Correlation and Comparative Evaluation of MOCART and MOCART 2.0 for Assessing Cartilage Repair
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Design
2.2. Patient Selection
2.3. Surgical Techniques
2.4. Patient-Reported Outcomes Collection
2.5. Radiographic Data Collection and Assessment
2.6. Statistical Analysis
3. Results
3.1. Radiographic Outcomes
3.2. Relationship Between MOCART/MOCART 2.0 and Time of MRI
3.3. Relationship Between MOCART/MOCART 2.0 and PROMs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
COMI | Core Outcome Measures and Index |
AC | AutoCart |
ACI | Autologous Chondrocyte Implantation |
AMADEUS | Area Measurement and Depth and Underlying Structures |
cCOMI | Change in Core Outcome Measures and Index |
cIKDC | Change in Knee Documentation Committee |
CIS | Clinical Information System |
ICRS | International Cartilage Repair Society |
MCI | Minced Cartilage Implantation |
MF | Microfracturing |
MOCART | The Magnetic Resonance Observation of Cartilage Repair Tissue |
OA | Osteoarthritis |
PROMs | Patient-Reported Outcome Measures |
References
- Widuchowski, W.; Widuchowski, J.; Trzaska, T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Årøen, A.; Jones, D.G.; Fu, F.H. Arthroscopic Diagnosis and Treatment of Cartilage Injuries. Sports Med. Arthrosc. Rev. 1998, 6, 31–40. [Google Scholar]
- Gratz, K.R.; Wong, B.L.; Bae, W.C.; Sah, R.L. The effects of focal articular defects on cartilage contact mechanics. J. Orthop. Res. 2009, 27, 584–592. [Google Scholar] [CrossRef]
- Minas, T.; Nehrer, S. Current concepts in the treatment of articular cartilage defects. Orthopedics 1997, 20, 525–538. [Google Scholar] [CrossRef]
- Fraser, A.; Fearon, U.; Billinghurst, R.C.; Ionescu, M.; Reece, R.; Barwick, T.; Emery, P.; Poole, A.R.; Veale, D.J. Turnover of type II collagen and aggrecan in cartilage matrix at the onset of inflammatory arthritis in humans: Relationship to mediators of systemic and local inflammation. Arthritis Rheum. 2003, 48, 3085–3095. [Google Scholar] [CrossRef]
- Bekkers, J.E.; de Windt, T.S.; Raijmakers, N.J.; Dhert, W.J.; Saris, D.B. Validation of the Knee Injury and Osteoarthritis Outcome Score (KOOS) for the treatment of focal cartilage lesions. Osteoarthr. Cartil. 2009, 17, 1434–1439. [Google Scholar] [CrossRef]
- Kocher, M.S.; Steadman, J.R.; Briggs, K.K.; Sterett, W.I.; Hawkins, R.J. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J. Bone Jt. Surg. Am. 2004, 86, 1139–1145. [Google Scholar] [CrossRef]
- Guermazi, A.; Roemer, F.W.; Alizai, H.; Winalski, C.S.; Welsch, G.; Brittberg, M.; Trattnig, S. State of the Art: MR Imaging after Knee Cartilage Repair Surgery. Radiology 2015, 277, 23–43. [Google Scholar] [CrossRef]
- Trattnig, S.; Winalski, C.S.; Marlovits, S.; Jurvelin, J.S.; Welsch, G.H.; Potter, H.G. Magnetic Resonance Imaging of Cartilage Repair: A Review. Cartilage 2011, 2, 5–26. [Google Scholar] [CrossRef]
- Jungmann, P.M.; Baum, T.; Bauer, J.S.; Karampinos, D.C.; Erdle, B.; Link, T.M.; Li, X.; Trattnig, S.; Rummeny, E.J.; Woertler, K.; et al. Cartilage repair surgery: Outcome evaluation by using noninvasive cartilage biomarkers based on quantitative MRI techniques? BioMed Res. Int. 2014, 2014, 840170. [Google Scholar] [CrossRef]
- Lineham, B.; Wijayathunga, H.; Moran, E.; Shuweihdi, F.; Gupta, H.; Pandit, H.; Wijayathunga, N. A systematic review demonstrating correlation of MRI compositional parameters with clinical outcomes following articular cartilage repair interventions in the knee. Osteoarthr. Cartil. Open 2023, 5, 100388. [Google Scholar] [CrossRef] [PubMed]
- Marlovits, S.; Singer, P.; Zeller, P.; Mandl, I.; Haller, J.; Trattnig, S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: Determination of interobserver variability and correlation to clinical outcome after 2 years. Eur. J. Radiol. 2006, 57, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Marlovits, S.; Striessnig, G.; Resinger, C.T.; Aldrian, S.M.; Vecsei, V.; Imhof, H.; Trattnig, S. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur. J. Radiol. 2004, 52, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Aldrian, S.; Zak, L.; Wondrasch, B.; Albrecht, C.; Stelzeneder, B.; Binder, H.; Kovar, F.; Trattnig, S.; Marlovits, S. Clinical and radiological long-term outcomes after matrix-induced autologous chondrocyte transplantation: A prospective follow-up at a minimum of 10 years. Am. J. Sports Med. 2014, 42, 2680–2688. [Google Scholar] [CrossRef]
- Niemeyer, P.; Laute, V.; John, T.; Becher, C.; Diehl, P.; Kolombe, T.; Fay, J.; Siebold, R.; Niks, M.; Fickert, S.; et al. The Effect of Cell Dose on the Early Magnetic Resonance Morphological Outcomes of Autologous Cell Implantation for Articular Cartilage Defects in the Knee: A Randomized Clinical Trial. Am. J. Sports Med. 2016, 44, 2005–2014. [Google Scholar] [CrossRef]
- Verdonk, P.; Dhollander, A.; Almqvist, K.F.; Verdonk, R.; Victor, J. Treatment of osteochondral lesions in the knee using a cell-free scaffold. Bone Jt. J. 2015, 97-B, 318–323. [Google Scholar] [CrossRef]
- Schoenbauer, E.; Szomolanyi, P.; Shiomi, T.; Juras, V.; Zbýň, Š.; Zak, L.; Weber, M.; Trattnig, S. Cartilage evaluation with biochemical MR imaging using in vivo Knee compression at 3T-comparison of patients after cartilage repair with healthy volunteers. J. Biomech. 2015, 48, 3349–3355. [Google Scholar] [CrossRef]
- Hayter, C.; Potter, H. Magnetic resonance imaging of cartilage repair techniques. J. Knee Surg. 2011, 24, 225–240. [Google Scholar] [CrossRef]
- Schreiner, M.M.; Raudner, M.; Marlovits, S.; Bohndorf, K.; Weber, M.; Zalaudek, M.; Röhrich, S.; Szomolanyi, P.; Filardo, G.; Windhager, R.; et al. The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas. Cartilage 2021, 13 (Suppl. S1), 571S–587S. [Google Scholar] [CrossRef]
- Brittberg, M.; Peterson, L. Introduction of an articular cartilage classification. ICRS Newsl. 1998, 1, 5–8. [Google Scholar]
- Schneider, S.; Ossendorff, R.; Holz, J.; Salzmann, G.M. Arthroscopic Minced Cartilage Implantation (MCI): A Technical Note. Arthrosc. Tech. 2021, 10, e97–e101. [Google Scholar] [CrossRef] [PubMed]
- Wodzig, M.H.H.; Peters, M.J.M.; Emanuel, K.S.; Van Hugten, P.P.W.; Wijnen, W.; Jutten, L.M.; Boymans, T.A.; Loeffen, D.V.; Emans, P.J. Minced Autologous Chondral Fragments with Fibrin Glue as a Simple Promising One-Step Cartilage Repair Procedure: A Clinical and MRI Study at 12-Month Follow-Up. Cartilage 2022, 13, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Pestka, J.M.; Kreuz, P.C.; Erggelet, C.; Schmal, H.; Suedkamp, N.P.; Steinwachs, M. Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am. J. Sports Med. 2008, 36, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Steadman, J.R.; Rodkey, W.G.; Rodrigo, J.J. Microfracture: Surgical technique and rehabilitation to treat chondral defects. Clin. Orthop. Relat. Res. 2001, 391, S362–S369. [Google Scholar] [CrossRef]
- Anderson, A.F.; Irrgang, J.J.; Kocher, M.S.; Mann, B.J.; Harrast, J.J. The International Knee Documentation Committee Subjective Knee Evaluation Form:Normative Data. Am. J. Sports Med. 2006, 34, 128–135. [Google Scholar] [CrossRef]
- Bombardier, C. Outcome Assessments in the Evaluation of Treatment of Spinal Disorders: Summary and General Recommendations. Spine 2000, 25, 3100–3103. [Google Scholar] [CrossRef]
- Jungmann, P.M.; Welsch, G.H.; Brittberg, M.; Trattnig, S.; Braun, S.; Imhoff, A.B.; Salzmann, G.M. Magnetic Resonance Imaging Score and Classification System (AMADEUS) for Assessment of Preoperative Cartilage Defect Severity. Cartilage 2017, 8, 272–282. [Google Scholar] [CrossRef]
- de Windt, T.S.; Welsch, G.H.; Brittberg, M.; Vonk, L.A.; Marlovits, S.; Trattnig, S.; Saris, D.B. Is magnetic resonance imaging reliable in predicting clinical outcome after articular cartilage repair of the knee? A systematic review and meta-analysis. Am. J. Sports Med. 2013, 41, 1695–1702. [Google Scholar] [CrossRef]
- Blackman, A.J.; Smith, M.V.; Flanigan, D.C.; Matava, M.J.; Wright, R.W.; Brophy, R.H. Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: A systematic review and meta-analysis. Am. J. Sports Med. 2013, 41, 1426–1434. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Driessen, A.; Tingart, M.; Baroncini, A. Reliability of the MOCART score: A systematic review. J. Orthop. Traumatol. 2021, 22, 39. [Google Scholar] [CrossRef]
- Tetta, C.; Busacca, M.; Moio, A.; Rinaldi, R.; Delcogliano, M.; Kon, E.; Filardo, G.; Marcacci, M.; Albisinni, U. Knee Osteochondral Autologous Transplantation: Long-term MR findings and clinical correlations. Eur. J. Radiol. 2010, 76, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Riyami, M.; Rolf, C. Evaluation of microfracture of traumatic chondral injuries to the knee in professional football and rugby players. J. Orthop. Surg. Res. 2009, 4, 13. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, M.M.; Raudner, M.; Röhrich, S.; Zalaudek, M.; Weber, M.; Kaiser, G.; Aldrian, S.; Chiari, C.; Windhager, R.; Trattnig, S. Reliability of the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 knee score for different cartilage repair techniques—A retrospective observational study. Eur. Radiol. 2021, 31, 5734–5745. [Google Scholar] [CrossRef] [PubMed]
- Goller, S.S.; Heuck, A.; Erber, B.; Fink, N.; Rückel, J.; Niethammer, T.R.; Müller, P.E.; Ricke, J.; Baur-Melnyk, A. Magnetic resonance observation of cartilage repair tissue (MOCART) 2.0 for the evaluation of retropatellar autologous chondrocyte transplantation and correlation to clinical outcome. Knee 2022, 34, 42–54. [Google Scholar] [CrossRef]
- Jung, M.; Ruschke, S.; Karampinos, D.C.; Holwein, C.; Baum, T.; Gersing, A.S.; Bamberg, F.; Jungmann, P.M. The Predictive Value of Early Postoperative MRI-Based Bone Marrow Parameters for Mid-Term Outcome after MACI with Autologous Bone Grafting at the Knee. Cartilage 2022, 13, 19476035221093061. [Google Scholar] [CrossRef]
- Runer, A.; Ossendorff, R.; Öttl, F.; Stadelmann, V.A.; Schneider, S.; Preiss, S.; Salzmann, G.M.; Hax, J. Autologous minced cartilage repair for chondral and osteochondral lesions of the knee joint demonstrates good postoperative outcomes and low reoperation rates at minimum five-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2023, 31, 4977–4987. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Aretini, P.; Trivellas, A.; Tingart, M.; Eschweiler, J.; Baroncini, A. Impact of tourniquet during knee arthroplasty: A bayesian network meta-analysis of peri-operative outcomes. Arch. Orthop. Trauma Surg. 2021, 141, 1007–1023. [Google Scholar] [CrossRef]
- Retzky, J.S.; Fletcher, C.; Rizy, M.; Burge, A.; Strickland, S.M. Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) Scores > 55 at 6 Months Postoperative Predict Ability to Achieve Patient Acceptable Symptomatic State at Minimum 1 Year Postoperative Following Autologous Chondrocyte Implantation for Grade IV Chondral Defects About the Patellofemoral Joint. Cartilage 2025, 16, 17–23. [Google Scholar] [CrossRef]
- Casari, F.A.; Germann, C.; Weigelt, L.; Wirth, S.; Viehöfer, A.; Ackermann, J. The Role of Magnetic Resonance Imaging in Autologous Matrix-Induced Chondrogenesis for Osteochondral Lesions of the Talus: Analyzing MOCART 1 and 2.0. Cartilage 2021, 13 (Suppl. S1), 639S–645S. [Google Scholar] [CrossRef]
- Gobbi, A.; Karnatzikos, G.; Scotti, C.; Mahajan, V.; Mazzucco, L.; Grigolo, B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions. Cartilage 2011, 2, 286–299. [Google Scholar] [CrossRef]
- Ackermann, J.; Merkely, G.; Mestriner, A.B.; Shah, N.; Gomoll, A.H. Increased Chondrocytic Gene Expression Is Associated With Improved Repair Tissue Quality and Graft Survival in Patients After Autologous Chondrocyte Implantation. Am. J. Sports Med. 2019, 47, 2919–2926. [Google Scholar] [CrossRef] [PubMed]
- Marlovits, S.; Aldrian, S.; Wondrasch, B.; Zak, L.; Albrecht, C.; Welsch, G.; Trattnig, S. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am. J. Sports Med. 2012, 40, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Laute, V.; Zinser, W.; Becher, C.; Kolombe, T.; Fay, J.; Pietsch, S.; Kuźma, T.; Widuchowski, W.; Fickert, S. A Prospective, Randomized, Open-Label, Multicenter, Phase III Noninferiority Trial to Compare the Clinical Efficacy of Matrix-Associated Autologous Chondrocyte Implantation With Spheroid Technology Versus Arthroscopic Microfracture for Cartilage Defects of the Knee. Orthop. J. Sports Med. 2019, 7, 2325967119854442. [Google Scholar] [CrossRef]
- Niemeyer, P.; Laute, V.; Zinser, W.; John, T.; Becher, C.; Diehl, P.; Kolombe, T.; Fay, J.; Siebold, R.; Fickert, S. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology is independent of spheroid dose after 4 years. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1130–1143. [Google Scholar] [CrossRef]
Variables (MOCART/MOCART2.0 if Diverse) | MOCART [12,13] | MOCART 2.0 [19] |
---|---|---|
Degree of defect repair and filling of the defect/volume fill of the cartilage defect | 20 | 20 |
Integration to border zone/integration into adjacent cartilage | 15 | 15 |
Surface of the repair tissue | 10 | 10 |
Structure of the repair tissue | 5 | 10 |
Signal intensity of the repair tissue | 30 | 15 |
Subchondral lamina | 5 | - |
Subchondral bone | 5 | - |
Adhesions | 5 | - |
Effusion | 5 | - |
Bony defect or bony overgrowth | - | 10 |
Subchondral changes | - | 20 |
TOTAL | 100 | 100 |
Characteristic | N = 111 1 | ACI, N = 36 1 | AC, N = 16 1 | MCI, N = 22 1 | MF, N = 37 1 | p-Value |
---|---|---|---|---|---|---|
Age [years] | 35 ± 10 | 34 ± 9 | 36 ± 13 | 33 ± 10 | 38 ± 9 | 0.205 |
BMI [kg/m2] | 24.7 ± 3.6 | 23.8 ± 3.3 | 24.7 ± 4.3 | 23.9 ± 3.0 | 26.0 ± 3.8 | 0.048 |
Weight [kg] | 78 ± 14 | 76 ± 14 | 77 ± 13 | 75 ± 12 | 82 ± 14 | 0.166 |
Sex | 0.800 | |||||
Male | 72 (65%) | 21 (58%) | 11 (69%) | 15 (68%) | 25 (68%) | |
Female | 39 (35%) | 15 (42%) | 5 (31%) | 7 (32%) | 12 (32%) | |
ASA Class | 0.948 | |||||
1 | 71 (64%) | 24 (67%) | 10 (63%) | 13 (59%) | 24 (65%) | |
2 | 39 (35%) | 12 (33%) | 6 (38%) | 9 (41%) | 12 (32%) | |
3 | 1 (0.9%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (2.7%) | |
Symptom duration [d] | 21 ± 27 | 28 ± 34 | 17 ± 20 | 30 ± 33 | 11 ± 12 | 0.004 |
Initial traumatic event | 69 (63%) | 27 (75%) | 12 (75%) | 7 (33%) | 23 (62%) | 0.011 |
Defect size [cm2] | 3.24 ± 2.01 | 4.38 ± 2.06 | 2.91 ± 1.34 | 4.03 ± 2.02 | 1.81 ± 1.13 | <0.001 |
ICRS grade | 0.556 | |||||
3 | 85 (86%) | 30 (86%) | 11 (79%) | 13 (81%) | 31 (91%) | |
4 | 14 (14%) | 5 (14%) | 3 (21%) | 3 (19%) | 3 (8.8%) | |
Defect location | ||||||
Patella | 35 (32%) | 21 (58%) | 2 (13%) | 9 (41%) | 3 (8.1%) | <0.001 |
Trochlea | 31 (28%) | 12 (33%) | 5 (31%) | 2 (9.1%) | 12 (32%) | 0.149 |
Med. Femoral condyle | 45 (41%) | 9 (25%) | 9 (56%) | 7 (32%) | 20 (54%) | 0.033 |
Lat. Femoral condyle | 10 (9.0%) | 2 (5.6%) | 2 (13%) | 3 (14%) | 3 (8.1%) | 0.642 |
Other | 2 (1.8%) | 0 (0%) | 0 (0%) | 0 (0%) | 2 (5.4%) | >0.999 |
AMADEUS Score | 58 ± 16 | 56 ± 16 | 60 ± 12 | 44 ± 17 | 67 ± 10 | <0.001 |
COMI | 5.22 ± 1.69 | 5.14 ± 1.59 | 5.43 ± 1.48 | 5.26 ± 1.62 | 5.18 ± 1.95 | 0.928 |
IKDC | 48 ± 14 | 47 ± 14 | 47 ± 16 | 51 ± 12 | 48 ± 14 | 0.666 |
MOCART | Mean ± SD | MOCART 2.0 | Mean ± SD | p | r-Correlation | p-Correlation |
---|---|---|---|---|---|---|
Degree of defect repair and defect filling | 14.8 ± 4.7 | Volume of cartilage defect filling compared to native cartilage | 15.2 ± 4.7 | 0.255 | 0.94 | <0.001 |
Integration to border | 10.1 ± 2.8 | Integration into adjacent cartilage | 10.3 ± 2.6 | 0.377 | 0.92 | <0.001 |
Surface of the repair tissue | 5.9 ± 2.8 | Surface | 5.9 ± 2.7 | 0.873 | 0.98 | <0.001 |
Structure of the repair tissue | 3.46 ± 2.32 | Structure | 7 ± 4.6 | <0.001 | 0.98 | <0.001 |
Signal intensity of the repair tissue | 11 ± 6 | Signal intensity of the repair tissue | 9.95 ± 2.64 | 0.419 | 0.78 | <0.001 |
Subchondral lamina | 1.52 ± 2.3 | Bony defect or bony overgrowth | 5.6 ± 3.0 | <0.001 | 0.71 | <0.001 |
Subchondral bone | 1.36 ± 2.23 | Subchondral changes | 12 ± 6 | <0.001 | 0.77 | <0.001 |
Adhesions | 4.52 ± 1.48 | - | - | - | ||
Effusion | 4.65 ± 1.27 | - | - | - | ||
Total MOCART | 58 ± 13 | Total MOCART 2.0 | 66 ± 13 | <0.001 | 0.84 | <0.001 |
MOCART | 6 Months | 12 Months | 24 Months | 60 Months | Combined | |||||
---|---|---|---|---|---|---|---|---|---|---|
cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | |
MF | 0.15 | 0.18 | 0.12 | 0.37 | 0.09 | 0.27 | 0.2 | 0.44 | 0.06 | 0.04 |
MCI | 0.33 | 0.39 | 0.5 | 0.53 | 0.54 | 1 | NA | NA | 0.18 | 0 |
AC | 0.29 | 0.65 | 0.64 | 0.65 | 0.08 | 0.22 | NA | NA | 0.45 | 0.6 |
ACI | 0.2 | 0.11 | 0.21 | 0.16 | 0.01 | 0.06 | NA | NA | 0.03 | 0.1 |
Combined | 0.03 | 0.01 | 0.13 | 0.11 | 0.13 | 0.2 | 0.23 | 0.15 | 0.06 | 0.06 |
MOCART 2.0 | 6 Months | 12 Months | 24 Months | 60 Months | Combined | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | cCOMI | cIKDC | ||
MF | 0.03 | 0.03 | 0.31 | 0.62 | 0.02 | 0.09 | 0.07 | 0.43 | 0.08 | 0.15 | |
MCI | 0.16 | 0.07 | 0.05 | 0.67 | 0.56 | 0.66 | NA | NA | 0.05 | 0.23 | |
AC | 0.1 | 0.72 | 0.72 | 0.8 | 0 | 0.43 | NA | NA | 0.43 | 0.73 | |
ACI | 0.15 | 0.02 | 0.16 | 0.04 | 0.05 | 0.14 | NA | NA | 0.03 | 0.06 | |
Combined | 0.02 | 0.06 | 0.24 | 0.14 | 0.05 | 0.09 | 0.04 | 0.2 | 0.08 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oettl, F.C.; Leuthard, L.; Brunner, M.; Stadelmann, V.A.; Preiss, S.; Leunig, M.; Salzmann, G.M.; Hax, J. Correlation and Comparative Evaluation of MOCART and MOCART 2.0 for Assessing Cartilage Repair. Medicina 2025, 61, 745. https://doi.org/10.3390/medicina61040745
Oettl FC, Leuthard L, Brunner M, Stadelmann VA, Preiss S, Leunig M, Salzmann GM, Hax J. Correlation and Comparative Evaluation of MOCART and MOCART 2.0 for Assessing Cartilage Repair. Medicina. 2025; 61(4):745. https://doi.org/10.3390/medicina61040745
Chicago/Turabian StyleOettl, Felix Conrad, Louis Leuthard, Moritz Brunner, Vincent A. Stadelmann, Stefan Preiss, Michael Leunig, Gian M. Salzmann, and Jakob Hax. 2025. "Correlation and Comparative Evaluation of MOCART and MOCART 2.0 for Assessing Cartilage Repair" Medicina 61, no. 4: 745. https://doi.org/10.3390/medicina61040745
APA StyleOettl, F. C., Leuthard, L., Brunner, M., Stadelmann, V. A., Preiss, S., Leunig, M., Salzmann, G. M., & Hax, J. (2025). Correlation and Comparative Evaluation of MOCART and MOCART 2.0 for Assessing Cartilage Repair. Medicina, 61(4), 745. https://doi.org/10.3390/medicina61040745