SGLT2 Inhibitors in Patients with Urogenital Malformations and Urinary Diversions: Risks, Benefits, and Clinical Considerations
Abstract
1. Introduction
2. Mechanism of SGLT2 Inhibitors and Genitourinary Implications
3. Patients with Urinary Tract Abnormalities: Clinical and Safety Considerations
4. Potential Benefits of SGLT2 Inhibitors in These Populations
5. Special Considerations: Post-Surgical and High-Risk Anatomies
6. Clinical Recommendations
7. Future Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2018, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Herrington, W.G.; Staplin, N.; Wanner, C.; Green, J.B.; Hauske, S.J.; Emberson, J.R.; Preiss, D.; Judge, P.; Mayne, K.J.; Ng, S.Y.A.; et al. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2022, 388, 117–127. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Rocca, H.-P.B.-L.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; De Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Aristizábal-Colorado, D.; Ocampo-Posada, M.; Rivera-Martínez, W.A.; Corredor-Rengifo, D.; Rico-Fontalvo, J.; Gómez-Mesa, J.E.; Duque-Ossman, J.J.; Abreu-Lomba, A. SGLT2 Inhibitors and How They Work beyond the Glucosuric Effect. State of the Art. Am. J. Cardiovasc. Drugs 2024, 24, 707–718. [Google Scholar] [CrossRef]
- Kani, R.; Watanabe, A.; Miyamoto, Y.; Ejiri, K.; Iwagami, M.; Takagi, H.; Slipczuk, L.; Tsugawa, Y.; Aikawa, T.; Kuno, T. Comparison of Effectiveness among Different Sodium-Glucose Cotransoporter-2 Inhibitors According to Underlying Conditions: A Network Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2024, 13, e031805. [Google Scholar] [CrossRef]
- Nyström, T. Key Results from Observational Studies and Real-world Evidence of Sodium-glucose Cotransporter-2 Inhibitor Effectiveness and Safety in Reducing Cardio-renal Risk. Diabetes Obes. Metab. 2024, 26, 35–57. [Google Scholar] [CrossRef]
- Hunsuwan, S.; Boongird, S.; Ingsathit, A.; Ponthongmak, W.; Unwanatham, N.; McKay, G.J.; Attia, J.; Thakkinstian, A. Real-World Effectiveness and Safety of Sodium-Glucose Co-Transporter 2 Inhibitors in Chronic Kidney Disease. Sci. Rep. 2025, 15, 1667. [Google Scholar] [CrossRef]
- Yick, M.C.T.; Wang, R.B.; Velmurugan, S.; Thomas, M.; Woldman, S.; Davies, C.; Badiani, S.; Das, D.; Wright, P.; Antoniou, S.; et al. Rehospitalisation Rates of Heart Failure Patients Treated with SGLT2 Inhibitors as an Inpatient versus Post-Discharge. Br. J. Cardiol. 2024, 31, 032. [Google Scholar] [CrossRef]
- Moon, J.; Udell, J.A.; Chong, A.; Fang, J.; Austin, P.C.; Ko, D.T.; Stukel, T.A.; Atzema, C.L.; Booth, G.L.; Tu, K.; et al. Time to SGLT2 Inhibitors Initiation in Patients with Heart Failure. J. Am. Heart Assoc. 2024, 13, e032296. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Ritchie, R.; Shaw, J.E.; Kaye, D. Implications of Underlying Mechanisms for the Recognition and Management of Diabetic Cardiomyopathy. J. Am. Coll. Cardiol. 2018, 71, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Neuen, B.L.; Jun, M.; Wick, J.; Kotwal, S.; Badve, S.V.; Jardine, M.J.; Gallagher, M.; Chalmers, J.; Nallaiah, K.; Perkovic, V.; et al. Estimating the Population-Level Impacts of Improved Uptake of SGLT2 Inhibitors in Patients with Chronic Kidney Disease: A Cross-Sectional Observational Study Using Routinely Collected Australian Primary Care Data. Lancet Reg. Health-West. Pac. 2023, 43, 100988. [Google Scholar] [CrossRef]
- Baigent, C.; Emberson, J.R.; Haynes, R.; Herrington, W.G.; Judge, P.; Landray, M.J.; Mayne, K.J.; Ng, S.Y.A.; Preiss, D.; Roddick, A.J.; et al. Impact of Diabetes on the Effects of Sodium Glucose Co-Transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-Analysis of Large Placebo-Controlled Trials. Lancet 2022, 400, 1788–1801. [Google Scholar] [CrossRef]
- Svanström, H.; Mkoma, G.F.; Hviid, A.; Pasternak, B. SGLT-2 Inhibitors and Mortality among Patients with Heart Failure with Reduced Ejection Fraction: Linked Database Study. BMJ 2024, 387, e080925. [Google Scholar] [CrossRef]
- Zou, C.-Y.; Liu, X.-K.; Sang, Y.-Q.; Wang, B.; Liang, J. Effects of SGLT2 Inhibitors on Cardiovascular Outcomes and Mortality in Type 2 Diabetes. Medicine 2019, 98, e18245. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the Management of Cardiovascular Disease in Patients with Diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. Executive Summary of the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease: An Update Based on Rapidly Emerging New Evidence. Kidney Int. 2022, 102, 990–999. [Google Scholar] [CrossRef]
- Roddick, A.J.; Wonnacott, A.; Webb, D.; Watt, A.; Watson, M.A.; Staplin, N.; Riding, A.; Lioudaki, E.; Kuverji, A.; Kossi, M.E.; et al. UK Kidney Association Clinical Practice Guideline: Sodium-Glucose Co-Transporter-2 (SGLT-2) Inhibition in Adults with Kidney Disease 2023 UPDATE. BMC Nephrol. 2023, 24, 310. [Google Scholar] [CrossRef]
- Xu, J.; Sun, A.; Yang, Y.; Shi, Y.; Su, J.; Eadon, M.T.; Zhang, P. Risk of Urinary Tract Infections with SGLT-2 Inhibitors in Subpopulations with Abnormal Genitourinary Pathology. Clin. J. Am. Soc. Nephrol. 2025. [Google Scholar] [CrossRef]
- Dave, C.V.; Schneeweiss, S.; Kim, D.; Fralick, M.; Tong, A.; Patorno, E. Sodium–Glucose Cotransporter-2 Inhibitors and the Risk for Severe Urinary Tract Infections. Ann. Intern. Med. 2019, 171, 248. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, R.E. Metabolic and Microbial Crossroads: Sodium-Glucose Cotransporter-2 Inhibitors and Urinary Tract Infections in (Asian) Diabetes Care. Health Sci. Rev. 2025, 15, 100226. [Google Scholar] [CrossRef]
- Walawender, L.; Becknell, B.; Matsell, D.G. Congenital Anomalies of the Kidney and Urinary Tract: Defining Risk Factors of Disease Progression and Determinants of Outcomes. Pediatr. Nephrol. 2023, 38, 3963–3973. [Google Scholar] [CrossRef]
- Zheng, S.; Carugo, D.; Clavica, F.; Mosayyebi, A.; Waters, S. Flow Dynamics in Stented Ureter. In Urinary Stents; Springer: Cham, Switzerland, 2022; pp. 149–158. [Google Scholar]
- Varshney, N.; Billups, S.J.; Saseen, J.J.; Fixen, C.W. Sodium-Glucose Cotransporter-2 Inhibitors and Risk for Genitourinary Infections in Older Adults with Type 2 Diabetes. Ther. Adv. Drug Saf. 2021, 12, 2042098621997703. [Google Scholar] [CrossRef]
- Scheen, A.J. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Clin. Pharmacokinet. 2015, 54, 691–708. [Google Scholar] [CrossRef]
- Packer, M.; Wilcox, C.S.; Testani, J.M. Critical Analysis of the Effects of SGLT2 Inhibitors on Renal Tubular Sodium, Water and Chloride Homeostasis and Their Role in Influencing Heart Failure Outcomes. Circulation 2023, 148, 354–372. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, S.; Liu, L. Efficacy and Safety Evaluation of SGLT2i on Blood Pressure Control in Patients with Type 2 Diabetes and Hypertension: A New Meta-Analysis. Diabetol. Metab. Syndr. 2023, 15, 118. [Google Scholar] [CrossRef]
- Shiina, K. Who Benefits from the Blood Pressure-Lowering Effects of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease?—Obese or Non-Obese? Hypertens. Res. 2023, 47, 681–682. [Google Scholar] [CrossRef]
- Upadhyay, A. SGLT2 Inhibitors and Kidney Protection: Mechanisms beyond Tubuloglomerular Feedback. Kidney360 2024, 5, 771–782. [Google Scholar] [CrossRef]
- Herrington, W.G.; Preiss, D.; Haynes, R.; Von Eynatten, M.; Staplin, N.; Hauske, S.J.; George, J.T.; Green, J.B.; Landray, M.J.; Baigent, C.; et al. The Potential for Improving Cardio-Renal Outcomes by Sodium-Glucose Co-Transporter-2 Inhibition in People with Chronic Kidney Disease: A Rationale for the EMPA-KIDNEY Study. Clin. Kidney J. 2018, 11, 749–761. [Google Scholar] [CrossRef]
- Aksoyalp, Z.Ş. Urinary Tract Infections and Fungal Infections Associated with SGLT-2 Inhibitors and Metformin Combination: A Real-World Study from 2013 to 2023 Based on FAERS Database. J. Clin. Pract. Res. 2024, 46, 282–289. [Google Scholar] [CrossRef]
- Fralick, M.; MacFadden, D.R. A Hypothesis for Why Sodium Glucose Co-transporter 2 Inhibitors Have Been Found to Cause Genital Infection, but Not Urinary Tract Infection. Diabetes Obes. Metab. 2020, 22, 755–758. [Google Scholar] [CrossRef]
- Kittipibul, V.; Cox, Z.L.; Chesdachai, S.; Fiuzat, M.; Lindenfeld, J.; Mentz, R.J. Genitourinary Tract Infections in Patients Taking SGLT2 Inhibitors. J. Am. Coll. Cardiol. 2024, 83, 1568–1578. [Google Scholar] [CrossRef]
- Saliba, W.; Nitzan, O.; Chazan, B.; Elias, M. Urinary Tract Infections in Patients with Type 2 Diabetes Mellitus: Review of Prevalence, Diagnosis, and Management. Diabetes Metab. Syndr. Obes. 2015, 8, 129–136. [Google Scholar] [CrossRef]
- Krepostman, N.; Kramer, H. Lower Urinary Tract Symptoms Should Be Queried When Initiating Sodium Glucose Co-Transporter 2 Inhibitors. Kidney360 2021, 2, 751–754. [Google Scholar] [CrossRef]
- Roth, B.J.; Gill, B.C.; Khooblall, P.; Vallabhaneni, S.; Bole, R.; Bajic, P. Associations between Sodium-Glucose Co-Transporter 2 Inhibitors and Urologic Diseases: Implications for Lower Urinary Tract Symptoms from a Multi-State Health System Analysis. Urology 2024, 192, 119–125. [Google Scholar] [CrossRef]
- Mershon, J.P.; Weatherly, T.; Gill, E.; Asif, H.; Denis-Diaz, D.; Moore, C.; Crescenze, I. PD12-04 SGLT2 Inhibitors Associate with Overactive Bladder Symptoms. J. Urol. 2024, 211, e257. [Google Scholar] [CrossRef]
- Shikuma, J.; Ito, R.; Sasaki-Shima, J.; Teshima, A.; Hara, K.; Takahashi, T.; Sakai, H.; Miwa, T.; Kanazawa, A.; Odawara, M. Changes in Overactive Bladder Symptoms after Sodium Glucose Cotransporter-2 Inhibitor Administration to Patients with Type 2 Diabetes. Pract. Diabetes 2018, 35, 47–50. [Google Scholar] [CrossRef]
- Saijo, Y.; Okada, H.; Hata, S.; Nakajima, H.; Kitagawa, N.; Okamura, T.; Osaka, T.; Kitagawa, N.; Majima, S.; Senmaru, T.; et al. Reasons for Discontinuing Treatment with Sodium-Glucose Cotransporter 2 Inhibitors in Patients with Diabetes in Real-World Settings: The KAMOGAWA-A Study. J. Clin. Med. 2023, 12, 6993. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhou, L.; Liu, J.; Wang, L.; Lu, Y. Benign Prostatic Hyperplasia Increases Long-Term Chronic Kidney Disease Risk. Mayo Clin. Proc. 2025, 100, 790–800. [Google Scholar] [CrossRef]
- Rule, A.D.; Jacobson, D.J.; Roberts, R.O.; Girman, C.J.; McGree, M.E.; Lieber, M.M.; Jacobsen, S.J. The Association between Benign Prostatic Hyperplasia and Chronic Kidney Disease in Community-Dwelling Men. Kidney Int. 2005, 67, 2376–2382. [Google Scholar] [CrossRef] [PubMed]
- Sarma, A.V.; Parsons, J.K. Diabetes and Benign Prostatic Hyperplasia: Emerging Clinical Connections. Curr. Urol. Rep. 2009, 10, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.B.; Min, S.K. Complicated Urinary Tract Infection in Patients with Benign Prostatic Hyperplasia. J. Infect. Chemother. 2021, 27, 1284–1287. [Google Scholar] [CrossRef] [PubMed]
- EAU Guidelines. Presented at the EAU Annual Congress, Paris, France, 5–8 April 2024; EAU Guidelines Office: Arnhem, The Netherlands, 2024; ISBN 978-94-92671-23-3. Available online: https://uroweb.org/guidelines (accessed on 27 April 2025).
- Hopper, R.A.; McMahan, D.M.; Jarvis, K.A.; Weideman, R.A. Risk of Urinary Infections in Veterans on Empagliflozin with Concurrent Catheter Use. J. Pharm. Pract. 2024, 37, 1127–1131. [Google Scholar] [CrossRef]
- Hall, V.; Kwong, J.; Johnson, D.; Ekinci, E.I. Caution Advised with Dapagliflozin in the Setting of Male Urinary Tract Outlet Obstruction. BMJ Case Rep. 2017, 2017, bcr-219335. [Google Scholar] [CrossRef]
- Kar, M.; Dubey, A.; Patel, S.S.; Siddiqui, T.; Ghoshal, U.; Sahu, C. Characteristics of Bacterial Colonization and Urinary Tract Infection after Indwelling of Double-J Ureteral Stent and Percutaneous Nephrostomy Tube. J. Glob. Infect. Dis. 2022, 14, 75–80. [Google Scholar] [CrossRef]
- Mano, R.; Goldberg, H.; Stabholz, Y.; Hazan, D.; Margel, D.; Kedar, D.; Baniel, J.; Yossepowitch, O. Urinary Tract Infections after Urinary Diversion—Different Occurrence Patterns in Patients with Ileal Conduit and Orthotopic Neobladder. Urology 2018, 116, 87–92. [Google Scholar] [CrossRef]
- Gupta, A.; Almog, J.; Jain, S.; Pybass, P. Failure of SGLT-2 Inhibitor in the Context of New Ileal Conduit Formation. N. Z. Med. J. 2023, 136, 83–85. [Google Scholar] [CrossRef]
- Cruz, S.; Silva, B.; Oliveira, A.I.; Da Cunha, T.S.; Cunha, L.; Ferreira, J.; Azevedo, A. #6212 Severe Hyperchloremic Metabolic Acidosis with SGLT-2 Inhibitors in Patients with Urinary Diversion. Nephrol. Dial. Transplant. 2023, 38, gfad063c_6212. [Google Scholar] [CrossRef]
- Wendt, R.; Schmerler, D.; Müller-Hechler, C.; Weichold, C.; Craatz, D.; Beige, J. Candida Sepsis from Local Infection in a Patient with a Urostomy on SGLT2 Inhibitor Therapy. Int. J. Infect. Dis. 2020, 98, 227–229. [Google Scholar] [CrossRef]
- Chen, Z.; Miao, L.; Gao, X.; Wang, G.; Xu, Y. Effect of Obesity and Hyperglycemia on Benign Prostatic Hyperplasia in Elderly Patients with Newly Diagnosed Type 2 Diabetes. Int. J. Clin. Exp. Med. 2015, 8, 11289–11294. [Google Scholar] [PubMed]
- Karatas, O.F.; Bayrak, O.; Cimentepe, E.; Unal, D. An Insidious Risk Factor for Cardiovascular Disease: Benign Prostatic Hyperplasia. Int. J. Cardiol. 2009, 144, 452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Latour, C.D.; Olawore, O.; Pate, V.; Friedlander, D.F.; Stürmer, T.; Funk, M.J.; Jensen, B.C. Cardiovascular Outcomes of α-Blockers vs 5-α Reductase Inhibitors for Benign Prostatic Hyperplasia. JAMA Netw. Open 2023, 6, e2343299. [Google Scholar] [CrossRef]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Podestà, M.A.; Sabiu, G.; Galassi, A.; Ciceri, P.; Cozzolino, M. SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines 2023, 11, 279. [Google Scholar] [CrossRef]
- Jhund, P.S.; Solomon, S.D.; Docherty, K.F.; Heerspink, H.J.L.; Anand, I.S.; Böhm, M.; Chopra, V.; De Boer, R.A.; Desai, A.S.; Ge, J.; et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients with Heart Failure with Reduced Ejection Fraction. Circulation 2020, 143, 298–309. [Google Scholar] [CrossRef]
- Merlo, A.; D’Elia, E.; Di Odoardo, L.; Sciatti, E.; Senni, M. SGLT2 Inhibitors and New Frontiers in Heart Failure Treatment Regardless of Ejection Fraction and Setting. Eur. Heart J. Suppl. 2024, 27, i137–i140. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Fu, X.; Wang, Y.; Lu, Y.; Liu, J.; Li, H. Association between Metabolic Syndrome and Benign Prostatic Hyperplasia: The Underlying Molecular Connection. Life Sci. 2024, 358, 123192. [Google Scholar] [CrossRef]
- Wang, X.; Su, Y.; Yang, C.; Hu, Y.; Dong, J.-Y. Benign Prostatic Hyperplasia and Cardiovascular Risk: A Prospective Study among Chinese Men. World J. Urol. 2021, 40, 177–183. [Google Scholar] [CrossRef]
- Terada, N.; Hitomi, S.; Kurai, H. Identification of Causative and Non-Causative Microorganisms of Nephrostomy Tube-Associated Pyelonephritis among Patients with Malignancy. J. Infect. Chemother. 2024, 31, 102563. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.F.; Smith, E.D.; Gracey, M. Bacterial Flora of Urine from Ileal Conduit. J. Urol. 1971, 105, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Carugo, D.; Mosayyebi, A.; Turney, B.; Burkhard, F.; Lange, D.; Obrist, D.; Waters, S.; Clavica, F. Fluid Mechanical Modeling of the Upper Urinary Tract. WIREs Mech. Dis. 2021, 13, e1523. [Google Scholar] [CrossRef]
- Campbell, J.E.; Oliver, J.A.; McKay, D.E. Dynamics of Ileal Conduits. Radiology 1965, 85, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Trautner, B.W.; Darouiche, R.O. Role of Biofilm in Catheter-Associated Urinary Tract Infection. Am. J. Infect. Control 2004, 32, 177–183. [Google Scholar] [CrossRef]
- Savidge, S.; Yu, B.; Mathias, T.; Ibrahim, M.; Nezami, N. Abstract No. 345 An Analysis of Biofilm Formation in Indwelling Percutaneous Nephrostomy Catheters. J. Vasc. Interv. Radiol. 2024, 35, S153–S154. [Google Scholar] [CrossRef]
- Bagley, B.; Tan, C.L.; Plante, D. When Taking an SGLT2 Inhibitor, Remember to SSTOP (Stop SGLT2 Inhibitor Three Days before Procedures)! WebM&M: Case Studies [Internet]; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2023. Available online: https://psnet.ahrq.gov/webmm/case/460 (accessed on 27 April 2025). [PubMed]
- Chandrakumar, H.P.; Chillumuntala, S.; Singh, G.; McFarlane, S.I. Postoperative Euglycemic Ketoacidosis in Type 2 Diabetes Associated with Sodium-Glucose Cotransporter 2 Inhibitor: Insights Into Pathogenesis and Management Strategy. Cureus 2021, 13, e15533. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Kuo, I.-C.; Lee, J.-J.; Hwang, D.-Y.; Lim, L.-M.; Lin, H.Y.-H.; Hwang, S.-J.; Chen, H.-C.; Hung, C.-C. Pyuria, Urinary Tract Infection and Renal Outcome in Patients with Chronic Kidney Disease Stage 3–5. Sci. Rep. 2020, 10, 19460. [Google Scholar] [CrossRef]
- Confederat, L.-G.; Dragostin, O.-M.; Condurache, M.-I. SGLT2 Inhibitors and the Risk of Urogenital Infections: A Concise Review. J. Clin. Med. 2025, 14, 1960. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Warns About Rare Occurrences of a Serious Infection of the Genital Area with SGLT2 Inhibitors for Diabetes. FDA Safety Communication [Internet]. 29 August 2018. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-occurrences-serious-infection-genital-area-sglt2-inhibitors-diabetes (accessed on 27 April 2025).
- Gorgojo-Martínez, J.J.; Górriz, J.L.; Cebrián-Cuenca, A.; Conde, A.C.; Arribas, M.V. Clinical Recommendations for Managing Genitourinary Adverse Effects in Patients Treated with SGLT-2 Inhibitors: A Multidisciplinary Expert Consensus. J. Clin. Med. 2024, 13, 6509. [Google Scholar] [CrossRef] [PubMed]
- Ueda, P.; Svanström, H.; Hviid, A.; Eliasson, B.; Svensson, A.-M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Wintzell, V.; et al. Sodium–Glucose Cotransporter 2 Inhibitors and Risk of Bladder and Renal Cancer: Scandinavian Cohort Study. Diabetes Care 2022, 45, e93–e96. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Hindi, J.; Farouk, S.S. Sodium-Glucose Cotransporter 2 Inhibitors and Kidney Transplantation: What Are We Waiting For? Kidney360 2021, 2, 1174–1178. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Hsieh, M.-H. Fungal Ball in the Urinary Bladder. N. Engl. J. Med. 2022, 387, e2. [Google Scholar] [CrossRef]
- Mathiasen, A.S.F.; Andersen, M.F.B.; Antsupova, V.; Fode, M. ‘Case of the Month’ from Herlev and Gentofte Hospital, Denmark: Candidaemia and Fungus Ball in a Patient with Diabetes on Sodium-glucose Co-transporter 2 Inhibitor. BJU Int. 2024. [Google Scholar] [CrossRef]
- Wu, M.Z.; Tung, M.O.; Tsang, T.W.; Guo, R.; Huang, J.Y.; Ren, Q.W.; Zhang, J.N.; Gu, W.L.; Yiu, K.H. Effects of Urinary Tract Infection and Stopping Sodium-Glucose Cotranspoter-2 Inhibitors in Patients with Type 2 Diabetes Mellitus: A Population-Based Study. Eur. J. Prev. Cardiol. 2024, 31, zwae175.061. [Google Scholar] [CrossRef]
Condition | Key Risk Factors | Clinical Considerations |
---|---|---|
Benign Prostatic Hyperplasia (BPH) | Urinary retention, stasis, catheterization | Assess voiding efficiency before initiation; monitor for UTIs; counsel on hygiene |
Neurogenic Bladder | Incomplete emptying, high post-void residuals, catheter use | Evaluate bladder function; consider urology referral; increased infection monitoring |
Vesicoureteral Reflux (VUR) | Retrograde urine flow, chronic colonization | Higher risk of ascending infections; initiate SGLT2i cautiously if VUR active |
Ileal Conduit/Urinary Diversion | Exposure of bowel mucosa to glycosuria, metabolic acidosis, infection risk | Monitor for fungal/bacterial infections; be aware of possible glucose reabsorption |
Nephrostomy Tube | Chronic drainage, biofilm formation, fungal colonization | Intensive infection surveillance; consider deferring initiation if active colonization present |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulrasak, M.; Someili, A.; Mohrag, M. SGLT2 Inhibitors in Patients with Urogenital Malformations and Urinary Diversions: Risks, Benefits, and Clinical Considerations. Medicina 2025, 61, 921. https://doi.org/10.3390/medicina61050921
Abdulrasak M, Someili A, Mohrag M. SGLT2 Inhibitors in Patients with Urogenital Malformations and Urinary Diversions: Risks, Benefits, and Clinical Considerations. Medicina. 2025; 61(5):921. https://doi.org/10.3390/medicina61050921
Chicago/Turabian StyleAbdulrasak, Mohammed, Ali Someili, and Mostafa Mohrag. 2025. "SGLT2 Inhibitors in Patients with Urogenital Malformations and Urinary Diversions: Risks, Benefits, and Clinical Considerations" Medicina 61, no. 5: 921. https://doi.org/10.3390/medicina61050921
APA StyleAbdulrasak, M., Someili, A., & Mohrag, M. (2025). SGLT2 Inhibitors in Patients with Urogenital Malformations and Urinary Diversions: Risks, Benefits, and Clinical Considerations. Medicina, 61(5), 921. https://doi.org/10.3390/medicina61050921