01 | 0.27 | 0.99 | 0.02 | 0.95, 1.03 | 0.69 |
PS | 0 | 0.646 | 0.00, 0.01 | <0.001 *** | 0 | 0.871 | 0.00, 0.01 | <0.001 *** |
ISS × PS | 1.19 | 0.019 | 1.15, 1.24 | <0.001 *** | 1.19 | 0.028 | 1.13, 1.26 | <0.001 *** |
MTP Activation | MTP Transfusion | |||
---|---|---|---|---|
Model Sensitivity | AUC (95% CI) | Precision | AUC (95% CI) | Precision |
Original | 0.876 (0.850–0.902) | 0.974 | 0.935 (0.895–0.974) | 0.994 |
Weighting Using Frequency | 0.875 (0.848–0.901) | 0.970 | 0.933 (0.893–0.973) | 0.994 |
Weighting Using Means | 0.881 (0.856–0.905) | 0.992 | 0.946 (0.919–0.972) | 0.999 |
Downsampling | 0.876 (0.850–0.902) | 0.992 | 0.939 (0.914–0.964) | 1.000 |
Upsampling | 0.880 (0.856–0.905) | 0.992 | 0.945 (0.918–0.972) | 0.999 |
SMOTE | 0.881 (0.856–0.905) | 0.992 | 0.945 (0.918–0.972) | 0.999 |
ROSE | 0.876 (0.852–0.901) | 0.992 | 0.944 (0.914–0.974) | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, M.; Sharma, B.; Conn, M.; Twelker, K.; Bhatia, N.D.; Agriantonis, G.; Dave, J.; Mestre, J.; Shafaee, Z.; Whittington, J. Analysis of Massive Transfusion Protocol Utilization in Trauma Across Sociodemographic Groups. Medicina 2025, 61, 1133. https://doi.org/10.3390/medicina61071133
Arnold M, Sharma B, Conn M, Twelker K, Bhatia ND, Agriantonis G, Dave J, Mestre J, Shafaee Z, Whittington J. Analysis of Massive Transfusion Protocol Utilization in Trauma Across Sociodemographic Groups. Medicina. 2025; 61(7):1133. https://doi.org/10.3390/medicina61071133
Chicago/Turabian StyleArnold, Monique, Bharti Sharma, Matthew Conn, Kate Twelker, Navin D. Bhatia, George Agriantonis, Jasmine Dave, Juan Mestre, Zahra Shafaee, and Jennifer Whittington. 2025. "Analysis of Massive Transfusion Protocol Utilization in Trauma Across Sociodemographic Groups" Medicina 61, no. 7: 1133. https://doi.org/10.3390/medicina61071133
APA StyleArnold, M., Sharma, B., Conn, M., Twelker, K., Bhatia, N. D., Agriantonis, G., Dave, J., Mestre, J., Shafaee, Z., & Whittington, J. (2025). Analysis of Massive Transfusion Protocol Utilization in Trauma Across Sociodemographic Groups. Medicina, 61(7), 1133. https://doi.org/10.3390/medicina61071133