Association of VDR Polymorphisms (FokI, ApaI, and TaqI) with Susceptibility to Lumbar Disc Herniation: Systematic Review, Meta-Analysis, Trial Sequential Analysis, and Transcriptional Prediction
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Statistical Analysis and Data Synthesis
2.5. Transcriptional Prediction Method
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Transcriptional Prediction
3.4. Genotype Distribution
3.5. Pooled Results
3.6. Subgroup Analysis
3.7. Meta-Regression Analysis
3.8. Sensitivity Analysis
3.9. TSA
3.10. Publication Bias
4. Discussion
Limitations
- Potential Deviation from HWE: some studies showed deviations from HWE, which may indicate issues with population representativeness or genotyping errors, potentially affecting the reliability of the findings.
- High Heterogeneity Among Studies: the FokI polymorphism exhibited moderate-to-large heterogeneity (I2 = 39–69%), and subgroup analyses showed heterogeneity up to 83% for certain comparisons, suggesting variability in study methodologies, sample populations, or environmental factors that may influence the pooled results.
- Insufficient Statistical Power for Some Models: the TSA indicated that the total sample sizes for several genetic models, particularly for FokI and TaqI (allelic, homozygous, heterozygous, and dominant models), remained below the RIS, implying that additional well-powered studies are needed to reach conclusive findings.
- Potential Publication Bias: the funnel plot analysis revealed significant publication bias for the TaqI polymorphism in the recessive model, suggesting that smaller studies with null results may be underrepresented, potentially skewing the overall conclusions.
5. Conclusions
5.1. Clinical Significance
5.2. Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LDH | Lumbar disc herniation |
VDR | Vitamin D receptor |
OR | Odds ratio |
CI | Confidence interval |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
TSA | Trial sequential analysis |
RIS | Required information size |
HWE | Hardy–Weinberg Equilibrium |
NOS | Newcastle–Ottawa Scale |
References
- Yang, H.; Liu, H.; Li, Z.; Zhang, K.; Wang, J.; Wang, H.; Zheng, Z. Low back pain associated with lumbar disc herniation: Role of moderately degenerative disc and annulus fibrous tears. Int. J. Clin. Exp. Med. 2015, 8, 1634. [Google Scholar] [PubMed]
- Yu, P.; Mao, F.; Chen, J.; Ma, X.; Dai, Y.; Liu, G.; Dai, F.; Liu, J. Characteristics and mechanisms of resorption in lumbar disc herniation. Arthritis Res. Ther. 2022, 24, 205. [Google Scholar] [CrossRef]
- Winters, M.E.; Kluetz, P.; Zilberstein, J. Back pain emergencies. Med. Clin. 2006, 90, 505–523. [Google Scholar] [CrossRef]
- Zielinska, N.; Podgórski, M.; Haładaj, R.; Polguj, M.; Olewnik, Ł. Risk factors of intervertebral disc pathology—A point of view formerly and today—A review. J. Clin. Med. 2021, 10, 409. [Google Scholar] [CrossRef]
- Amin, R.M.; Andrade, N.S.; Neuman, B.J. Lumbar disc herniation. Curr. Rev. Musculoskelet. Med. 2017, 10, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.; Hyan, C.; Dao, K. Effects of Lumbar Stabilization Exercise on Patients with Low Back Pain and Herniated Intervertebral Disc. J. Phys. Ther. Sci. 2019, 9, 20–29. [Google Scholar]
- Armenta, A.G.P.; Martínez, E.E.; Gonzalez, R.T.; Garfias, A.R.; Prado, M.G.S. Epidemiological panorama of orthopedic spine pathology in Mexico. Coluna/Columna 2018, 17, 120–123. [Google Scholar] [CrossRef]
- Ricci, J.A.; Stewart, W.F.; Chee, E.; Leotta, C.; Foley, K.; Hochberg, M.C. Back pain exacerbations and lost productive time costs in United States workers. Spine 2006, 31, 3052–3060. [Google Scholar] [CrossRef]
- Qi, L.; Luo, L.; Meng, X.; Zhang, J.; Yu, T.; Nie, X.; Liu, Q. Risk factors for lumbar disc herniation in adolescents and young adults: A case–control study. Front. Surg. 2023, 9, 1009568. [Google Scholar] [CrossRef]
- Battié, M.C.; Videman, T.; Levälahti, E.; Gill, K.; Kaprio, J. Genetic and environmental effects on disc degeneration by phenotype and spinal level: A multivariate twin study. Spine 2008, 33, 2801–2808. [Google Scholar] [CrossRef]
- Theodore, N.; Ahmed, A.K.; Fulton, T.; Mousses, S.; Yoo, C.; Goodwin, C.R.; Danielson, J.; Sciubba, D.M.; Giers, M.B.; Kalani, M.Y.S. Genetic predisposition to symptomatic lumbar disk herniation in pediatric and young adult patients. Spine 2019, 44, E640–E649. [Google Scholar] [CrossRef]
- Marini, J.C. Genetic risk factors for lumbar disk disease. JAMA 2001, 285, 1886–1888. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.E.; Iatridis, J.C.; Chan, D.; Qureshi, S.A.; Gottesman, O.; Hecht, A.C. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013, 13, 299–317. [Google Scholar] [CrossRef]
- Sedighi, M.; Haghnegahdar, A. Role of vitamin D 3 in treatment of lumbar disc herniation—Pain and sensory aspects: Study protocol for a randomized controlled trial. Trials 2014, 15, 373. [Google Scholar] [CrossRef] [PubMed]
- Withanage, N.D.; Perera, S.; Peiris, H.; Athiththan, L.V. Serum 25-hydroxyvitamin D, serum calcium and vitamin D receptor (VDR) polymorphisms in a selected population with lumbar disc herniation—A case control study. PLoS ONE 2018, 13, e0205841. [Google Scholar] [CrossRef] [PubMed]
- Colombini, A.; Brayda-Bruno, M.; Ferino, L.; Lombardi, G.; Maione, V.; Banfi, G.; Cauci, S. Gender differences in the VDR-FokI polymorphism and conventional non-genetic risk factors in association with lumbar spine pathologies in an Italian case-control study. Int. J. Mol. Sci. 2015, 16, 3722–3739. [Google Scholar] [CrossRef]
- Colombini, A.; Brayda-Bruno, M.; Lombardi, G.; Croiset, S.J.; Ceriani, C.; Buligan, C.; Barbina, M.; Banfi, G.; Cauci, S. BsmI, ApaI and TaqI Polymorphisms in the Vitamin D Receptor Gene (VDR) and Association with Lumbar Spine Pathologies: An Italian Case-Control Study. PLoS ONE 2016, 11, e0155004. [Google Scholar] [CrossRef]
- Colombini, A.; Brayda-Bruno, M.; Lombardi, G.; Croiset, S.J.; Vrech, V.; Maione, V.; Banfi, G.; Cauci, S. FokI polymorphism in the vitamin D receptor gene (VDR) and its association with lumbar spine pathologies in the Italian population: A case-control study. PLoS ONE 2014, 9, e97027. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Guan, Y.; Zhan, X.; Xiao, Z.; Jiang, H.; Wei, Q. Vitamin D Receptor gene polymorphisms and plasma levels are associated with lumbar disc degeneration. Sci. Rep. 2019, 9, 7829. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials revisited. Contemp. Clin. Trials 2015, 45, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Mantel, N.; Haenszel, W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [PubMed]
- Imani, M.M.; Sadeghi, M.; Mohammadi, M.; Brühl, A.B.; Sadeghi-Bahmani, D.; Brand, S. Association of blood MCP-1 levels with risk of obstructive sleep apnea: A systematic review and meta-analysis. Medicina 2022, 58, 1266. [Google Scholar] [CrossRef]
- Golshah, A.; Sadeghi, M.; Sadeghi, E. Evaluation of Serum/Plasma Levels of Interleukins (IL-6, IL-12, IL-17, IL-18, and IL-23) in Adults and Children with Obstructive Sleep Apnea: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis. J. Interferon Cytokine Res. 2024, 44, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Wetterslev, J.; Jakobsen, J.C.; Gluud, C. Trial sequential analysis in systematic reviews with meta-analysis. BMC Med. Res. Methodol. 2017, 17, 39. [Google Scholar] [CrossRef]
- Shihab, H.A.; Rogers, M.F.; Gough, J.; Mort, M.; Cooper, D.N.; Day, I.N.; Gaunt, T.R.; Campbell, C. An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics 2015, 31, 1536–1543. [Google Scholar] [CrossRef]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.; Edwards, K.J.; Day, I.N.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Gaydarski, L.; Sirakov, I.; Uzunov, K.; Chervenkov, M.; Ivanova, T.; Gergova, R.; Angushev, I.; Mirazchiyski, G.; Landzhov, B. A Case-Control Study of the Fokl Polymorphism of the Vitamin D Receptor Gene in Bulgarians With Lumbar Disc Herniation. Cureus 2023, 15, e45628. [Google Scholar] [CrossRef]
- Hekimoğlu, B.T.; Eraltan, H.; Sarı, H.; Hakan, M.T.; Sönmez, D.; Zeybek, Ü.; Horozoğlu, C.; Ergen, A.; Yaylım, İ. Investigation of the vitamin D receptor (VDR) gene polymorphisms in lumbar disc herniation in Turkish patients. Experimed 2020, 9, 93–98. [Google Scholar] [CrossRef]
- Li, L.; Ni, D.; Zhu, F.; Jiang, Z.; Shi, Y.; Wang, Y.; Abdugheni, H.; Xu, D.; Tian, W.; Zong, Q. No association between VDR gene polymorphisms and lumbar disc herniation in a Chinese population. Int. J. Clin. Exp. Med. 2018, 11, 1009–1014. [Google Scholar]
- Sansoni, V.; Perego, S.; Colombini, A.; Banfi, G.; Brayda-Bruno, M.; Lombardi, G. Interplay between low plasma RANKL and VDR-FokI polymorphism in lumbar disc herniation independently from age, body mass, and environmental factors: A case-control study in the Italian population. Eur. Spine J. 2016, 25, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Şerifoğlu, L.; Yılmaz, S.G.; Karaaslanlı, A.; Düzkalır, A.H.; Etli, M.U.; Özdoğan, S. Association of TaqI (rs731236) Polymorphism of Vitamin D Receptor Gene with Lumbar Degenerative Disc Disease. World Neurosurg. 2024, 188, e419–e423. [Google Scholar] [CrossRef]
- Azharuddin, A.; Ilmawan, M.; Fajar, J.K.; Fahriani, M.; Mamada, S.S.; Maliga, H.A.; Nainu, F.; Dhama, K.; Harapan, H.; Magetsari, R. The role of single nucleotide polymorphisms of IL-1A-889C> T (rs1800587), TNF-A-238G> A (rs361525), and VDR TaqI (rs731236) on susceptibility to herniated nucleus pulposus: A systematic review and meta-analysis. F1000Research 2021, 10, 419. [Google Scholar] [CrossRef]
- Castillo-Avila, R.G.; González-Castro, T.B.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; López-Narváez, M.L.; Rodríguez-Pérez, J.M.; Pérez-Hernández, N. The role of TaqI, ApaI and BsmI polymorphisms of VDR gene in lumbar spine pathologies: Systematic review and meta-analysis. Eur. Spine J. 2021, 30, 2049–2059. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.; Sakharka, P. Role of vitamin D receptor (VDR) gene polymorphism. World J. Pharm. Pharm. Sci. 2017, 6, 1083–1095. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Bazzazi, H. The Association of Vitamin D Receptor Polymorphisms of FokI and TaqI with Rheumatoid Arthritis in North-East of Iran. Jorjani Biomed. J. 2019, 7, 20–29. [Google Scholar]
- Swelam, M.M.; El-Barbary, R.A.; Saudi, W.M.; Fathi, M.S.; Soliman, D.A.; Abd Elrehem, H.H. Associations among two vitamin D receptor (VDR) gene polymorphisms (ApaI and TaqI) in acne vulgaris: A pilot susceptibility study. J. Cosmet. Dermatol. 2019, 18, 1113–1120. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; van Leeuwen, H.; Pols, H.A. Vitamin D receptor gene polymorphisms in relation to Vitamin D related disease states. J. Steroid Biochem. Mol. Biol. 2004, 89, 187–193. [Google Scholar] [CrossRef]
First Author, Publication Year | Country | Ethnicity | Genotyping Method | Polymorphism of VDR | NOS Score |
---|---|---|---|---|---|
Colombini, 2014 [18] | Italy | Caucasian | PCR-RFLP | FokI | 8 |
Colombini, 2015 [16] | Italy | Caucasian | PCR-RFLP | FokI | 8 |
Colombini, 2016 [17] | Italy | Caucasian | PCR-RFLP | ApaI and TaqI | 8 |
Gaydarski, 2023 [28] | Bulgaria | Caucasian | PCR-RFLP | FokI | 9 |
Hekimoğlu, 2020 [29] | Turkey | Caucasian | PCR-RFLP | FokI and TaqI | 9 |
Li, 2018 [30] | China | Asian | PCR | FokI, ApaI, and TaqI | 9 |
Sansoni, 2016 [31] | Italy | Caucasian | NR | FokI | 8 |
Serifoğlu, 2024 [32] | Turkey | Caucasian | PCR | TaqI | 9 |
Withanage, 2018 [15] | Sri Lanka | Asian | PCR | FokI and TaqI | 9 |
Yang, 2019 [19] | China | Asian | Real-time PCR and TaqMan | FokI, ApaI, and TaqI | 7 |
Polymorphism | Chromosome | Position | Variant | Coding Score | Non-Coding Score | Further Information |
---|---|---|---|---|---|---|
rs2228570 (FokI) | 12 | 47879112 | A/G | 0.433632 | - | Benign |
rs7975232 (ApaI) | 12 | 47845054 | C/A | - | 0.053047 | Benign |
rs731236 (TaqI) | 12 | 47844974 | A/G | 0.005901 | - | Benign (high confidence) |
Polymorphism | First Author, Publication Year | No. Cases/Controls | Case | Control | p-Value of HWE for Control Group | ||||
VDR FokI (rs2228570) | FF | Ff | ff | FF | Ff | ff | |||
Colombini, 2014 [18] | 89/220 | 37 | 40 | 12 | 89 | 99 | 32 | 0.601 | |
Colombini, 2015 [16] | 48/127 | 25 | 19 | 4 | 51 | 56 | 20 | 0.483 | |
Gaydarski, 2023 [28] | 60/60 | 12 | 40 | 8 | 29 | 31 | 0 | 0.006 | |
Hekimoğlu, 2020 [29] | 72/81 | 37 | 34 | 1 | 55 | 24 | 2 | 0.744 | |
Li, 2018 [30] | 120/120 | 44 | 53 | 23 | 31 | 66 | 23 | 0.250 | |
Sansoni, 2016 [31] | 110/110 | 53 | 44 | 13 | 46 | 54 | 10 | 0.296 | |
Withanage, 2018 [15] | 51/68 | 34 | 16 | 1 | 38 | 26 | 4 | 0.871 | |
Yang, 2019 [19] | 266/485 | 67 | 123 | 76 | 134 | 225 | 126 | 0.829 | |
VDR ApaI (rs7975232) | AA | Aa | aa | AA | Aa | aa | |||
Colombini, 2016 [17] | 88/252 | 26 | 51 | 11 | 92 | 108 | 52 | 0.055 | |
Li, 2018 [30] | 120/120 | 13 | 47 | 60 | 16 | 48 | 56 | 0.272 | |
Yang, 2019 [19] | 266/485 | 130 | 116 | 20 | 244 | 191 | 50 | 0.169 | |
VDRTaqI (rs731236) | TT | Tt | tt | TT | Tt | tt | |||
Colombini, 2016 [17] | 88/252 | 37 | 40 | 11 | 106 | 109 | 37 | 0.303 | |
Hekimoğlu, 2020 [29] | 72/81 | 19 | 45 | 8 | 39 | 30 | 12 | 0.133 | |
Li, 2018 [30] | 120/120 | 114 | 6 | 0 | 109 | 11 | 0 | 0.598 | |
Serifoğlu, 2024 [32] | 248/146 | 107 | 113 | 28 | 45 | 72 | 29 | 0.983 | |
Withanage, 2018 [15] | 51/68 | 31 | 16 | 4 | 25 | 39 | 4 | 0.027 | |
Yang, 2019 [19] | 266/485 | 118 | 131 | 17 | 176 | 246 | 63 | 0.109 |
Polymorphism | Genetic Model | OR | 95%CI | Z | p-Value | I2 | Pheterogeneity | |
---|---|---|---|---|---|---|---|---|
Min. | Max. | |||||||
FokI | f vs. F | 1.03 | 0.80 | 1.32 | 0.19 | 0.85 | 66% | 0.004 |
ff vs. FF | 1.04 | 0.79 | 1.38 | 0.30 | 0.77 | 39% | 0.120 | |
Ff vs. FF | 1.01 | 0.71 | 1.43 | 0.05 | 0.96 | 64% | 0.007 | |
ff + Ff vs. FF | 1.02 | 0.71 | 1.46 | 0.10 | 0.92 | 69% | 0.002 | |
ff vs. FF + Ff | 1.08 | 0.85 | 1.38 | 0.64 | 0.52 | 11% | 0.340 | |
ApaI | a vs. A | 1.00 | 0.84 | 1.19 | 0.04 | 0.97 | 0% | 0.750 |
aa vs. AA | 0.86 | 0.58 | 1.27 | 0.78 | 0.44 | 0% | 0.500 | |
Aa vs. AA | 1.25 | 0.97 | 1.62 | 1.70 | 0.09 | 0% | 0.490 | |
aa + Aa vs. AA | 1.14 | 0.89 | 1.46 | 1.06 | 0.29 | 0% | 0.680 | |
aa vs. Aa + AA | 0.81 | 0.59 | 1.11 | 1.30 | 0.19 | 37% | 0.200 | |
TaqI | t vs. T | 0.80 | 0.62 | 1.02 | 1.77 | 0.08 | 58% | 0.04 |
tt vs. TT | 0.55 | 0.39 | 0.77 | 3.45 | 0.0006 | 37% | 0.17 | |
Tt vs. TT | 0.84 | 0.52 | 1.34 | 0.75 | 0.46 | 76% | 0.0009 | |
tt + Tt vs. TT | 0.79 | 0.51 | 1.21 | 1.08 | 0.28 | 74% | 0.002 | |
tt vs. TT + Tt | 0.59 | 0.43 | 0.81 | 3.28 | 0.001 | 0% | 0.50 |
Polymorphism | Genetic Model | Variable | Subgroup (N) | OR | 95%CI | p-Value | I2 | |
---|---|---|---|---|---|---|---|---|
Min. | Max. | |||||||
FokI | f vs. F | Ethnicity | Caucasian (5) | 1.15 | 0.76 | 1.75 | 0.50 | 75% |
Asian (3) | 0.91 | 0.67 | 1.23 | 0.53 | 51% | |||
Sample size | ≥200 (4) | 0.99 | 0.85 | 1.15 | 0.92 | 0% | ||
<200 (4) | 1.14 | 0.58 | 2.24 | 0.70 | 83% | |||
ff vs. FF | Ethnicity | Caucasian (5) | 1.03 | 0.43 | 2.45 | 0.95 | 55% | |
Asian (3) | 1.02 | 0.72 | 1.45 | 0.92 | 31% | |||
Sample size | ≥200 (4) | 1.04 | 0.77 | 1.41 | 0.79 | 0% | ||
<200 (4) | 1.06 | 0.16 | 7.06 | 0.95 | 70% | |||
Ff vs. FF | Ethnicity | Caucasian (5) | 1.21 | 0.70 | 2.08 | 0.49 | 72% | |
Asian (3) | 0.87 | 0.66 | 1.16 | 0.35 | 49% | |||
Sample size | ≥200 (4) | 0.88 | 0.69 | 1.12 | 0.29 | 30% | ||
<200 (4) | 1.32 | 0.63 | 2.77 | 0.46 | 75% | |||
ff + Ff vs. FF | Ethnicity | Caucasian (5) | 1.23 | 0.70 | 2.17 | 0.48 | 76% | |
Asian (3) | 0.81 | 0.51 | 1.29 | 0.37 | 57% | |||
Sample size | ≥200 (4) | 0.92 | 0.73 | 1.15 | 0.45 | 28% | ||
<200 (4) | 1.29 | 0.56 | 3.00 | 0.55 | 82% | |||
ff vs. FF + Ff | Ethnicity | Caucasian (5) | 1.10 | 0.71 | 1.71 | 0.68 | 39% | |
Asian (3) | 1.08 | 0.80 | 1.44 | 0.62 | 0% | |||
Sample size | ≥200 (4) | 1.10 | 0.85 | 1.43 | 0.48 | 0% | ||
<200 (4) | 0.88 | 0.19 | 4.14 | 0.87 | 56% | |||
TaqI | t vs. T | Ethnicity | Caucasian (3) | 0.94 | 0.60 | 1.48 | 0.79 | 78% |
Asian (3) | 0.69 | 0.57 | 0.85 | 0.0005 | 0% | |||
Sample size | ≥200 (4) | 0.73 | 0.63 | 0.86 | 0.0001 | 6% | ||
<200 (2) | 0.94 | 0.38 | 2.33 | 0.90 | 83% | |||
tt vs. TT | Ethnicity | Caucasian (3) | 0.71 | 0.36 | 1.43 | 0.34 | 56% | |
Asian (3) | 0.44 | 0.26 | 0.75 | 0.003 | 0% | |||
Sample size | ≥200 (4) | 0.48 | 0.33 | 0.70 | 0.0001 | 27% | ||
<200 (2) | 1.14 | 0.49 | 2.70 | 0.76 | 0% | |||
Tt vs. TT | Ethnicity | Caucasian (3) | 1.24 | 0.55 | 2.76 | 0.61 | 84% | |
Asian (3) | 0.57 | 0.32 | 1.01 | 0.05 | 55% | |||
Sample size | ≥200 (4) | 0.78 | 0.62 | 0.98 | 0.03 | 0% | ||
<200 (2) | 1.02 | 0.11 | 9.04 | 0.99 | 94% | |||
tt + Tt vs. TT | Ethnicity | Caucasian (3) | 1.11 | 0.51 | 2.41 | 0.80 | 85% | |
Asian (3) | 0.64 | 0.49 | 0.84 | 0.001 | 24% | |||
Sample size | ≥200 (4) | 0.71 | 0.58 | 0.89 | 0.002 | 0% | ||
<200 (2) | 0.99 | 0.15 | 6.59 | 0.99 | 93% | |||
tt vs. TT + Tt | Ethnicity | Caucasian (3) | 0.64 | 0.42 | 0.96 | 0.03 | 0% | |
Asian (3) | 0.52 | 0.31 | 0.87 | 0.01 | 48% | |||
Sample size | ≥200 (4) | 0.55 | 0.39 | 0.77 | 0.0007 | 0% | ||
<200 (2) | 0.87 | 0.40 | 1.93 | 0.74 | 0% |
Polymorphism | Genetic Model | Variable | Coefficient | 95%CI | Z-Value | p-Value | |
---|---|---|---|---|---|---|---|
Min. | Max. | ||||||
FokI | f vs. F | Publication year | <0.0001 | −0.0002 | 0.0003 | 0.14 | 0.8848 |
Sample size | −0.0000 | −0.0014 | 0.0014 | −0.05 | 0.9634 | ||
ff vs. FF | Publication year | −0.0002 | −0.0006 | 0.0003 | −0.69 | 0.4881 | |
Sample size | 0.0007 | −0.0015 | 0.0028 | 0.61 | 0.5444 | ||
Ff vs. FF | Publication year | <0.0001 | −0.0003 | 0.0004 | 0.17 | 0.8626 | |
Sample size | −0.0002 | −0.0021 | 0.0018 | −0.17 | 0.8688 | ||
ff + Ff vs. FF | Publication year | <0.0001 | −0.0003 | 0.0004 | 0.16 | 0.8726 | |
Sample size | −0.0001 | −0.0021 | 0.0019 | −0.11 | 0.9104 | ||
ff vs. FF + Ff | Publication year | −0.0001 | −0.0004 | 0.0003 | −0.39 | 0.6959 | |
Sample size | 0.0004 | −0.0011 | 0.0018 | 0.50 | 0.6185 | ||
TaqI | t vs. T | Publication year | − 0.0000 | −0.0003 | 0.0002 | −0.31 | 0.7589 |
Sample size | −0.0004 | −0.0016 | 0.0009 | −0.57 | 0.5696 | ||
tt vs. TT | Publication year | <0.0001 | −0.0003 | 0.0004 | 0.22 | 0.8294 | |
Sample size | −0.0015 | −0.0030 | 0.0001 | −1.86 | 0.0630 | ||
Tt vs. TT | Publication year | −0.0001 | −0.0006 | 0.0005 | −0.22 | 0.8247 | |
Sample size | −0.0002 | −0.0028 | 0.0024 | −0.13 | 0.8970 | ||
tt + Tt vs. TT | Publication year | −0.0001 | −0.0005 | 0.0004 | −0.23 | 0.8177 | |
Sample size | −0.0003 | −0.0027 | 0.0020 | −0.29 | 0.7707 | ||
tt vs. TT + Tt | Publication year | − 0.0000 | −0.0004 | 0.0003 | −0.13 | 0.9005 | |
Sample size | −0.0010 | −0.0025 | 0.0004 | −1.40 | 0.1611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikhi, A.; Nabiuni, M.; Zia, S.; Sadeghi, M.; Brühl, A.B.; Brand, S. Association of VDR Polymorphisms (FokI, ApaI, and TaqI) with Susceptibility to Lumbar Disc Herniation: Systematic Review, Meta-Analysis, Trial Sequential Analysis, and Transcriptional Prediction. Medicina 2025, 61, 882. https://doi.org/10.3390/medicina61050882
Sheikhi A, Nabiuni M, Zia S, Sadeghi M, Brühl AB, Brand S. Association of VDR Polymorphisms (FokI, ApaI, and TaqI) with Susceptibility to Lumbar Disc Herniation: Systematic Review, Meta-Analysis, Trial Sequential Analysis, and Transcriptional Prediction. Medicina. 2025; 61(5):882. https://doi.org/10.3390/medicina61050882
Chicago/Turabian StyleSheikhi, Alireza, Mohsen Nabiuni, Soha Zia, Masoud Sadeghi, Annette B. Brühl, and Serge Brand. 2025. "Association of VDR Polymorphisms (FokI, ApaI, and TaqI) with Susceptibility to Lumbar Disc Herniation: Systematic Review, Meta-Analysis, Trial Sequential Analysis, and Transcriptional Prediction" Medicina 61, no. 5: 882. https://doi.org/10.3390/medicina61050882
APA StyleSheikhi, A., Nabiuni, M., Zia, S., Sadeghi, M., Brühl, A. B., & Brand, S. (2025). Association of VDR Polymorphisms (FokI, ApaI, and TaqI) with Susceptibility to Lumbar Disc Herniation: Systematic Review, Meta-Analysis, Trial Sequential Analysis, and Transcriptional Prediction. Medicina, 61(5), 882. https://doi.org/10.3390/medicina61050882