The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review
Abstract
1. Introduction
2. Adverse Drug Reactions of First-Line Antituberculosis Drugs
3. Adverse Drug Reactions of Second-Line Antituberculosis Drugs
4. Prevention of Adverse Drug Reactions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Tuberculosis Report. 2024. Available online: https://iris.who.int/bitstream/handle/10665/379339/9789240101531-eng.pdf?sequence=1 (accessed on 1 February 2025).
- Prasad, R.; Singh, A.; Gupta, N. Adverse Drug Reactions with First-Line and Second-Line Drugs in Treatment of Tuberculosis. Ann. Natl. Acad. Med. Sci. India 2021, 57, 16–35. [Google Scholar] [CrossRef]
- Dela, A.; Tank, N.K.; Singh, A.; Piparva, K. Adverse drug reactions and treatment outcome analysis of DOTS-plus therapy of MDR-TB patients at district tuberculosis centre: A four year retrospective study. Lung India 2017, 34, 522. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Carvalho, A.C.C.; Centis, R.; D’Ambrosio, L.; Migliori, G.B.; Mpagama, S.G.; Nguyen, B.C.; Aarnoutse, R.E.; Aleksa, A.; Van Altena, R.; et al. Clinical standards for the management of adverse effects during treatment for TB. Int. J. Tuberc. Lung Dis. 2023, 27, 506–519. [Google Scholar] [CrossRef]
- Arbex, M.A.; Varella, M.D.C.L.; Siqueira, H.R.D.; Mello, F.A.F.D. Drogas antituberculose: Interações medicamentosas, efeitos adversos e utilização em situações especiais—Parte 1: Fármacos de primeira linha. J. Bras. Pneumol. 2010, 36, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Arbex, M.A.; Varella, M.D.C.L.; Siqueira, H.R.D.; Mello, F.A.F.D. Drogas antituberculose: Interações medicamentosas, efeitos adversos e utilização em situações especiais—Parte 2: Fármacos de segunda linha. J. Bras. Pneumol. 2010, 36, 641–656. [Google Scholar] [CrossRef]
- Thomas, L.; Raju, A.P.; Mallayasamy, S.; Rao, M. Precision Medicine Strategies to Improve Isoniazid Therapy in Patients with Tuberculosis. Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 541–557. [Google Scholar] [CrossRef]
- McDermott, W. The Story of INH. J. Infect. Dis. 1969, 119, 678–683. [Google Scholar] [CrossRef]
- WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment-Drug-Susceptible Tuberculosis Treatment, 1st ed.; World Health Organization: Geneva, Switzerland, 2022.
- WHO Consolidated Guidelines on Tuberculosis. Module 4: Treatment-Drug-Resistant Tuberculosis Treatment, 1st ed.; World Health Organization: Geneva, Switzerland, 2022.
- Timmins, G.S.; Deretic, V. Mechanisms of action of isoniazid. Mol. Microbiol. 2006, 62, 1220–1227. [Google Scholar] [CrossRef]
- Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol. 2016, 45, 474–492. [Google Scholar] [CrossRef]
- Combrink, M.; Loots, D.T.; Du Preez, I. Metabolomics describes previously unknown toxicity mechanisms of isoniazid and rifampicin. Toxicol. Lett. 2020, 322, 104–110. [Google Scholar] [CrossRef]
- Vilholm, O.J.; Christensen, A.A.; Zedan, A.H.; Itani, M. Drug-Induced Peripheral Neuropathy. Basic Clin. Pharmacol. Toxicol. 2014, 115, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Gülbay, B.E.; Gürkan, Ö.U.; Yıldız, Ö.A.; Önen, Z.P.; Erkekol, F.Ö.; Baççıoğlu, A.; Acıcan, T. Side effects due to primary antituberculosis drugs during the initial phase of therapy in 1149 hospitalized patients for tuberculosis. Respir. Med. 2006, 100, 1834–1842. [Google Scholar] [CrossRef]
- Baghaei, P.; Tabarsi, P.; Chitsaz, E.; Saleh, M.; Marjani, M.; Shemirani, S.; Pooramiri, M.V.; Kazempour, M.; Farnia, P.; Fahimi, F.; et al. Incidence, Clinical and Epidemiological Risk Factors, and Outcome of Drug-Induced Hepatitis Due to Antituberculous Agents in New Tuberculosis Cases. Am. J. Ther. 2010, 17, 17–22. [Google Scholar] [CrossRef]
- Campbell, J.R.; Trajman, A.; Cook, V.J.; Johnston, J.C.; Adjobimey, M.; Ruslami, R.; Eisenbeis, L.; Fregonese, F.; Valiquette, C.; Benedetti, A.; et al. Adverse events in adults with latent tuberculosis infection receiving daily rifampicin or isoniazid: Post-hoc safety analysis of two randomised controlled trials. Lancet Infect. Dis. 2020, 20, 318–329. [Google Scholar] [CrossRef]
- Imam, F.; Sharma, M.; Khayyam, K.U.; Al-Harbi, N.O.; Rashid, M.K.; Ali, M.D.; Ahmad, A.; Qamar, W. Adverse drug reaction prevalence and mechanisms of action of first-line anti-tubercular drugs. Saudi Pharm. J. 2020, 28, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Baral, T.; Sekhar, S.; Thomas, L.; Acharya, R.; Krishnan, K.; Shetty, S.; Rao, M. Isoniazid-induced pancreatitis: A systematic review. Tuberculosis 2024, 148, 102535. [Google Scholar] [CrossRef]
- Samouco, A.I.C.B.; Alves, S.P. Isoniazid-induced mania and the history of antidepressant drugs: Case report and literature review. Bipolar Disord. 2023, 25, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Public Health Agency of Canada and Canadian Lung Association/Canadian Thoracic Society. Canadian Tuberculosis Standards, 7th ed.; Public Health Agency of Canada and Canadian Lung Association/Canadian Thoracic Society: Ottawa, ON, Canada, 2014. [Google Scholar]
- Shi, C.; Yang, B.; Yang, J.; Song, W.; Chen, Y.; Zhang, S.; Zhan, H.; Xiong, Y.; Rong, P.; Luo, Y.; et al. Evaluation of adverse reactions induced by anti-tuberculosis drugs among hospitalized patients in Wuhan, China: A retrospective study. Medicine 2024, 103, e38273. [Google Scholar] [CrossRef]
- Erwin, E.R.; Addison, A.P.; John, S.F.; Olaleye, O.A.; Rosell, R.C. Pharmacokinetics of isoniazid: The good, the bad, and the alternatives. Tuberculosis 2019, 116, S66–S70. [Google Scholar] [CrossRef]
- Kim, H.Y.; Cho, J.-G.; Akkerman, O.W.; Padanilam, X.; Seaworth, B.; Alffenaar, J.-W.C. Anti-Tuberculosis Drugs and Adverse Events. In Essential Tuberculosis; Migliori, G.B., Raviglione, M.C., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 121–129. [Google Scholar] [CrossRef]
- Park, S.-J.; Jo, K.-W.; Yoo, B.; Lee, C.-K.; Kim, Y.-G.; Yang, S.-K.; Byeon, J.-S.; Kim, K.-J.; Ye, B.D.; Park, S.-H.; et al. Comparison of LTBI treatment regimens for patients receiving anti-tumour necrosis factor therapy. Int. J. Tuberc. Lung Dis. 2015, 19, 342–348. [Google Scholar] [CrossRef]
- Frésard, I.; Bridevaux, P.; Rochat, T.; Janssens, J. Adverse effects and adherence to treatment of rifampicine 4 months vs isoniazid 6 months for latent tuberculosis. Swiss Med. Wkly. 2011, 141, w13240. [Google Scholar] [CrossRef]
- López, G.; Wood, M.; Ayesta, F.J. 10 Años innovando en el tratamiento de la infección tuberculosa latente: Comparación entre pautas estándar y pautas cortas en tratamiento directamente observado. Rev. Esp. Sanid. Penit. 2011, 13, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Sodré-Alves, B.M.C.; Toledo, M.M.; Zimmermann, I.R.; Araújo, W.N.D.; Tavares, N.U.L. Isoniazid use, effectiveness, and safety for treatment of latent tuberculosis infection: A systematic review. Rev. Soc. Bras. Med. Trop. 2024, 57, e00402-2024. [Google Scholar] [CrossRef] [PubMed]
- Page, K.R.; Sifakis, F.; Montes De Oca, R.; Cronin, W.A.; Doherty, M.C.; Federline, L.; Bur, S.; Walsh, T.; Karney, W.; Milman, J.; et al. Improved Adherence and Less Toxicity With Rifampin vs Isoniazid for Treatment of Latent Tuberculosis: A Retrospective Study. Arch. Intern. Med. 2006, 166, 1863. [Google Scholar] [CrossRef]
- Villa, S.; Ferrarese, M.; Sotgiu, G.; Castellotti, P.F.; Saderi, L.; Grecchi, C.; Saporiti, M.; Raviglione, M.; Codecasa, L.R. Latent Tuberculosis Infection Treatment Completion while Shifting Prescription from Isoniazid-Only to Rifampicin-Containing Regimens: A Two-Decade Experience in Milan, Italy. J. Clin. Med. 2019, 9, 101. [Google Scholar] [CrossRef]
- Grayson, M.L.; Cosgrove, S.E.; Crowe, S.; Hope, W.; McCarthy, J.S.; Mills, J.; Mouton, J.W.; Paterson, D.L. Kucers’ The Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition—Three Volume Set, 7th ed.; Taylor and Francis: London, UK, 2017. [Google Scholar]
- Hartmann, G.R.; Heinrich, P.; Kollenda, M.C.; Skrobranek, B.; Tropschug, M.; Weiß, W. Molecular Mechanism of Action of the Antibiotic Rifampicin. Angew. Chem. Int. Ed. Engl. 1985, 24, 1009–1014. [Google Scholar] [CrossRef]
- Mitchison, D.A. The Diagnosis and Therapy of Tuberculosis During the Past 100 Years. Am. J. Respir. Crit. Care Med. 2005, 171, 699–706. [Google Scholar] [CrossRef]
- Sekaggya-Wiltshire, C.; Dooley, K.E. Pharmacokinetic and pharmacodynamic considerations of rifamycin antibiotics for the treatment of tuberculosis. Expert Opin. Drug Metab. Toxicol. 2019, 15, 615–618. [Google Scholar] [CrossRef]
- Abulfathi, A.A.; Decloedt, E.H.; Svensson, E.M.; Diacon, A.H.; Donald, P.; Reuter, H. Clinical Pharmacokinetics and Pharmacodynamics of Rifampicin in Human Tuberculosis. Clin. Pharmacokinet. 2019, 58, 1103–1129. [Google Scholar] [CrossRef]
- Blumberg, H.M.; Burman, W.J.; Chaisson, R.E.; Daley, C.L. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: Treatment of Tuberculosis. Am. J. Respir. Crit. Care Med. 2003, 167, 603–662. [Google Scholar] [CrossRef]
- Yee, D.; Valiquette, C.; Pelletier, M.; Parisien, I.; Rocher, I.; Menzies, D. Incidence of Serious Side Effects from First-Line Antituberculosis Drugs among Patients Treated for Active Tuberculosis. Am. J. Respir. Crit. Care Med. 2003, 167, 1472–1477. [Google Scholar] [CrossRef]
- Garg, R.; Gupta, V.; Mehra, S.; Singh, R.; Prasad, R. Rifampicin induced thrombocytopenia. Indian J. Tuberc. 2007, 54, 94–96. [Google Scholar] [PubMed]
- Koycu Buhari, G.; Oner Erkekol, F.; Koca Kalkan, I.; Ates, H.; Vural Solak, G.T.; Akkale, O.; Aksu, K. Hypersensitivity reactions with first-line antituberculosis drugs and outcomes of rapid desensitizations. World Allergy Organ. J. 2024, 17, 100862. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.T.E.; Mendes, M.; Freitas, S.; Roxo, P.C. Incidence and risk factors of major toxicity associated to first-line antituberculosis drugs for latent and active tuberculosis during a period of 10 years. Rev. Port. Pneumol. Engl. Ed. 2015, 21, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol. Spectr. 2014, 2, MGM2-0023-2013. [Google Scholar] [CrossRef]
- Lamont, E.A.; Baughn, A.D. Impact of the host environment on the antitubercular action of pyrazinamide. EBioMedicine 2019, 49, 374–380. [Google Scholar] [CrossRef]
- Wahan, S.K.; Sharma, S.; Chawla, P.A. Anti-Tubercular Activity of Pyrazinamide Conjugates: Synthesis and Structure-Activity Relationship Studies. Mini-Rev. Med. Chem. 2023, 23, 700–718. [Google Scholar] [CrossRef]
- Chen, R.H.; Michael, T.; Kuhlin, J.; Schön, T.; Stocker, S.; Alffenaar, J.-W.C. Is there a need to optimise pyrazinamide doses in patients with tuberculosis? A systematic review. Int. J. Antimicrob. Agents 2023, 62, 106914. [Google Scholar] [CrossRef]
- Stehr, M.; Elamin, A.A.; Singh, M. Pyrazinamide: The importance of uncovering the mechanisms of action in mycobacteria. Expert Rev. Anti Infect. Ther. 2015, 13, 593–603. [Google Scholar] [CrossRef]
- Hussain, Z.; Zhu, J.; Ma, X. Metabolism and Hepatotoxicity of Pyrazinamide, an Antituberculosis Drug. Drug Metab. Dispos. Biol. Fate Chem. 2021, 49, 679–682. [Google Scholar] [CrossRef]
- Xu, A.Y.; Velásquez, G.E.; Zhang, N.; Chang, V.K.; Phillips, P.P.J.; Nahid, P.; Dorman, S.E.; Kurbatova, E.V.; Whitworth, W.C.; Sizemore, E.; et al. Pyrazinamide Safety, Efficacy, and Dosing for Treating Drug-Susceptible Pulmonary Tuberculosis: A Phase 3, Randomized Controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2024, 210, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- Kwon, B.S.; Kim, Y.; Lee, S.H.; Lim, S.Y.; Lee, Y.J.; Park, J.S.; Cho, Y.-J.; Yoon, H.I.; Lee, C.-T.; Lee, J.H. The high incidence of severe adverse events due to pyrazinamide in elderly patients with tuberculosis. PLoS ONE 2020, 15, e0236109. [Google Scholar] [CrossRef]
- Lucena, S.D.M.A.; Alberio, C.A.A.; Pinto, A.C.G.; Vieira, J.L.F. Serum pyrazinamide concentrations in patients with pulmonary tuberculosis. J. Bras. Pneumol. 2019, 45, e20180254. [Google Scholar] [CrossRef] [PubMed]
- Putra, O.N.; Purnamasari, T.; Hamami, N.M. Pyrazinamide-induced Hyperuricemia in Pulmonary Tuberculosis Patients. Int. J. Mycobacteriol. 2024, 13, 282–287. [Google Scholar] [CrossRef]
- Datta, A.; Sivasankar, R.; Kar, B.R. Pyrazinamide-induced Toxic Epidermal Necrolysis. Ann. Afr. Med. 2024, 23, 494–495. [Google Scholar] [CrossRef] [PubMed]
- Gerdan, V.; Akkoc, N.; Ucan, E.; Bulac Kir, S. Paradoxical increase in uric acid level with allopurinol use in pyrazinamide-induced hyperuricaemia. Singap. Med. J. 2013, 54, e125–e126. [Google Scholar] [CrossRef]
- Thumamo Pokam, B.; Enoh, J.; Eyo, A.-A.; Umoh, N.; Guemdjom, P. Uric acid levels in patients on antituberculosis drugs in the southwest Region of Cameroon. Int. J. Mycobacteriol. 2018, 7, 89. [Google Scholar] [CrossRef]
- Borisov, S.; Danila, E.; Maryandyshev, A.; Dalcolmo, M.; Miliauskas, S.; Kuksa, L.; Manga, S.; Skrahina, A.; Diktanas, S.; Codecasa, L.R.; et al. Surveillance of adverse events in the treatment of drug-resistant tuberculosis: First global report. Eur. Respir. J. 2019, 54, 1901522. [Google Scholar] [CrossRef]
- Jeong, I.; Park, J.-S.; Cho, Y.-J.; Yoon, H.I.; Song, J.; Lee, C.-T.; Lee, J.-H. Drug-induced Hepatotoxicity of Anti-tuberculosis Drugs and Their Serum Levels. J. Korean Med. Sci. 2015, 30, 167. [Google Scholar] [CrossRef]
- Shin, H.-J.; Yoon, J.-Y.; Na, Y.-O.; Lee, J.-K.; Kho, B.G.; Kim, T.-O.; Kim, Y.-I.; Lim, S.-C.; Jeong, S.-H.; Kwon, Y.-S. Major adverse cardiovascular events and hyperuricemia during tuberculosis treatment. PLoS ONE 2023, 18, e0294490. [Google Scholar] [CrossRef]
- Mohapatra, G.C.; Khan, M.J.; Nayak, S. Incidence of Hyperuricemia and Gouty Arthritis in Patients Taking Pyrazinamide for the Treatment of Tuberculosis. Ann. Rom. Soc. Cell Biol. 2021, 25, 324–328. [Google Scholar]
- Zhang, L.; Zhao, Y.; Gao, Y.; Wu, L.; Gao, R.; Zhang, Q.; Wang, Y.; Wu, C.; Wu, F.; Gurcha, S.S.; et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science 2020, 368, 1211–1219. [Google Scholar] [CrossRef]
- Chamberlain, P.D.; Sadaka, A.; Berry, S.; Lee, A.G. Ethambutol optic neuropathy. Curr. Opin. Ophthalmol. 2017, 28, 545–551. [Google Scholar] [CrossRef]
- Peloquin, C.A.; Bulpitt, A.E.; Jaresko, G.S.; Jelliffe, R.W.; Childs, J.M.; Nix, D.E. Pharmacokinetics of Ethambutol under Fasting Conditions, with Food, and with Antacids. Antimicrob. Agents Chemother. 1999, 43, 568–572. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, R.; Balasubramanian, V.; Gupta, N.; Gupta, P. Prevalence of adverse drug reaction with first-line drugs among patients treated for pulmonary tuberculosis. Clin. Epidemiol. Glob. Health 2015, 3, S80–S90. [Google Scholar] [CrossRef]
- Carroll, M.W.; Lee, M.; Cai, Y.; Hallahan, C.W.; Shaw, P.A.; Min, J.H.; Goldfeder, L.C.; Alekseyev, V.; Grinkrug, S.; Kang, H.S.; et al. Frequency of adverse reactions to first- and second-line anti-tuberculosis chemotherapy in a Korean cohort. Int. J. Tuberc. Lung Dis. 2012, 16, 961–966. [Google Scholar] [CrossRef]
- Breen, R.A.M.; Miller, R.F.; Gorsuch, T.; Smith, C.J.; Schwenk, A.; Holmes, W.; Ballinger, J.; Swaden, L.; Johnson, M.A.; Cropley, I.; et al. Adverse events and treatment interruption in tuberculosis patients with and without HIV co-infection. Thorax 2006, 61, 791–794. [Google Scholar] [CrossRef]
- Sivaraj, R.; Umarani, S.; Muralidhar, P.; Parasuraman, S. Revised National Tuberculosis Control Program regimens with and without directly observed treatment, short-course: A comparative study of therapeutic cure rate and adverse reactions. Perspect. Clin. Res. 2014, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, F.M.; Araújo-Pereira, M.; Schmaltz, C.A.S.; Arriaga, M.B.; De Oliveira, R.V.C.; Andrade, B.B.; Rolla, V.C. Adverse Drug Reactions Related to Treatment of Drug-Susceptible Tuberculosis in Brazil: A Prospective Cohort Study. Front. Trop. Dis. 2022, 2, 748310. [Google Scholar] [CrossRef]
- Djochie, R.D.A.; Anto, B.P.; Opare-Addo, M.N.A. Determinants of adverse reactions to first-line antitubercular medicines: A prospective cohort study. J. Pharm. Policy Pract. 2023, 16, 70. [Google Scholar] [CrossRef]
- Athira, B.; Manju, C.S.; Jyothi, E. A study on adverse drug reactions to first line antitubercular drugs in DOTS therapy. Int. J. Pharmacol. Clin. Sci. 2015, 4, 7–11. [Google Scholar]
- Chung, S.J.; Byeon, S.; Choi, J.-H. Analysis of Adverse Drug Reactions to First-Line Anti-Tuberculosis Drugs Using the Korea Adverse Event Reporting System. J. Korean Med. Sci. 2022, 37, e128. [Google Scholar] [CrossRef]
- Dorman, S.E.; Nahid, P.; Kurbatova, E.V.; Phillips, P.P.J.; Bryant, K.; Dooley, K.E.; Engle, M.; Goldberg, S.V.; Phan, H.T.T.; Hakim, J.; et al. Four-Month Rifapentine Regimens with or without Moxifloxacin for Tuberculosis. N. Engl. J. Med. 2021, 384, 1705–1718. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Operational Handbook on Tuberculosis Drug-Resistant Tuberculosis Treatment WHO Consolidated Guidelines on Tuberculosis Module 4: Treatment 2022 Update; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Lesher, G.Y.; Froelich, E.J.; Gruett, M.D.; Bailey, J.H.; Brundage, R.P. 1,8-Naphthyridine Derivatives. A New Class of Chemotherapeutic Agents. J. Med. Pharm. Chem. 1962, 5, 1063–1065. [Google Scholar] [CrossRef] [PubMed]
- Briasoulis, A.; Agarwal, V.; Pierce, W.J. QT Prolongation and Torsade de Pointes Induced by Fluoroquinolones: Infrequent Side Effects from Commonly Used Medications. Cardiology 2011, 120, 103–110. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Disabling and Potentially Permanent Side Effects Lead to Suspension or Restrictions of Quinolone and Fluoroquinolone Antibiotics; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kang, B.H.; Jo, K.-W.; Shim, T.S. Current Status of Fluoroquinolone Use for Treatment of Tuberculosis in a Tertiary Care Hospital in Korea. Tuberc. Respir. Dis. 2017, 80, 143–152. [Google Scholar] [CrossRef]
- Anwar, A.I.; Lu, L.; Plaisance, C.J.; Daniel, C.P.; Flanagan, C.J.; Wenger, D.M.; McGregor, D.; Varrassi, G.; Kaye, A.M.; Ahmadzadeh, S.; et al. Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. Cureus 2024, 16, e54565. [Google Scholar] [CrossRef]
- Cho, Y.; Park, H.S. Association of oral ciprofloxacin, levofloxacin, ofloxacin and moxifloxacin with the risk of serious ventricular arrhythmia: A nationwide cohort study in Korea. BMJ Open 2018, 8, e020974. [Google Scholar] [CrossRef]
- Rubinstein, E.; Camm, J. Cardiotoxicity of fluoroquinolones. J. Antimicrob. Chemother. 2002, 49, 593–596. [Google Scholar] [CrossRef]
- Morales, D.R.; Slattery, J.; Pacurariu, A.; Pinheiro, L.; McGettigan, P.; Kurz, X. Relative and Absolute Risk of Tendon Rupture with Fluoroquinolone and Concomitant Fluoroquinolone/Corticosteroid Therapy: Population-Based Nested Case–Control Study. Clin. Drug Investig. 2019, 39, 205–213. [Google Scholar] [CrossRef]
- Lan, Z.; Ahmad, N.; Baghaei, P.; Barkane, L.; Benedetti, A.; Brode, S.K.; Brust, J.C.M.; Campbell, J.R.; Chang, V.W.L.; Falzon, D.; et al. Drug-associated adverse events in the treatment of multidrug-resistant tuberculosis: An individual patient data meta-analysis. Lancet Respir. Med. 2020, 8, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Grosu-Creangă, I.-A.; Trofor, A.C.; Crișan-Dabija, R.A.; Robu-Popa, D.; Ghiciuc, C.M.; Lupușoru, E.C. Adverse effects induced by second-line antituberculosis drugs: An update based on last WHO treatment recommendations for drug-resistant tuberculosis. Pneumologia 2021, 70, 117–126. [Google Scholar] [CrossRef]
- Täubel, J.; Prasad, K.; Rosano, G.; Ferber, G.; Wibberley, H.; Cole, S.T.; Van Langenhoven, L.; Fernandes, S.; Djumanov, D.; Sugiyama, A. Effects of the Fluoroquinolones Moxifloxacin and Levofloxacin on the QT Subintervals: Sex Differences in Ventricular Repolarization. J. Clin. Pharmacol. 2020, 60, 400–408. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug Des. Devel. Ther. 2018, 12, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Vinh, D.C.; Rubinstein, E. Linezolid: A review of safety and tolerability. J. Infect. 2009, 59, S59–S74. [Google Scholar] [CrossRef]
- Zou, F.; Cui, Z.; Lou, S.; Ou, Y.; Zhu, C.; Shu, C.; Chen, J.; Zhao, R.; Wu, Z.; Wang, L.; et al. Adverse drug events associated with linezolid administration: A real-world pharmacovigilance study from 2004 to 2023 using the FAERS database. Front. Pharmacol. 2024, 15, 1338902. [Google Scholar] [CrossRef] [PubMed]
- Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Alffenaar, J.-W.C.; Anger, H.A.; Caminero, J.A.; Castiglia, P.; De Lorenzo, S.; Ferrara, G.; Koh, W.-J.; et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: Systematic review and meta-analysis. Eur. Respir. J. 2012, 40, 1430–1442. [Google Scholar] [CrossRef]
- Gopal, M.; Padayatchi, N.; Metcalfe, J.Z.; O’Donnell, M.R. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int. J. Tuberc. Lung Dis. 2013, 17, 1001–1007. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, V.; Natarajan, S.; Singla, R. Adverse drug reactions & drug interactions in MDR-TB patients. Indian J. Tuberc. 2020, 67, S69–S78. [Google Scholar] [CrossRef]
- Murray, J.F.; Schraufnagel, D.E.; Hopewell, P.C. Treatment of Tuberculosis. A Historical Perspective. Ann. Am. Thorac. Soc. 2015, 12, 1749–1759. [Google Scholar] [CrossRef]
- Arbiser, J.L.; Moschella, S.L. Clofazimine: A review of its medical uses and mechanisms of action. J. Am. Acad. Dermatol. 1995, 32, 241–247. [Google Scholar] [CrossRef]
- Grant, S.S.; Kaufmann, B.B.; Chand, N.S.; Haseley, N.; Hung, D.T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl. Acad. Sci. USA 2012, 109, 12147–12152. [Google Scholar] [CrossRef]
- Reddy, V.M.; O’Sullivan, J.F.; Gangadharam, P.R. Antimycobacterial activities of riminophenazines. J. Antimicrob. Chemother. 1999, 43, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Parak, R.B.; Wadee, A.A. The synergistic effects of gamma interferon and clofazimine on phagocyte function: Restoration of inhibition due to a 25 kilodalton fraction from Mycobacterium tuberculosis. Biotherapy 1991, 3, 265–272. [Google Scholar] [CrossRef]
- Wadee, A.A.; Anderson, R.; Rabson, A.R. Clofazimine reverses the inhibitory effect of Mycobacterium tuberculosis derived factors on phagocyte intracellular killing mechanisms. J. Antimicrob. Chemother. 1988, 21, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Murashov, M.D.; LaLone, V.; Rzeczycki, P.M.; Keswani, R.K.; Yoon, G.S.; Sud, S.; Rajeswaran, W.; Larsen, S.; Stringer, K.A.; Rosania, G.R. The Physicochemical Basis of Clofazimine-Induced Skin Pigmentation. J. Investig. Dermatol. 2018, 138, 697–703. [Google Scholar] [CrossRef]
- Stadler, J.A.M.; Maartens, G.; Meintjes, G.; Wasserman, S. Clofazimine for the treatment of tuberculosis. Front. Pharmacol. 2023, 14, 1100488. [Google Scholar] [CrossRef] [PubMed]
- Moore, V.J. A review of side-effects experienced by patients taking clofazimine. Lepr. Rev. 1983, 54, 327–335. [Google Scholar] [CrossRef]
- Lin, C.-J.; Chen, J.-H.; Chien, S.-T.; Huang, Y.-W.; Lin, C.-B.; Lee, J.-J.; Lee, C.-H.; Yu, M.-C.; Chiang, C.-Y. Clofazimine and QT prolongation in the treatment of rifampicin-resistant tuberculosis: Findings of aDSM in Taiwan. J. Microbiol. Immunol. Infect. 2024, 57, 791–800. [Google Scholar] [CrossRef]
- Lambert, M.P.; Neuhaus, F.C. Mechanism of d-Cycloserine Action: Alanine Racemase from Escherichia coli W. J. Bacteriol. 1972, 110, 978–987. [Google Scholar] [CrossRef]
- Van Der Laan, L.E.; Garcia-Prats, A.J.; McIlleron, H.; Abdelwahab, M.T.; Winckler, J.L.; Draper, H.R.; Wiesner, L.; Schaaf, H.S.; Hesseling, A.C.; Denti, P. Optimizing dosing of the cycloserine pro-drug terizidone in children with rifampicin-resistant tuberculosis. Antimicrob. Agents Chemother. 2023, 67, e00611-23. [Google Scholar] [CrossRef] [PubMed]
- Schade, S.; Paulus, W. D-Cycloserine in Neuropsychiatric Diseases: A Systematic Review. Int. J. Neuropsychopharmacol. 2016, 19, pyv102. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Wu, L.; Zhu, M.; He, G.; Chen, X.; Sun, F.; Liu, Q.; Wang, X.; Zhang, W. Cycloserine for treatment of multidrug-resistant tuberculosis: A retrospective cohort study in China. Infect. Drug Resist. 2019, 12, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.J.; Wares, D.F.; Jafarov, A.; Jakubowiak, W.; Nunn, P.; Keshavjee, S. Safety of cycloserine and terizidone for the treatment of drug-resistant tuberculosis: A meta-analysis. Int. J. Tuberc. Lung Dis. 2013, 17, 1257–1266. [Google Scholar] [CrossRef]
- Wang, J.; Pang, Y.; Jing, W.; Chen, W.; Guo, R.; Han, X.; Wu, L.; Yang, G.; Yang, K.; Chen, C.; et al. Efficacy and safety of cycloserine-containing regimens in the treatment of multidrug-resistant tuberculosis: A nationwide retrospective cohort study in China. Infect. Drug Resist. 2019, 12, 763–770. [Google Scholar] [CrossRef]
- Court, R.; Centner, C.M.; Chirehwa, M.; Wiesner, L.; Denti, P.; De Vries, N.; Harding, J.; Gumbo, T.; Maartens, G.; McIlleron, H. Neuropsychiatric toxicity and cycloserine concentrations during treatment for multidrug-resistant tuberculosis. Int. J. Infect. Dis. 2021, 105, 688–694. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Hugonnet, J.-E.; Tremblay, L.W.; Boshoff, H.I.; Barry, C.E.; Blanchard, J.S. Meropenem-Clavulanate Is Effective Against Extensively Drug-Resistant Mycobacterium tuberculosis. Science 2009, 323, 1215–1218. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Fenn, S.J.; Hardie, K.R. JMM Profile: Carbapenems: A broad-spectrum antibiotic: This article is part of the JMM Profiles collection. J. Med. Microbiol. 2021, 70, 001462. [Google Scholar] [CrossRef]
- Sotgiu, G.; D’Ambrosio, L.; Centis, R.; Tiberi, S.; Esposito, S.; Dore, S.; Spanevello, A.; Migliori, G. Carbapenems to Treat Multidrug and Extensively Drug-Resistant Tuberculosis: A Systematic Review. Int. J. Mol. Sci. 2016, 17, 373. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, O.W. Aminoglycoside induced ototoxicity. Toxicology 2008, 249, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Wargo, K.A.; Edwards, J.D. Aminoglycoside-Induced Nephrotoxicity. J. Pharm. Pract. 2014, 27, 573–577. [Google Scholar] [CrossRef]
- Riddell, R.W.; Stewart, M.; Somner, A.R. Ethionamide. BMJ 1960, 2, 1207–1208. [Google Scholar] [CrossRef]
- Tan, Y.; Su, B.; Zheng, H.; Song, Y.; Wang, Y.; Pang, Y. Molecular Characterization of Prothionamide-Resistant Mycobacterium tuberculosis Isolates in Southern China. Front. Microbiol. 2017, 8, 2358. [Google Scholar] [CrossRef]
- Wang, F.; Langley, R.; Gulten, G.; Dover, L.G.; Besra, G.S.; Jacobs, W.R.; Sacchettini, J.C. Mechanism of thioamide drug action against tuberculosis and leprosy. J. Exp. Med. 2007, 204, 73–78. [Google Scholar] [CrossRef]
- Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; et al. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem. 2013, 288, 23447–23456. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.; Koh, D.; Woo, M.; Kwon, D.; De Almeida Falcão, V.C.; Wood, C.; Lee, H.; Kim, K.; Choi, I.; Jang, J.; et al. A combination screening to identify enhancers of para-aminosalicylic acid against Mycobacterium tuberculosis. Sci. Rep. 2022, 12, 5635. [Google Scholar] [CrossRef] [PubMed]
- Macgregor, A.G.; Somner, A.R. The AntiThyroid Action of Para-Aminosalicylic Acid. Lancet 1954, 264, 931–936. [Google Scholar] [CrossRef]
- Abulfathi, A.A.; Donald, P.R.; Adams, K.; Svensson, E.M.; Diacon, A.H.; Reuter, H. The pharmacokinetics of para-aminosalicylic acid and its relationship to efficacy and intolerance. Br. J. Clin. Pharmacol. 2020, 86, 2123–2132. [Google Scholar] [CrossRef]
- Mitchell, R.S. Study of para-aminosalicylic acid intolerance in tuberculosis of lung. J. Am. Med. Assoc. 1954, 156, 124. [Google Scholar] [CrossRef] [PubMed]
- Donald, P.R.; Diacon, A.H. Para-aminosalicylic acid: The return of an old friend. Lancet Infect. Dis. 2015, 15, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Boman, G. Serum concentration and half-life of rifampicin after simultaneous oral administration of aminosalicylic acid or isoniazid. Eur. J. Clin. Pharmacol. 1974, 7, 217–225. [Google Scholar] [CrossRef]
- Parvez, M.M.; Shin, H.J.; Jung, J.A.; Shin, J.-G. Evaluation of para -Aminosalicylic Acid as a Substrate of Multiple Solute Carrier Uptake Transporters and Possible Drug Interactions with Nonsteroidal Anti-inflammatory Drugs In Vitro. Antimicrob. Agents Chemother. 2017, 61, e02392-16. [Google Scholar] [CrossRef]
- Khoshnood, S.; Goudarzi, M.; Taki, E.; Darbandi, A.; Kouhsari, E.; Heidary, M.; Motahar, M.; Moradi, M.; Bazyar, H. Bedaquiline: Current status and future perspectives. J. Glob. Antimicrob. Resist. 2021, 25, 48–59. [Google Scholar] [CrossRef]
- Kundu, S.; Biukovic, G.; Grüber, G.; Dick, T. Bedaquiline Targets the ε Subunit of Mycobacterial F-ATP Synthase. Antimicrob. Agents Chemother. 2016, 60, 6977–6979. [Google Scholar] [CrossRef] [PubMed]
- Chahine, E.B.; Karaoui, L.R.; Mansour, H. Bedaquiline: A Novel Diarylquinoline for Multidrug-Resistant Tuberculosis. Ann. Pharmacother. 2014, 48, 107–115. [Google Scholar] [CrossRef]
- Sarathy, J.P.; Gruber, G.; Dick, T. Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline. Antibiotics 2019, 8, 261. [Google Scholar] [CrossRef]
- Wu, J.; Pan, H.; Shen, L.; Zhao, M. Assessing the safety of bedaquiline: Insight from adverse event reporting system analysis. Front. Pharmacol. 2024, 15, 1382441. [Google Scholar] [CrossRef]
- Isralls, S.; Baisley, K.; Ngam, E.; Grant, A.D.; Millard, J. QT Interval Prolongation in People Treated With Bedaquiline for Drug-Resistant Tuberculosis Under Programmatic Conditions: A Retrospective Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab413. [Google Scholar] [CrossRef]
- Ur Rehman, O.; Fatima, E.; Ali, A.; Akram, U.; Nashwan, A.; Yunus, F. Efficacy and safety of bedaquiline containing regimens in patients of drug-resistant tuberculosis: An updated systematic review and meta-analysis. J. Clin. Tuberc. Mycobact. Dis. 2024, 34, 100405. [Google Scholar] [CrossRef] [PubMed]
- Guglielmetti, L.; Jaspard, M.; Le Dû, D.; Lachâtre, M.; Marigot-Outtandy, D.; Bernard, C.; Veziris, N.; Robert, J.; Yazdanpanah, Y.; Caumes, E.; et al. Long-term outcome and safety of prolonged bedaquiline treatment for multidrug-resistant tuberculosis. Eur. Respir. J. 2017, 49, 1601799. [Google Scholar] [CrossRef]
- Liu, Y.; Matsumoto, M.; Ishida, H.; Ohguro, K.; Yoshitake, M.; Gupta, R.; Geiter, L.; Hafkin, J. Delamanid: From discovery to its use for pulmonary multidrug-resistant tuberculosis (MDR-TB). Tuberculosis 2018, 111, 20–30. [Google Scholar] [CrossRef]
- Gler, M.T.; Skripconoka, V.; Sanchez-Garavito, E.; Xiao, H.; Cabrera-Rivero, J.L.; Vargas-Vasquez, D.E.; Gao, M.; Awad, M.; Park, S.-K.; Shim, T.S.; et al. Delamanid for Multidrug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2012, 366, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Brigden, G.; Hewison, C.; Varaine, F. New developments in the treatment of drug-resistant tuberculosis: Clinical utility of bedaquiline and delamanid. Infect. Drug Resist. 2015, 8, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.M.; Long, Y.; King, S.B. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021, 11, 267. [Google Scholar] [CrossRef]
- Khoshnood, S.; Taki, E.; Sadeghifard, N.; Kaviar, V.H.; Haddadi, M.H.; Farshadzadeh, Z.; Kouhsari, E.; Goudarzi, M.; Heidary, M. Mechanism of Action, Resistance, Synergism, and Clinical Implications of Delamanid Against Multidrug-Resistant Mycobacterium tuberculosis. Front. Microbiol. 2021, 12, 717045. [Google Scholar] [CrossRef]
- Stancil, S.L.; Mirzayev, F.; Abdel-Rahman, S.M. Profiling Pretomanid as a Therapeutic Option for TB Infection: Evidence to Date. Drug Des. Devel. Ther. 2021, 15, 2815–2830. [Google Scholar] [CrossRef]
- Occhineri, S.; Matucci, T.; Rindi, L.; Tiseo, G.; Falcone, M.; Riccardi, N.; Besozzi, G. Pretomanid for tuberculosis treatment: An update for clinical purposes. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100128. [Google Scholar] [CrossRef]
- Fekadu, G.; Tolossa, T.; Turi, E.; Bekele, F.; Fetensa, G. Pretomanid development and its clinical roles in treating tuberculosis. J. Glob. Antimicrob. Resist. 2022, 31, 175–184. [Google Scholar] [CrossRef]
- Deb, U.; Biswas, S. Pretomanid: The latest USFDA-approved anti-tuberculosis drug. Indian J. Tuberc. 2021, 68, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Nedelman, J.R.; Salinger, D.H.; Subramoney, V.; Woolson, R.; Wade, K.; Li, M.; Everitt, D.; Mendel, C.M.; Spigelman, M. An Exposure-Response Perspective on the Clinical Dose of Pretomanid. Antimicrob. Agents Chemother. 2020, 65, e01121-20. [Google Scholar] [CrossRef] [PubMed]
- Nyang’wa, B.-T.; Berry, C.; Kazounis, E.; Motta, I.; Parpieva, N.; Tigay, Z.; Solodovnikova, V.; Liverko, I.; Moodliar, R.; Dodd, M.; et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis. N. Engl. J. Med. 2022, 387, 2331–2343. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Mechanism of Adverse Drug Reaction | Drug Interactions | Risk Factors for Adverse Drug Reactions |
---|---|---|---|---|
First-line antituberculosis drugs | ||||
Isoniazid | Diffuses into the bacterial cytoplasm and disrupts mycobacteria’s mycolic acid synthesis | Toxic metabolites cause liver damage. Disrupts the metabolism of pyridoxine. | Foods, antacids/aluminum hydroxide, corticosteroids (decreased absorption and/or serum levels of isoniazid) Valproic acid, oral anticoagulants, benzodiazepines, carbamazepine, diazepam, levodopa, phenytoin, and theophylline (increased serum levels of those drugs or their effectiveness) Enflurane (possibility of nephrotoxicity) Ketoconazole (decreased serum concentration of ketoconazole) Cycloserine (greater neurotoxicity) Disulfiram (possibility of psychotic events) Paracetamol, rifampin (greater hepatotoxicity) | Older age, daily alcohol consumption, pre-existing liver disease, hepatitis C *. Genetic slow acetylator phenotype. For peripheral neuropathy—diabetes, HIV infection, uremia, malnutrition, and alcoholism. |
Rifampicin | Penetrates the cytoplasm and inhibits RNA synthesis | Liver injury due to hypersensitivity reactions. Hepatic porphyria due to protoporphyrin IX toxicity if used in combination with isoniazid. | Foods and para-aminosalicylic acid (decreased absorption of rifampin) Amiodarone, oral anticoagulants, contraceptives, anticonvulsants, tricyclic antidepressants, antipsychotics, barbiturates and benzodiazepines, beta-blockers, cyclosporine, ketoconazole, codeine, corticosteroids, dapsone, digitalis, diltiazem, enalapril, statins, fluconazole, haloperidol, oral hypoglycemic agents, itraconazole, methadone, morphine, narcotics and analgesics, propafenone, nifedipine, quinidine, theophylline, verapamil, efavirenz, indinavir, lopinavir/ritonavir, nelfinavir, saquinavir, zidovudine (decreased serum levels of those drugs or reduced their effectivity) Isoniazid + ketoconazole, ethionamide, phenytoin, isoniazid, sulfonamides (greater hepatotoxicity) Pyrazinamide (greater uric acid excretion) | Age over 60 years and HIV infection |
Pyrazinamide | It damages the cellular wall by inhibiting fatty acid synthesis. | Toxic effect on the liver through metabolites. Inhibition of urine acid transporters in the kidneys. | Allopurinol, colchicine (decreased effect of these drugs; pyrazinamide increases the serum levels of uric acid) Cyclosporine (decreased serum concentration of cyclosporine) Ethionamide (the adverse effects of ethionamide can increase) Rifampin, isoniazid, ketoconazole (greater hepatotoxicity) | Older age, diabetes mellitus * Pre-existing liver or kidney disease, elevated uric acid levels. |
Ethambutol | Competes for binding sites to the EmbB and EmbC subunits, disrupting cell wall biosynthesis. | Optic neuropathy mechanisms may involve mitochondrial toxicity and disruption of axonal transport in the optic nerve. | Antacids (decreased absorption of ethambutol) Ethionamide (increased possibility of neurotoxic effects of ethambutol) Pyrazinamide (increased possibility of hepatotoxicity) Didanosine and zalcitabine (peripheral neuritis is potentiated) | High doses of ethambutol, long treatment duration, renal impairment, older age, and pre-existing optic nerve disease. |
Second-line antituberculosis drugs | ||||
Fluoroquinolones | Inhibits DNA gyrase, leaving its ends free. It results in uncontrollable synthesis of mRNAs, exonuclease, and some proteins. Chromosomes degrade. | Block cardiac potassium channels. May involve the production of reactive oxygen species and matrix metalloproteinase activation. | Antacids with cations Ca, Mg, Al, and Fe; sucralfate (decreased absorption of fluoroquinolones) Drugs metabolized by cytochrome P450: cyclosporine, theophylline, warfarin, phenytoin, and sulfonylurea (increased effect of these drugs) Nonsteroidal anti-inflammatory drugs (increased stimulation of the central nervous system and possibility of convulsions) Probenecid (increased serum levels of the fluoroquinolone) Theophylline (increased serum levels of theophylline) | QT prolongation: elderly, female sex, electrolyte imbalance, cardiac diseases, use of other agents that prolong the QTc interval. Tendon rupture: older age, renal insufficiency, corticosteroid therapy. |
Linezolid | Disrupts protein synthesis by binding to rRNA and inhibits the initiation process for protein synthesis. | Disrupts mitochondrial function. | Not enough data about interactions with rifampicin. Serotonin reuptake inhibitors. | Thrombocytopenia: low baseline platelet count, minimum concentration, renal insufficiency. |
Clofazimine | Increases reactive oxidant species and destabilizes the bacterial membrane. Reverses the inhibition of intracellular phagocyte killing mechanisms and acts synergistically with interferon-gamma. | The drug accumulates in subcutaneous fat. Inhibits hERG cardiac potassium channels. | No data on drug interactions found. Additive QT prolongation can occur when used together with: fluoroquinolones, bedaquiline, delamanid; azoles, macrolides, metoclopramide, efavirenz, furosemide, hydrochlorothiazide, citalopram, escitalopram, methadone, antiarrhythmics, and others. | No data. |
Cycloserine/Terizidone | Inhibits the D-alanyl-D-alanine synthetase, alanine racemase, and alanine permease. These enzymes are involved in the bacterial cell membranes’ peptidoglycan formation. | Acts as a partial NMDA receptor agonist, which may contribute to neuropsychiatric effects. | Alcohol (increased effects of alcohol and dizziness) Anticoagulants (increased serum concentration of the anticoagulant) Ethionamide, isoniazid (possibility of increased toxic effects on the central nervous system) Phenytoin (increased serum concentration of phenytoin) Vitamin B6 (increased vitamin B6 clearance) | Higher doses, longer treatment duration |
Carbapenems | Enters the bacterial cell and acylate the PBP enzymes, which catalyze peptidoglycan formation, causing autolysis and cell damage due to osmotic pressure. Meropenem acts as a β-lactamase inhibitor. | Can bind to GABA receptors. Disrupts gut flora. | Ganciclovir (elevated risk for convulsions) Imipenem (lower serum concentration of valproate) | History of seizures. |
Amikacin | Bind to the bacterial surfaces, penetrates into the cytoplasm, and interferes with the translation of proteins, damaging the cytoplasmic membrane. | Damage to cranial nerve VIII. Accumulation of the drugs in renal tubules. | Acyclovir, amphotericin, cephalosporins, cisplatin, cyclosporine (increased possibility of nephrotoxicity) Ethacrynic acid (increased possibility of ototoxicity) Oral anticoagulants (greater effect of the anticoagulant) Nonsteroidal anti-inflammatory drugs (increased possibility of ototoxicity and nephrotoxicity) Capreomycin (increased possibility of ototoxicity and nephrotoxicity) Furosemide (increased possibility of ototoxicity) Methotrexate (possible increase in the toxicity of methotrexate) Polymyxins (greater nephrotoxicity) Vancomycin (greater ototoxicity and nephrotoxicity) Neuromuscular blocking agents (additive effect) | Age, long treatment duration, high total accumulated dose, concomitant usage of diuretics, dehydration, and history of hearing impairment. |
Ethionamide/prothionamide | The primary target of ethionamide is InhA, resulting in inhibition of mycolic acid biosynthesis. | No data. | Alcohol (increased possibility of psychotic reactions) Antituberculosis drugs (greater adverse effects) Isoniazid (temporarily increased serum concentration of isoniazid) Para-aminosalicylic acid (increased possibility of hypothyroidism) Dapsone (peripheral neuritis is potentiated) | For hepatotoxicity, history of liver disease and alcoholism. If mental instability in history, administer ethionamide with caution. |
Para-aminosalicylic acid | Acts as a competitive inhibitor of para-aminobenzoic acid in folate synthesis by targeting dihydropteroate synthase. This leads to inhibition of dihydrofolate reductase and impaired bacterial growth. Metabolites can inhibit thymidylate synthase, disrupting DNA synthesis. | Immune responses to the drug or its metabolites, thyroid hormone synthesis interference, and the drug’s impact on intestinal function (reduces vitamin B12 absorption). | Anticoagulants, sulfonylurea (possibility of increased drug effect) Digoxin, vitamin B12 (decreased serum levels of drug/vitamin) Corticosteroids (possibility of increased adverse effects of the corticosteroid) Ethionamide (increased possibility of hypothyroidism and hepatotoxicity) Isoniazid (possibility of increased serum levels of isoniazid) Probenecid (increased serum concentration of para-aminosalicylic acid) Sulfonylurea (possibility of increasing hypoglycemic effects of sulfonylurea) | No data. |
Bedaquiline | Inhibits mycobacteria-specific F-ATP synthase by binding to the c subunit. This halts ATP production. | Inhibits cardiac hERG potassium ion channels. Mitochondrial dysfunction and alterations in cellular signaling pathways (hepatotoxicity). | Rifamycins (decreased serum levels of bedaquiline) Azole antifungals, macrolides (increased serum levels of bedaquiline) Efavirenz, phenytoin, glucocorticoids, metoclopramide, furosemide, hydrochlorothiazide, citalopram, escitalopram, methadone, antiarrhythmics, fluoroquinolones, clofazimine, and delamanid (these drugs may add risk for QTc prolongation) | No data. |
Delamanid | Disrupts the mycobacterial cell wall by inhibiting the synthesis of methoxy-mycolic and keto-mycolic acids. During activation by the enzyme deazaflavin-dependent nitroreductase, delamanid produces reactive nitrogen species. | Probably converted to primary metabolite DM-6705 (toxic). | Fluoroquinolones, clofazimine, bedaquiline, macrolides, metoclopramide, efavirenz, furosemide, hydrochlorothiazide, citalopram, escitalopram, methadone, and antiarrhythmics (these drugs prolong QTc themselves) Rifamycin, carbamazepine, ritonavir, ketoconazole Cycloserine/terizidone (higher risk for neuropsychiatric symptoms) | Hypoalbuminemia * |
Pretomanid | In an aerobic setting, it inhibits protein and lipid synthesis, decreasing the availability of mycolic acids; in an anaerobic state, it generates des-nitro metabolites and releases nitric oxide, reducing adenosine triphosphate concentration in cells. | Animal studies show hepatic, ophthalmologic, and reproductive organ damage. | Rifampicin, efavirenz, and other strong CYP3A4 inducers (significantly decreased pretomanid serum concentration) Lopinavir/ritonavir, other mild CYP3A4 inducers (smaller effect) | No data. |
Drug | Timing of Adverse Drug Reactions | Common/Rare Adverse Drug Reactions | Monitoring for Adverse Drug Reactions | Management of Adverse Drug Reactions | Discontinuation Due to Adverse Drug Reaction Rate |
---|---|---|---|---|---|
Isoniazid | Hepatotoxicity—first few weeks. Peripheral neuropathy—gradually after several weeks or months. | Common Elevated liver enzymes and gastrointestinal disturbances. Less common, more severe Peripheral neuropathy, hepatotoxicity. Rare Severe skin reactions, psychosis, depression, dysphoria, irritability, seizures, optic neuritis, dysarthria, pancreatitis, vasculitis, arthralgia, anemia, and thrombocytopenia. | Mental health/neuropsychiatric assessment, HIV, ALT, creatinine, complete blood count, hepatitis B/C serology, and glycated hemoglobin. Laboratory test monitoring without symptoms or baseline abnormalities may not be needed unless risk factors are present. Rash, if severe, assess for organ dysfunction: LFT/creatinine, eosinophils (DRESS syndrome). | Pyridoxine supplementation. Hypersensitivity skin reactions—antihistamines, corticosteroids, and, in severe cases, desensitization. Psychiatric disorders—administer psychiatric medication; in severe cases, discontinue the drug. | 0.99%—hepatotoxicity, 0.89%—fever, 0.79%—peripheral neuropathy, 0.69%—skin reactions, 0.49%—hypersensitivity, and 0.18%—psychiatric changes. |
Rifampicin | Gastrointestinal disturbances—during the first month. | Common Rash, gastrointestinal disturbances, and elevated liver enzymes. Less common, more severe Hepatotoxicity, thrombocytopenia, acute renal failure, and flu-like syndrome. Rare Hemolytic anemia, pseudomembranous colitis, pseudoadrenal crisis. | HIV, ALT, creatinine, complete blood count, hepatitis B/C serology, and glycated hemoglobin. Laboratory test monitoring without symptoms or baseline abnormalities may not be needed unless risk factors are present. Rash, if severe, assess for organ dysfunction: LFT/creatinine, eosinophils (DRESS syndrome). | Liver enzyme monitoring. Gastrointestinal disturbances can be managed symptomatically. If thrombocytopenia occurs, discontinue the drug, corticosteroids, and platelet transfusions in some cases. | 0.6–1.19% |
Pyrazinamide | Hepatotoxicity and hyperuricemia—most common during the first 2–9 weeks. | Common Hyperuricemia, arthralgia, elevated liver enzymes, exanthema, and gastrointestinal disorders. Less common, more severe Hepatotoxicity, gout, rhabdomyolysis. Rare Toxic epidermal necrolysis, photosensitivity, thrombocytopenia, and sideroblastic anemia. | Liver function (AST, ALT, and bilirubin) should be monitored at baseline and monthly if possible. Patients should be closely monitored if they are at risk for drug-related hepatitis and if signs or symptoms of hepatotoxicity occur. | If symptomatic hyperuricemia, allopurinol should be administered. Arthralgia can be managed symptomatically. | 0.6–5% In elderly patients, 20.6%. |
Ethambutol | Optic neuropathy develops after several weeks or months. | Common Optic neuropathy. Rare Peripheral neuropathy, rash, gastrointestinal disturbances, thrombocytopenia, cutaneous reaction, and acute renal failure | Patients should report any vision changes. Baseline and monthly visual acuity and color discrimination monitoring should be performed; high risk for patients on higher doses or with renal impairment. Each eye must be tested separately, and both eyes tested together. | An ophthalmologist consultation is needed. Visual acuity and fields should be monitored. Immediately discontinue if visual symptoms occur. | 0.2–1% at 15 mg/kg dosage. 15–18% at 35 mg/kg dosage. |
Fluoroquinolones | Adverse drug reactions to moxifloxacin in a median of 15 days and to levofloxacin in a median of 35 days. Tendon rupture—early during treatment and weeks to months after. | Common Gastrointestinal disturbances, nausea, diarrhea, dizziness, insomnia, and skin rash. Less common, more severe QT prolongation, arrhythmia, tendon rupture, peripheral neuropathy, hallucinations, delusions, pseudomembranous colitis, urticaria, vasculitis | Symptomatic monitoring. ECG should be carried out before treatment and at least 2, 12, and 24 weeks after starting treatment. More frequent monitoring is required if cardiac conditions, hypothyroidism, or electrolyte disturbances are present. | Correct electrolyte imbalances. Fluoroquinolones should be stopped if the QTc > 500 msec, and ECGs and potassium should be monitored frequently until the QTc returns to normal. | Levofloxacin—3.2%, moxifloxacin—4.5%. |
Linezolid | Myelosuppression occurs after 2–4 weeks of treatment, peripheral neuropathy—gradually after several weeks or months, and optic neuropathy—after more than 2 months of treatment. | Common Gastrointestinal disorders, peripheral neuropathy, and anemia. Rare Optic neuritis, thrombocytopenia, and lactic acidosis. | Monitor for: -peripheral neuropathy and optic neuritis, through visual eye acuity (both eyes) and Ishihara tests every 2 months or, if symptoms develop, clinical examination for peripheral neuropathy monthly; -complete blood count weekly during the initial period, then monthly, and thereafter as needed based on symptoms; -pH, anion gap, and lactate levels in case of suspected lactic acidosis (hyperlactatemia, if lactate >2.0 mmol/L and confirmed lactic acidosis at >4.0 mmol/L), hypotension, lethargy, or clinical worsening without a clear explanation. | If peripheral neuropathy or optic neuritis occurs, the drug should be discontinued. Anemia and thrombocytopenia could be reversed with dosage reduction. | 14.1% |
Clofazimine | Skin discoloration develops within a few weeks. | Common Skin discoloration, gastrointestinal disorders, skin dryness, and ichthyosis, QT prolongation Rare Hepatitis, hypersensitivity reaction, nephrotoxicity, and acne. | Monitor clinical signs and symptoms. Perform an ECG if other QT interval-prolonging agents are given concomitantly. | Skin discoloration—patient advisement. Gastrointestinal disorders may be managed symptomatically. QT prolongation—analysis and correction of electrolytes, cardiac diseases, and, if severe, discontinuation of the drug. | |
Cycloserine/Terizidone | A median of 71 days. | Common Headache, tremors, sleep disturbances, anxiety, depression, confusion, pale skin. Rare Visual changes, skin rash, hepatitis, tingling, and numbness in the extremities. | Baseline and monthly monitoring for depression should be carried out using a tool (e.g., the Beck Depression Index). If therapeutic drug monitoring is possible, obtain peak concentrations within the first 1–2 weeks of therapy and monitor them serially during therapy, keeping peak concentrations at <35 mcg/mL. When administering delamanid and cycloserine concurrently, monitor for neuropsychiatric side effects. | If seizures or psychotic symptoms occur, discontinue the drug. Pyridoxine supplementation is recommended. | 6.25–66% |
Carbapenems | No data. | Common Gastrointestinal disturbances. Less common Pseudomembranous colitis. Rare Seizures (more linked to imipenem). Injection site inflammation. | Monitor clinical signs and symptoms. | Gastrointestinal symptoms—symptomatic management. If diarrhea and fever, test for pseudomembranous colitis. | 4.9% |
Amikacin | Common Pain at the injection site and proteinuria Less common, more severe Cochlear, vestibular, nephrotoxicity, peripheral neuropathy, rash, and eosinophilia. | • creatinine at least monthly (more frequently if there is renal or hepatic impairment). • Creatinine clearance if there is baseline renal impairment or any concerns. • Electrolytes: baseline follow-up with monthly minimum potassium, magnesium, and calcium if possible. Audiology examination: baseline and monthly. Vestibular examinations: Question patients regularly about symptoms and perform serial vestibular exams. If possible, in patients aged over 60 years or with altered renal function, peak serum concentrations should be monitored. | If hearing loss occurs, consider discontinuing the drug. If nephrotoxicity occurs, discontinue the drug. Manage electrolyte imbalance. | 13.8% | |
Ethionamide/prothionamide | Hepatic adverse reactions can occur for up to five months after initial treatment. | Common and severe Gastrointestinal disturbances. Less common Hepatotoxicity, neurological and psychiatric disturbances, hypothyroidism, menstrual irregularity, gynecomastia, arthralgia, and leukopenia. Rare Peripheral and optic neuritis, rash, photosensitivity, and thrombocytopenia. | TSH should be monitored for evidence of hypothyroidism requiring replacement therapy. Therapeutic drug monitoring is required if malabsorption is suspected. Liver function tests should be monitored. | Pyridoxine supplementation is recommended. Gastrointestinal disturbances must be managed symptomatically. If psychiatric symptoms, consider specialist consultation. The drug may be stopped, and psychiatric drugs prescribed. | No data. |
Para-aminosalicylic acid | Gastrointestinal intolerance occurs after one week of treatment or more. | Common Gastrointestinal disturbances, hypothyroidism. Rare Hepatitis, allergic reactions, hemolytic anemia, granulocytopenia, polyneuritis, pericarditis, and malabsorption. | Should monitor TSH, electrolytes, blood counts, and liver function tests. | Diarrhea may improve after several weeks of treatment, and nausea and vomiting can be managed symptomatically. Thyroid function normalizes after drug discontinuation; thyroxine therapy may be needed. Splitting the dose or timing with food sometimes alleviates symptoms. | 11.6% |
Bedaquiline | Most significant QTc prolongation—in 6 or 15 weeks. * 34.2% of reactions were in the first month, and 14.2% were in the second. | Common Nausea, vomiting, abdominal pain, anorexia, arthralgia, headache, and QTc prolongation. Rare Hyperuricemia, phospholipidosis, elevated transaminases, and pancreatitis. | ECG before treatment and at least 2, 12, and 24 weeks after starting treatment. More frequent monitoring is recommended if cardiac conditions, hypothyroidism, or electrolyte disturbances are present. Liver function tests should be conducted at baseline, then monthly. | Gastrointestinal symptoms and arthralgia can be managed symptomatically and improve after a few weeks of treatment. Bedaquiline should be stopped if the QTc > 500 msec, and ECGs and potassium levels should be monitored regularly until the QTc returns to normal. | 1.7% |
Delamanid | Changes in ECGs peak at week 8. | Occasional QTc prolongation, nausea, vomiting, dizziness, insomnia, anxiety, hallucinations, night terrors, and upper abdominal pain | Before treatment, ensure the albumin level is 2.8 g/dL or higher. ECG and baseline electrolytes should be obtained and repeated if necessary (e.g., documented QTc prolongation or multiple risk factors). When administering delamanid and cycloserine concurrently, monitor for neuropsychiatric side effects. | Gastrointestinal symptoms—symptomatic management. | 2.5–3.8% |
Pretomanid | No data. | Common Nausea and vomiting, acne, headache, musculoskeletal pain, and liver enzyme elevation. | Symptoms of hepatotoxicity should be monitored, and liver function tests should be performed at baseline, at 2 weeks, and then monthly as needed. ECG and baseline electrolytes should be obtained before the initiation of treatment and repeated if needed (e.g., documented QTc prolongation or multiple risk factors). | No data. | No data. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mereškevičienė, R.; Danila, E. The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review. Medicina 2025, 61, 911. https://doi.org/10.3390/medicina61050911
Mereškevičienė R, Danila E. The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review. Medicina. 2025; 61(5):911. https://doi.org/10.3390/medicina61050911
Chicago/Turabian StyleMereškevičienė, Rūta, and Edvardas Danila. 2025. "The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review" Medicina 61, no. 5: 911. https://doi.org/10.3390/medicina61050911
APA StyleMereškevičienė, R., & Danila, E. (2025). The Adverse Effects of Tuberculosis Treatment: A Comprehensive Literature Review. Medicina, 61(5), 911. https://doi.org/10.3390/medicina61050911