Early Postoperative Increase in Transforming Growth Factor Beta-1 Predicts Microvascular Flap Loss in Reconstructive Surgery: A Prospective Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Outcome Definitions
2.3. Perioperative Considerations
2.4. Data Collection, Sample Handling, and Laboratory Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdou, S.A.; Sharif-Askary, B.; Zolper, E.G.; Evans, K.K. Intraoperative Utility of the Implantable Doppler in Lower Extremity Reconstruction: A Matched Case-Control Study. Plast. Reconstr. Surg. Glob. Open 2020, 8, e3229. [Google Scholar] [CrossRef] [PubMed]
- Min, K.; Hong, J.P.; Suh, H.P. Risk Factors for Partial Flap Loss in a Free Flap: A 12-Year Retrospective Study of Anterolateral Thigh Free Flaps in 303 Lower Extremity Cases. Plast. Reconstr. Surg. 2022, 150, 1071e–1081e. [Google Scholar] [CrossRef]
- Ojuva, A.M.; Rocans, R.P.; Zarins, J.; Bine, E.; Mahauri, I.; Donina, S.; Mamaja, B.; Vanags, I. Novel Challenges and Opportunities for Anesthesia and Perioperative Care in Microvascular Flap Surgery: A Narrative Review. Clin. Pract. 2024, 14, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
- Rocans, R.P.; Zarins, J.; Bine, E.; Mahauri, I.; Deksnis, R.; Citovica, M.; Donina, S.; Vanags, I.; Gravelsina, S.; Vilmane, A.; et al. Von Willebrand Factor Antigen, Biomarkers of Inflammation, and Microvascular Flap Thrombosis in Reconstructive Surgery. J. Clin. Med. 2024, 13, 5411. [Google Scholar] [CrossRef]
- da Silva, A.C.O.; Silva, G.B.; Cho, A.B.; Wei, T.H.; Mattar, R.; Iamaguchi, R.B. Hypoalbuminemia in microsurgical flaps of the musculoskeletal apparatus. Acta Ortop. Bras. 2020, 28, 168–171. [Google Scholar] [CrossRef]
- Košec, A.; Solter, D.; Ribić, A.; Knežević, M.; Vagić, D.; Pegan, A. Systemic Inflammatory Markers as Predictors of Postoperative Complications and Survival in Patients with Advanced Head and Neck Squamous Cell Carcinoma Undergoing Free-Flap Reconstruction. J. Oral Maxillofac. Surg. 2022, 80, 744–755. [Google Scholar] [CrossRef]
- Chargi, N.; Breik, O.; Forouzanfar, T.; Martin, T.; Praveen, P.; Idle, M.; Parmar, S.; de Bree, R. Association of low skeletal muscle mass and systemic inflammation with surgical complications and survival after microvascular flap reconstruction in patients with head and neck cancer. Head Neck 2022, 44, 2077–2094. [Google Scholar] [CrossRef] [PubMed]
- Handschel, J.; Burghardt, S.; Naujoks, C.; Kübler, N.R.; Giers, G. Parameters predicting complications in flap surgery. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 589–594. [Google Scholar] [CrossRef]
- Schmidt, A.; Bengtsson, A.; Tylman, M.; Blomqvist, L. Pro-inflammatory cytokines in elective flap surgery. J. Surg. Res. 2007, 137, 117–121. [Google Scholar] [CrossRef]
- Finke, J.C.; Yang, J.; Bredell, M.; von Fritschen, U.; Glocker, M.O. Plasma Cytokine and Growth Factor Profiling during Free Flap Transplantation. In Issues in Flap Surgery; InTech: London, UK, 2018. [Google Scholar]
- Rothweiler, R.M.; Metzger, M.C.; Zieger, B.; Huber-Schumacher, S.; Schmelzeisen, R.; Kalbhenn, J. The Role of von Willebrand Factor in Microvascular Surgery in Severely Injured Patients. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3836. [Google Scholar] [CrossRef]
- Deng, Z.; Fan, T.; Xiao, C.; Tian, H.; Zheng, Y.; Li, C.; He, J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct. Target. Ther. 2024, 9, 61. [Google Scholar]
- Zhang, S.; Li, Y.; Zhang, J.; Sun, Y.; Chu, X.; Gui, X.; Tong, H.; Ding, Y.; Ju, W.; Xu, M.; et al. Platelet-Derived TGF-β1 Promotes Deep Vein Thrombosis. Thromb. Haemost. 2024, 124, 641–648. [Google Scholar] [CrossRef]
- Ahamed, J.; Burg, N.; Yoshinaga, K.; Janczak, C.A.; Rifkin, D.B.; Coller, B.S. In vitro and in vivo evidence for shear-induced activation of latent transforming growth factor-beta1. Blood 2008, 112, 3650–3660. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.J. Observational research methods—Cohort studies, cross sectional studies, and case–control studies. Afr. J. Emerg. Med. 2012, 2, 38–46. [Google Scholar] [CrossRef]
- Dettori, J.R.; Norvell, D.C.; Chapman, J.R. Grab Control! Choosing the Right Comparison Group in an Observational Study. Glob. Spine J. 2019, 9, 456–458. [Google Scholar] [CrossRef]
- Lese, I.; Biedermann, R.; Constantinescu, M.; Grobbelaar, A.O.; Olariu, R. Predicting risk factors that lead to free flap failure and vascular compromise: A single unit experience with 565 free tissue transfers. J. Plast. Reconstr. Aesthet. Surg. 2021, 74, 512–522. [Google Scholar] [CrossRef]
- Mahrhofer, M.; Reichert, R.; Siegwart, L.C.; Russe, E.; Schoeller, T.; Wechselberger, G.; Weitgasser, L. Risk of perioperative hormonal breast cancer therapy for microvascular flap complications in breast reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2023, 85, 143–148. [Google Scholar] [CrossRef]
- Chattha, A.S.; Ruan, Q.Z.; Bucknor, A.; Chen, A.D.; Lee, B.T.; Lin, S.J. Abstract: Impact of Blood Thinners on Flap Failure and Hematoma Rates in Patients Undergoing Non-Breast Flap Reconstruction: Analysis of 79,915 Patients. Plast. Reconstr. Surg. Glob. Open 2017, 2, 129–130. [Google Scholar] [CrossRef]
- Gómez-Bernal, F.; Quevedo-Abeledo, J.C.; García-González, M.; Fernández-Cladera, Y.; González-Rivero, A.F.; de Vera-González, A.; Martín-González, C.; González-Gay, M.Á.; Ferraz-Amaro, I. Serum Levels of Transforming Growth Factor Beta 1 in Systemic Lupus Erythematosus Patients. Biomolecules 2022, 13, 73. [Google Scholar] [CrossRef]
- Unal, I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput. Math. Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef]
- Chen, P.Y.; Qin, L.; Simons, M. TGFβ signaling pathways in human health and disease. Front. Mol. Biosci. 2023, 10, 1113061. [Google Scholar] [CrossRef] [PubMed]
- Karolczak, K.; Watala, C. Blood Platelets as an Important but Underrated Circulating Source of TGFβ. Int. J. Mol. Sci. 2021, 22, 4492. [Google Scholar] [CrossRef]
- Ghafoory, S.; Varshney, R.; Robison, T.; Kouzbari, K.; Woolington, S.; Murphy, B.; Xia, L.; Ahamed, J. Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv. 2018, 2, 470–480. [Google Scholar] [CrossRef]
- Grainger, D.J.; Wakefield, L.; Bethell, H.W.; Farndale, R.W.; Metcalfe, J.C. Release and activation of platelet latent TGF-beta in blood clots during dissolution with plasmin. Nat. Med. 1995, 1, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vootukuri, S.; Meyer, A.; Ahamed, J.; Coller, B.S. Association between shear stress and platelet-derived transforming growth factor-β1 release and activation in animal models of aortic valve stenosis. Arterioscler Thromb. Vasc. Biol. 2014, 34, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Walshe, T.E.; dela Paz, N.G.; D′Amore, P.A. The role of shear-induced transforming growth factor-β signaling in the endothelium. Arterioscler Thromb Vasc Biol. 2013, 33, 2608–2617. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E.; Suto, M.J. Thrombospondin-1 Regulation of Latent TGF-β Activation: A Therapeutic Target for Fibrotic Disease. Matrix Biol. 2018, 68–69, 28–43. [Google Scholar] [CrossRef]
- Murphy-Ullrich, J.E.; Poczatek, M. Activation of latent TGF-beta by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev. 2000, 11, 59–69. [Google Scholar] [CrossRef]
- Boknäs, N.; Faxälv, L.; Sanchez Centellas, D.; Wallstedt, M.; Ramström, S.; Grenegård, M.; Lindahl, T.L. Thrombin-induced platelet activation via PAR4: Pivotal role for exosite II. Thromb Haemost. 2014, 2, 58–65. [Google Scholar] [CrossRef]
- Pihusch, V.; Pihusch, M.; Penovici, M.; Kolb, H.J.; Hiller, E.; Pihusch, R. Transforming growth factor beta-1 released from platelets contributes to hypercoagulability in veno-occlusive disease following hematopoetic stem cell transplantation. Thromb. Res. 2005, 116, 233–240. [Google Scholar] [CrossRef]
- Słupski, W.; Jawień, P.; Nowak, B. Botanicals in Postmenopausal Osteoporosis. Nutrients 2021, 13, 1609. [Google Scholar] [CrossRef]
- Jiang, S.; Ai, Y.; Ni, L.; Wu, L.; Huang, X.; Chen, S. Platelet-derived TGF-β1 is related to portal vein thrombosis in cirrhosis by promoting hypercoagulability and endothelial dysfunction. Front. Cardiovasc. Med. 2022, 9, 938397. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.G.; French, R.J.; Lalonde, D.H. Why do free flap vessels thrombose? Lessons learned from implantable Doppler monitoring. Can. J. Plast. Surg. 2004, 12, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Undas, A.; Ariëns, R.A. Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol. 2011, 31, e88–e99. [Google Scholar] [CrossRef] [PubMed]
- Smeda, M.; Maleki, E.H.; Jasztal, A. A possible role of plasmin-dependent activation of TGF-β in cancer-associated thrombosis: Implications for therapy. Cancer Metastasis Rev. 2024, 44, 2. [Google Scholar] [CrossRef]
- Hassan, M.O.; Duarte, R.; Dix-Peek, T.; Dickens, C.; Naidoo, S.; Vachiat, A.; Grinter, S.; Manga, P.; Naicker, S. Transforming Growth Factor-β Protects against Inflammation-Related Atherosclerosis in South African CKD Patients. Int. J. Nephrol. 2018, 2018, 8702372. [Google Scholar] [CrossRef]
- Schmidt, F.; Ward, M.; Repanos, C. Postoperative serum C-reactive protein dynamics after pharyngolaryngectomy with jejunal free-flap reconstruction. Ann. R. Coll. Surg. Engl. 2023, 105, 263–268. [Google Scholar] [CrossRef]
- Ameenuddin, M.; Anand, M.; Massoudi, M. Effects of Shear-Dependent Viscosity and Hematocrit on Blood Flow. Appl. Math. Comput. 2019, 356, 299–311. [Google Scholar] [CrossRef]
- Leo, J.A.; Simmonds, M.J.; Sabapathy, S. Shear-thinning behaviour of blood in response to active hyperaemia: Implications for the assessment of arterial shear stress-mediated dilatation. Exp. Physiol. 2020, 105, 244–257. [Google Scholar] [CrossRef]
- Finnson, K.W.; McLean, S.; Di Guglielmo, G.M.; Philip, A. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring. Adv. Wound Care. 2013, 2, 195–214. [Google Scholar] [CrossRef]
- Tredget, E.B.; Demare, J.; Chandran, G.; Tredget, E.E.; Yang, L.; Ghahary, A. Transforming growth factor-beta and its effect on reepithelialization of partial-thickness ear wounds in transgenic mice. Wound Repair Regen. 2005, 13, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Gierek, M.; Klama-Baryła, A.; Łabuś, W.; Bergler-Czop, B.; Pietrauszka, K.; Niemiec, P. Platelet-Rich Plasma and Acellular Dermal Matrix in the Surgical Treatment of Hidradenitis Suppurativa: A Comparative Retrospective Study. J. Clin. Med. 2023, 8, 2112. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Zhao, J.; Ren, Q.; Ma, Y.; Duan, P.; Huang, Y.; Wang, S. Clinical application of platelet rich plasma to promote healing of open hand injury with skin defect. Regen. Ther. 2024, 26, 308–314. [Google Scholar] [CrossRef] [PubMed]
Patient Group | Overall N = 44 | Complications Group N = 22 | Control Group N = 22 | p-Value |
---|---|---|---|---|
Demographic data | ||||
Mean age, years | 57.9 (54.8–61.0) | 59.5 (53.5–65.4) | 54.4 (46.7–62.1) | 0.389 |
Women, n (%) | 20 (45.5%) | 10 (45.5%) | 10 (45.5%) | - |
Location of reconstruction | ||||
Extremity, n (%) | 6 (13.6%) | 4 (18.2%) | 2 (9.1%) | 0.248 |
ENT, n (%) | 26 (59.1%) | 14 (63.6%) | 12 (54.5%) | 0.539 |
Head and neck, n (%) | 6 (13.6%) | 2 (9.1%) | 4 (18.2%) | 0.248 |
Breast, n (%) | 6 (13.6%) | 2 (9.1%) | 4 (18.2%) | 0.248 |
Flap type | ||||
ALT, n (%) | 25 (56.8%) | 12 (54.5%) | 13 (59.1%) | 0.773 |
Fibular flap, n (%) | 5 (11.4%) | 3 (13.6%) | 2 (9.1%) | 0.635 |
DIEP, n (%) | 5 (11.4%) | 1 (4.5%) | 4 (18.2%) | 0.154 |
Other, n (%) | 9 (20.5%) | 6 (27.3%) | 3 (13.6%) | 0.262 |
Indication | ||||
Trauma, n (%) | 5 (11.4%) | 2 (9.1%) | 3 (13.6%) | 0.635 |
Oncology, n (%) | 32 (72.7%) | 14 (63.6%) | 18 (81.8%) | 0.517 |
Defect, n (%) | 7 (15.9%) | 6 (27.3%) | 1 (4.5%) | 0.099 |
Intraoperative and anesthesia considerations | ||||
Duration of surgery, hours | 6.03 (5.48–6.58) | 5.93 (5.20–6.66) | 6.18 (5.18–7.18) | 0.739 |
Total intraoperative crystalloids, mL | 2460.00 (2421.59–2498.41) | 2480.00 (2434.76–2525.24) | 2440.00 (2370.89–2509.11) | 0.276 |
Total intraoperative colloids, mL | 625.00 (521.04–728.94) | 650.00 (477.22–822.78) | 600.00 (449.19–750.81) | 0.615 |
Intraoperative hematocrit, % | 34.50 (33.30–35.70) | 33.75 (31.76–35.74) | 36.00 (34.16–37.84) | 0.097 |
Use of vasopressors/sympathomimetics, n (%) | 15 (34.1%) | 10 (45.5%) | 5 (22.7%) | 0.112 |
Laboratory values | ||||
Red blood cell count, 109/L | 4.13 (3.97–4.28) | 4.28 (4.06–4.49) | 4.00 (3.77–4.23) | 0.084 |
White blood cell count, 109/L | 6.36 (5.57–7.17) | 6.50 (5.62–7.38) | 6.25 (4.91–7.59) | 0.418 |
Lymphocyte count, 109/L | 1.67 (1.48–1.86) | 1.63 (1.31–1.93) | 1.71 (1.45–1.96) | 0.497 |
Neutrophil count, 109/L | 3.90 (3.13–4.67) | 4.06 (3.28–4.84) | 3.76 (2.44–5.09) | 0.162 |
Monocyte count, 109/L | 0.56 (0.50–0.63) | 0.56 (0.47–0.66) | 0.57 (0.47–0.66) | 0.958 |
Platelet count, 109/L | 258.95 (230.52–287.38) | 288.37 (238.33–338.40) | 233.55 (202.96–264.14) | 0.092 |
Hemoglobin, g/dL | 12.43 (11.90–12.95) | 12.87 (12.13–13.61) | 12.05 (11.28–12.81) | 0.087 |
Hematocrit, % | 38.81 (37.41–40.22) | 40.12 (38.22–42.01) | 37.69 (35.64–39.74) | 0.065 |
Total plasma protein, g/L | 63.79 (61.94–65.94) | 64.08 (61.32–66.83) | 63.51 (60.79–66.23) | 0.794 |
Plasma albumin, g/L | 38.77 (37.58–39.95) | 39.00 (37.05–40.96) | 38.55 (36.98–40.11) | 0.668 |
CRP, mg/L | 8.40 (3.90–12.91) | 6.93 (3.25–10.61) | 9.87 (1.23–18.51) | 0.718 |
Plasma fibrinogen, g/L | 3.61 (3.24–3.98) | 4.04 (3.56–4.51) | 3.22 (2.69–3.75) | 0.044 |
Interleukin-6, pg/mL | 14.62 (10.32–18.92) | 11.73 (6.32–17.13) | 17.37 (10.51–24.24) | 0.262 |
HDL-C, mmol/l | 1.27 (1.16–1.39) | 1.17 (1.01–1.32) | 1.37 (1.20–1.54) | 0.094 |
LDL-C, mmol/l | 2.89 (2.57–3.21) | 2.84 (2.49–3.19) | 2.93 (2.38–3.49) | 0.950 |
Preoperative TGF-β1, ng/ml | 2.64 (2.25–3.03) | 2.68 (2.13–3.24) | 2.60 (2.01–3.20) | 0.771 |
Postoperative TGF-β1, ng/ml | 3.12 (2.71–3.53) | 3.48 (2.90–4.06) | 2.77 (2.20–3.35) | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocans, R.P.; Zarins, J.; Bine, E.; Mahauri, I.; Deksnis, R.; Citovica, M.; Donina, S.; Gravelsina, S.; Vilmane, A.; Rasa-Dzelzkaleja, S.; et al. Early Postoperative Increase in Transforming Growth Factor Beta-1 Predicts Microvascular Flap Loss in Reconstructive Surgery: A Prospective Cohort Study. Medicina 2025, 61, 863. https://doi.org/10.3390/medicina61050863
Rocans RP, Zarins J, Bine E, Mahauri I, Deksnis R, Citovica M, Donina S, Gravelsina S, Vilmane A, Rasa-Dzelzkaleja S, et al. Early Postoperative Increase in Transforming Growth Factor Beta-1 Predicts Microvascular Flap Loss in Reconstructive Surgery: A Prospective Cohort Study. Medicina. 2025; 61(5):863. https://doi.org/10.3390/medicina61050863
Chicago/Turabian StyleRocans, Rihards Peteris, Janis Zarins, Evita Bine, Insana Mahauri, Renars Deksnis, Margarita Citovica, Simona Donina, Sabine Gravelsina, Anda Vilmane, Santa Rasa-Dzelzkaleja, and et al. 2025. "Early Postoperative Increase in Transforming Growth Factor Beta-1 Predicts Microvascular Flap Loss in Reconstructive Surgery: A Prospective Cohort Study" Medicina 61, no. 5: 863. https://doi.org/10.3390/medicina61050863
APA StyleRocans, R. P., Zarins, J., Bine, E., Mahauri, I., Deksnis, R., Citovica, M., Donina, S., Gravelsina, S., Vilmane, A., Rasa-Dzelzkaleja, S., Sabelnikovs, O., & Mamaja, B. (2025). Early Postoperative Increase in Transforming Growth Factor Beta-1 Predicts Microvascular Flap Loss in Reconstructive Surgery: A Prospective Cohort Study. Medicina, 61(5), 863. https://doi.org/10.3390/medicina61050863