Computer Viewing Model for Classification of Erythrocytes Infected with Plasmodium spp. Applied to Malaria Diagnosis Using Optical Microscope
Abstract
1. Introduction
2. Materials and Methods
2.1. Construction of Dataset
2.2. Training of Machine Learning (ML) Model
2.3. Training a Convolutional Neural Network Model
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
MACHINE LEARNING | |||||
---|---|---|---|---|---|
DECISION TREE Mean (SD) | GNB Mean (SD) | KNN Mean(SD)N | RF Mean (SD) | SVC Mean (SD) | Metrics |
92.82 (0.53) | 65.55 (0.92) | 71.63 (0.34) | 95.52 (0.33) | 73.88 (0.76) | A (%) |
93.12 (0.17) | 77.89 (1.64) | 70.99 (0.3) | 96.28 (0.32) | 75.66 (0.79) | P (%) |
92.85 (1.01) | 44.0 (3.75) | 73.58 (0.79) | 94.8 (0.68) | 70.72 (0.85) | R (%) |
92.95 (0.39) | 56.09 (2.84) | 72.26 (0.42) | 95.56 (0.35) | 73.11 (0.8) | F1 score (%) |
92.89 (0.38) | 73.74 (0.41) | 78.14 (0.45) | 98.66 (0.17) | 86.67 (0.48) | AUC (%) |
References
- Fikadu, M.; Ashenafi, E. Malaria: An Overview. Infect. Drug Resist. 2023, 16, 3339–3347. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Malaria Report 2023, 1st ed.; World Health Organization, Ed.; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Bouzayene, A.; Zaffaroullah, R.; Bailly, J.; Ciceron, L.; Sarrasin, V.; Cojean, S.; Argy, N.; Houzé, S.; Joste, V.; Angoulvant, A.; et al. Evaluation of Two Commercial Kits and Two Laboratory-Developed QPCR Assays Compared to LAMP for Molecular Diagnosis of Malaria. Malar. J. 2022, 21, 204. [Google Scholar] [CrossRef]
- Korenromp, E.; Hamilton, M.; Sanders, R.; Mahiané, G.; Briët, O.J.T.; Smith, T.; Winfrey, W.; Walker, N.; Stover, J. Impact of Malaria Interventions on Child Mortality in Endemic African Settings: Comparison and Alignment between LiST and Spectrum-Malaria Model. BMC Public Health 2017, 17, 781. [Google Scholar] [CrossRef] [PubMed]
- Balaji, S.; Deshmukh, R.; Trivedi, V. Severe Malaria: Biology, Clinical Manifestation, Pathogenesis and Consequences. J. Vector Borne Dis. 2020, 57, 1–13. [Google Scholar] [CrossRef]
- López, A.R.; Martins, E.B.; de Pina-Costa, A.; Pacheco-Silva, A.B.; Ferreira, M.T.; Mamani, R.F.; Detepo, P.J.T.; Lupi, O.; Bressan, C.S.; Calvet, G.A.; et al. A Fatal Respiratory Complication of Malaria Caused by Plasmodium Vivax. Malar. J. 2023, 22, 303. [Google Scholar] [CrossRef]
- Trivedi, S.; Chakravarty, A. Neurological Complications of Malaria. Curr. Neurol. Neurosci. Rep. 2022, 22, 499–513. [Google Scholar] [CrossRef]
- Panwar, V.; Bansal, S.; Chauhan, C.; Sinha, A. Cost Analyses for Malaria Molecular Diagnosis for Research Planners in India and Beyond. Expert. Rev. Mol. Diagn. 2024, 24, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Lucchi, N.W.; Karell, M.A.; Journel, I.; Rogier, E.; Goldman, I.; Ljolje, D.; Huber, C.; Mace, K.E.; Jean, S.E.; Akom, E.E.; et al. PET-PCR Method for the Molecular Detection of Malaria Parasites in a National Malaria Surveillance Study in Haiti, 2011. Malar. J. 2014, 13, 462. [Google Scholar] [CrossRef]
- Torres, K.; Bachman, C.M.; Delahunt, C.B.; Alarcon Baldeon, J.; Alava, F.; Gamboa Vilela, D.; Proux, S.; Mehanian, C.; McGuire, S.K.; Thompson, C.M.; et al. Automated Microscopy for Routine Malaria Diagnosis: A Field Comparison on Giemsa-Stained Blood Films in Peru. Malar. J. 2018, 17, 339. [Google Scholar] [CrossRef]
- Fitri, L.E.; Widaningrum, T.; Endharti, A.T.; Prabowo, M.H.; Winaris, N.; Nugraha, R.Y.B. Malaria Diagnostic Update: From Conventional to Advanced Method. J. Clin. Lab. Anal. 2022, 36, e24314. [Google Scholar] [CrossRef]
- Das, D.K.; Mukherjee, R.; Chakraborty, C. Computational Microscopic Imaging for Malaria Parasite Detection: A Systematic Review. J. Microsc. 2015, 260, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Al Moaraj, A.M.H.A. The Role of Artificial Intelligence in Entrepreneurship. In Proceedings of the Artificial Intelligence for Sustainable Finance and Sustainable Technology; Musleh Al-Sartawi, A.M.A., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 530–542. [Google Scholar]
- Maturana, C.R.; de Oliveira, A.D.; Nadal, S.; Bilalli, B.; Serrat, F.Z.; Soley, M.E.; Igual, E.S.; Bosch, M.; Lluch, A.V.; Abelló, A.; et al. Advances and Challenges in Automated Malaria Diagnosis Using Digital Microscopy Imaging with Artificial Intelligence Tools: A Review. Front. Microbiol. 2022, 13, 1006659. [Google Scholar] [CrossRef]
- Shashinkiran, S.; Srinivas, B.N.; Sunitha, H.D.; Sandip, M.; Sadaqathulla, S.; Pramod, K.S. Plasmodium Vivax Parasite Detection Using Transfer Learning Techniques. In Proceedings of the 2024 Asia Pacific Conference on Innovation in Technology (APCIT), Mysore, India, 26–27 July 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Aluvala, S.; Bhargavi, K.; Deekshitha, J.; Suresh, B.; Rao, G.N.; Sravani, A. A Web-Based Approach for Malaria Parasite Detection Using Deep Learning in Blood Smears. In Proceedings of the 2024 2nd World Conference on Communication & Computing (WCONF), Raipur, India, 12–14 July 2024; IEEE: New York, NY, USA, 2024; pp. 1–6. [Google Scholar]
- Moysis, E.; Brown, B.J.; Shokunbi, W.; Manescu, P.; Fernandez-Reyes, D. Leveraging Deep Learning for Detecting Red Blood Cell Morphological Changes in Blood Films from Children with Severe Malaria Anaemia. Br. J. Haematol. 2024, 205, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Holmes, W.R.; Ambros-Ingerson, J.; Grover, L.M. Fitting Experimental Data to Models That Use Morphological Data from Public Databases. J. Comput. Neurosci. 2006, 20, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Kassim, Y.M.; Palaniappan, K.; Yang, F.; Poostchi, M.; Palaniappan, N.; Maude, R.J.; Antani, S.; Jaeger, S. Clustering-Based Dual Deep Learning Architecture for Detecting Red Blood Cells in Malaria Diagnostic Smears. IEEE J. Biomed. Health Inform. 2021, 25, 1735–1746. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA, USA, 14–16 April 2014. [Google Scholar]
- Mateen, M.; Wen, J.; Nasrullah; Song, S.; Huang, Z. Fundus Image Classification Using VGG-19 Architecture with PCA and SVD. Symmetry 2018, 11, 1. [Google Scholar] [CrossRef]
- Faghihi, A.; Fathollahi, M.; Rajabi, R. Diagnosis of Skin Cancer Using VGG16 and VGG19 Based Transfer Learning Models. Multimed. Tools Appl. 2023, 83, 57495–57510. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Sun, H.; Zhou, W.; Yang, J.; Shao, Y.; Xing, L.; Zhao, Q.; Zhang, L. An Improved Medical Image Classification Algorithm Based on Adam Optimizer. Mathematics 2024, 12, 2509. [Google Scholar] [CrossRef]
- Jaber, M.M.; Abd, S.K.; Ali, S.M. Adam Optimized Deep Learning Model for Segmenting ROI Region in Medical Imaging. In Proceedings of the International Conference on Emerging Technologies and Intelligent Systems; Al-Emran, M., Al-Sharafi, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 669–691. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Friedman, M. The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Yang, F.; Poostchi, M.; Yu, H.; Zhou, Z.; Silamut, K.; Yu, J.; Maude, R.J.; Jaeger, S.; Antani, S. Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears. IEEE J. Biomed. Health Inform. 2020, 24, 1427–1438. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.; Islam, M.S. A New Ensemble Learning Approach to Detect Malaria from Microscopic Red Blood Cell Images. Sens. Int. 2023, 4, 100209. [Google Scholar] [CrossRef]
- Hemachandran, K.; Alasiry, A.; Marzougui, M.; Ganie, S.M.; Pise, A.A.; Alouane, M.T.-H.; Chola, C. Performance Analysis of Deep Learning Algorithms in Diagnosis of Malaria Disease. Diagnostics 2023, 13, 534. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Goyal, M.K. VL-M2C: Leveraging Deep Learning Approach for Stage Detection of Malaria Parasites. J. Integr. Sci. Technol. 2025, 13, 1055. [Google Scholar] [CrossRef]
- Nagendra, S.; Hayes, R.; Bae, D.; Dodge, K. Diagnosis of Plasmodium Infections Using Artificial Intelligence Techniques versus Standard Microscopy in a Reference Laboratory. J. Clin. Microbiol. 2025, 63, e00775-24. [Google Scholar] [CrossRef] [PubMed]
- Breslauer, D.N.; Maamari, R.N.; Switz, N.A.; Lam, W.A.; Fletcher, D.A. Mobile Phone Based Clinical Microscopy for Global Health Applications. PLoS ONE 2009, 4, e6320. [Google Scholar] [CrossRef]
CNN | MACHINE LEARNING | |||||
---|---|---|---|---|---|---|
VGG-19 | DECISION TREE | GNB | KNN | RF | SVC | Metrics |
93.14 | 92.22 | 63.86 | 72.99 | 95.77 | 74.99 | A (%) |
92.04 | 92.08 | 78.4 | 72.85 | 96.42 | 78.02 | P (%) |
94.22 | 92.64 | 39.79 | 74.64 | 95.21 | 70.64 | R (%) |
93.11 | 92.36 | 52.78 | 73.73 | 95.81 | 74.15 | F1 score (%) |
97.76 | 92.21 | 64.24 | 72.97 | 95.78 | 75.05 | AUC (%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, E.; Cartas-Espinel, I.; Álvarez, P.; Moris, M.; Salazar, M.; Boguen, R.; Letelier, P.; San Martín, L.; San Martín, V.; Morales, C.; et al. Computer Viewing Model for Classification of Erythrocytes Infected with Plasmodium spp. Applied to Malaria Diagnosis Using Optical Microscope. Medicina 2025, 61, 940. https://doi.org/10.3390/medicina61050940
Rojas E, Cartas-Espinel I, Álvarez P, Moris M, Salazar M, Boguen R, Letelier P, San Martín L, San Martín V, Morales C, et al. Computer Viewing Model for Classification of Erythrocytes Infected with Plasmodium spp. Applied to Malaria Diagnosis Using Optical Microscope. Medicina. 2025; 61(5):940. https://doi.org/10.3390/medicina61050940
Chicago/Turabian StyleRojas, Eduardo, Irene Cartas-Espinel, Priscila Álvarez, Matías Moris, Manuel Salazar, Rodrigo Boguen, Pablo Letelier, Lucia San Martín, Valeria San Martín, Camilo Morales, and et al. 2025. "Computer Viewing Model for Classification of Erythrocytes Infected with Plasmodium spp. Applied to Malaria Diagnosis Using Optical Microscope" Medicina 61, no. 5: 940. https://doi.org/10.3390/medicina61050940
APA StyleRojas, E., Cartas-Espinel, I., Álvarez, P., Moris, M., Salazar, M., Boguen, R., Letelier, P., San Martín, L., San Martín, V., Morales, C., & Guzmán, N. (2025). Computer Viewing Model for Classification of Erythrocytes Infected with Plasmodium spp. Applied to Malaria Diagnosis Using Optical Microscope. Medicina, 61(5), 940. https://doi.org/10.3390/medicina61050940