Cardiac Rehabilitation in TAVI Patients: Safety and Benefits: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Aortic Stenosis: Epidemiology, Prognosis, and the Evolving Role of Transcatheter Aortic Valve Implantation in Patient Management
3.1. Epidemiology
3.2. Prognosis
3.3. TAVI—A New Alternative Since 2002
4. Cardiac Rehabilitation in Cardiovascular Disease: Components, Indications, and Pathophysiology Implications of Exercise-Based Intervention
5. Post-TAVI Cardiac Rehabilitation: Safety and Benefits; State of the Art and Evidence from the Literature; and Gaps in Knowledge
5.1. Safety of the Cardiac Rehabilitation Program in TAVI Patients
5.2. Benefits of the Cardiac Rehabilitation Program in TAVI Patients
5.2.1. Functional Capacity
5.2.2. Frailty and Functional Independence
5.2.3. Muscular Performance
5.2.4. Quality of Life (QoL)
5.2.5. Anxiety and Depression
5.2.6. Echocardiography and Laboratory Parameters
5.2.7. Mortality
5.3. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADL | Activities of Daily Living |
AS | Aortic stenosis |
BI | Barthel index |
CPET | Cardiopulmonary exercise testing |
CR | Cardiac rehabilitation |
HADS | Hospital Anxiety and Depression Scale |
HRV | Heart rate variability |
MICT | Moderate-intensity continuous training |
QoL | Quality of life |
SF-12 | Short Form-12 |
TAVI | Transcatheter aortic valve implantation |
VO2max | Maximal oxygen uptake |
WG | Working group |
6MWD | 6 min walk distance |
6MWT | 6 min walk test |
References
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2021, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Ambrosetti, M.; Abreu, A.; Corrà, U.; Davos, C.H.; Hansen, D.; Frederix, I.; Iliou, M.C.; Pedretti, R.F.; Schmid, J.-P.; Vigorito, C.; et al. Secondary Prevention through Comprehensive Cardiovascular Rehabilitation: From Knowledge to Implementation. 2020 Update. A Position Paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2020, 28, 204748732091337. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs. World Population Ageing 2017 Highlights; United Nations: New York, NY, USA, 2017; Available online: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf (accessed on 5 November 2024).
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef]
- Mantovani, F.; Fanti, D.; Tafciu, E.; Fezzi, S.; Setti, M.; Rossi, A.; Ribichini, F.; Benfari, G. When Aortic Stenosis Is Not Alone: Epidemiology, Pathophysiology, Diagnosis and Management in Mixed and Combined Valvular Disease. Front. Cardiovasc. Med. 2021, 8, 744497. [Google Scholar] [CrossRef]
- Osnabrugge, R.L.; Mylotte, D.; Head, S.J.; Van Mieghem, N.M.; Nkomo, V.T.; LeReun, C.M.; Bogers, A.J.; Piazza, N.; Kappetein, A.P. Aortic Stenosis in the Elderly: Disease Prevalence and Number of Candidates for Transcatheter Aortic Valve Replacement: A Meta-Analysis and Modeling Study. J. Am. Coll. Cardiol. 2013, 62, 1002–1012. [Google Scholar] [CrossRef]
- Sevilla, T.; Revilla-Orodea, A.; San Román, J.A. Timing of Intervention in Asymptomatic Patients with Aortic Stenosis. Eur. Cardiol. 2021, 16, e32. [Google Scholar] [CrossRef]
- Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Kanamori, N.; Murata, K.; Kitai, T.; Kawase, Y.; Izumi, C.; Kato, T.; et al. Sudden Death in Patients with Severe Aortic Stenosis: Observations from the CURRENT AS Registry. J. Am. Heart Assoc. 2018, 7, e008397. [Google Scholar] [CrossRef]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Strange, G.A.; Stewart, S.; Curzen, N.; Ray, S.; Kendall, S.; Braidley, P.; Pearce, K.; Pessotto, R.; Playford, D.; Gray, H.H. Uncovering the Treatable Burden of Severe Aortic Stenosis in the UK. Open Heart 2022, 9, e001783. [Google Scholar] [CrossRef]
- Spilias, N.; Martyn, T.; Denby, K.J.; Harb, S.C.; Popovic, Z.B.; Kapadia, S.R. Left Ventricular Systolic Dysfunction in Aortic Stenosis: Pathophysiology, Diagnosis, Management, and Future Directions. Struct. Heart J. Heart Team 2022, 6, 100089. [Google Scholar] [CrossRef]
- Zhao, Y.; Nicoll, R.; He, Y.H.; Henein, M.Y. The Effect of Statins on Valve Function and Calcification in Aortic Stenosis: A Meta-Analysis. Atherosclerosis 2016, 246, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.; Wei, Z.; Sun, S. Complications in Transcatheter Aortic Valve Replacement: A Comprehensive Analysis and Management Strategies. Curr. Probl. Cardiol. 2024, 49, 102478. [Google Scholar] [CrossRef] [PubMed]
- Karra, N.; Sharon, A.; Massalha, E.; Fefer, P.; Maor, E.; Guetta, V.; Ben-Zekry, S.; Kuperstein, R.; Matetzky, S.; Beigel, R.; et al. Temporal Trends in Patient Characteristics and Clinical Outcomes of TAVR: Over a Decade of Practice. J. Clin. Med. 2024, 13, 5027. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Pibarot, P.; Hahn, R.T.; Genereux, P.; Kodali, S.K.; Kapadia, S.R.; Cohen, D.J.; Pocock, S.J.; et al. Transcatheter Aortic-Valve Replacement in Low-Risk Patients at Five Years. N. Engl. J. Med. 2023, 389, 1949–1960. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Evolut Low Risk Trial Investigators. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Synnott, P.; Murphy, R.P.; Judge, C.; Costello, M.; Reddin, C.; Dennehy, K.; Loughlin, E.; Smyth, A.; Mylotte, D.; O’Donnell, M.J.; et al. Stroke Severity in Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105927. [Google Scholar] [CrossRef]
- Giannuzzi, P.; Saner, H.; Björnstad, H.; Fioretti, P.; Mendes, M.; Cohen-Solal, A.; Dugmore, L.; Hambrecht, R.; Hellemans, I.; McGee, H.; et al. Secondary Prevention through Cardiac Rehabilitation: Position Paper of the Working Group on Cardiac Rehabilitation and Exercise Physiology of the European Society of Cardiology. Eur. Heart J. 2003, 24, 1273–1278. [Google Scholar] [CrossRef]
- Ravn, M.B.; Berthelsen, C.; Maribo, T.; Nielsen, C.V.; Pedersen, C.G.; Handberg, C. Opting Out of Cardiac Rehabilitation in Local Community Healthcare Services: Patients’ Perspectives and Reflections. J. Eval. Clin. Pract. 2024, 30, 1039–1048. [Google Scholar] [CrossRef]
- Ruivo, J.; Moholdt, T.; Abreu, A. Overview of Cardiac Rehabilitation following Post-Acute Myocardial Infarction in European Society of Cardiology Member Countries. Eur. J. Prev. Cardiol. 2023, 30, 758–768. [Google Scholar] [CrossRef]
- Taylor, R.S.; Dalal, H.M.; McDonagh, S.T.J. The Role of Cardiac Rehabilitation in Improving Cardiovascular Outcomes. Nat. Rev. Cardiol. 2022, 19, 180–194. [Google Scholar] [CrossRef]
- Thomas, R.J.; Balady, G.; Banka, G.; Beckie, T.M.; Chiu, J.; Gokak, S.; Ho, P.M.; Keteyian, S.J.; King, M.; Lui, K.; et al. 2018 ACC/AHA Clinical Performance and Quality Measures for Cardiac Rehabilitation: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures. J. Am. Coll. Cardiol. 2018, 71, 1814–1837. [Google Scholar] [CrossRef] [PubMed]
- Dibben, G.O.; Faulkner, J.; Oldridge, N.; Rees, K.; Thompson, D.R.; Zwisler, A.D.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: A Meta-Analysis. Eur. Heart J. 2023, 44, 452–469. [Google Scholar] [CrossRef]
- Bracewell, N.J.; Plasschaert, J.; Conti, C.R.; Keeley, E.C.; Conti, J.B. Cardiac Rehabilitation: Effective Yet Underutilized in Patients with Cardiovascular Disease. Clin. Cardiol. 2022, 45, 1128–1134. [Google Scholar] [CrossRef]
- Skouras, A.Z.; Antonakis-Karamintzas, D.; Tsantes, A.G.; Triantafyllou, A.; Papagiannis, G.; Tsolakis, C.; Koulouvaris, P. The Acute and Chronic Effects of Resistance and Aerobic Exercise in Hemostatic Balance: A Brief Review. Sports 2023, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, B.; Fonarow, G.C.; Goldberg, L.R.; Guglin, M.; Josephson, R.A.; Forman, D.E.; Lin, G.; Lindenfeld, J.; O’Connor, C.; Panjrath, G.; et al. Cardiac Rehabilitation for Patients with Heart Failure: JACC Expert Panel. J. Am. Coll. Cardiol. 2021, 77, 1454–1469. [Google Scholar] [CrossRef] [PubMed]
- Sperlongano, S.; Renon, F.; Bigazzi, M.C.; Sperlongano, R.; Cimmino, G.; D’Andrea, A.; Golino, P. Transcatheter Aortic Valve Implantation: The New Challenges of Cardiac Rehabilitation. J. Clin. Med. 2021, 10, 810. [Google Scholar] [CrossRef]
- Durand, M.J.; Gutterman, D.D. Exercise and Vascular Function: How Much Is Too Much? Can. J. Physiol. Pharmacol. 2014, 92, 551–557. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Hsieh, P.-L.; Hsiao, S.-F.; Chien, M.-Y. Effects of Exercise Training on Autonomic Function in Chronic Heart Failure: Systematic Review. BioMed Res. Int. 2015, 2015, 591708. [Google Scholar] [CrossRef]
- Ashcroft, S.P.; Stocks, B.; Egan, B.; Zierath, J.R. Exercise Induces Tissue-Specific Adaptations to Enhance Cardiometabolic Health. Cell Metab. 2024, 36, 278–300. [Google Scholar] [CrossRef]
- Law, T.D.; Clark, L.A.; Clark, B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016, 36, 205–228. [Google Scholar] [CrossRef] [PubMed]
- Dautzenberg, L.; van Aarle, T.T.M.; Stella, P.R.; Emmelot-Vonk, M.; Weterman, M.A.; Koek, H.L. The Impact of Frailty on Adverse Outcomes After Transcatheter Aortic Valve Replacement in Older Adults: A Retrospective Cohort Study. Catheter. Cardiovasc. Interv. 2022, 100, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Díez-Villanueva, P.; Salamanca, J.; Rojas, A.; Alfonso, F. Importance of Frailty and Comorbidity in Elderly Patients with Severe Aortic Stenosis. J. Geriatr. Cardiol. 2017, 14, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.S.; Melo, R.D.; Deresz, L.F.; Dal Lago, P.; Pontes, M.R.; Karsten, M. Cardiac Rehabilitation Programme after Transcatheter Aortic Valve Implantation versus Surgical Aortic Valve Replacement: Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2017, 24, 688–697. [Google Scholar] [CrossRef]
- Anayo, L.; Rogers, P.; Long, L.; Dalby, M.; Taylor, R. Exercise-Based Cardiac Rehabilitation for Patients Following Open Surgical Aortic Valve Replacement and Transcatheter Aortic Valve Implant: A Systematic Review and Meta-Analysis. Open Heart 2019, 6, e000922. [Google Scholar] [CrossRef]
- Oz, A.; Tsoumas, I.; Lampropoulos, K.; Xanthos, T.; Karpettas, N.; Papadopoulos, D. Cardiac Rehabilitation After TAVI—A Systematic Review and Meta-Analysis. Curr. Probl. Cardiol. 2023, 48, 101531. [Google Scholar] [CrossRef]
- Hosseinpour, A.; Azami, P.; Hosseinpour, H.; Attar, A.; Koushkie Jahromi, M. Efficacy of Exercise Training-Based Cardiac Rehabilitation Programmes after Transcatheter Aortic Valve Implantation: A Systematic Review and Meta-Analysis. Int. J. Cardiol. Cardiovasc. Risk Prev. 2024, 20, 200238. [Google Scholar] [CrossRef]
- Li, Z.; Song, W.; Yang, N.; Ding, Y. Exercise-Based Cardiac Rehabilitation Programmes for Patients After Transcatheter Aortic Valve Implantation: A Systematic Review and Meta-Analysis. Medicine 2023, 102, e34478. [Google Scholar] [CrossRef]
- Hu, Q.; Li, Y.S.; Ren, Q.; Liang, Y.C.; Zhang, J.; Wang, Y.X.; Wang, C.L.; Hong, T.L.; Wang, S.Y.; Zhang, Y.; et al. Efficacy and Safety of Moderate-Intensity Continuous Training on the Improvement of Cardiopulmonary Function in Patients After Transcatheter Aortic Valve Replacement (ENERGY): A Randomized Controlled Trial. J. Am. Med. Dir. Assoc. 2023, 24, 1783–1790.e2. [Google Scholar] [CrossRef]
- Xu, L.; Wei, J.; Liu, J.; Feng, Y.; Wang, L.; Wang, S.; Li, Q.; He, S.; Chen, Y.; Peng, Y.; et al. Inspiratory Muscle Training Improves Cardiopulmonary Function in Patients After Transcatheter Aortic Valve Replacement: A Randomized Clinical Trial. Eur. J. Prev. Cardiol. 2023, 30, 191–202. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, Q.; Ye, Y.; Wang, M.; Zhou, Z.; Zhang, H.; Zhao, Z.; Liu, Q.; Zhang, Z.; Wu, Y.; et al. Comprehensive Geriatric Assessment and Exercise Capacity in Cardiac Rehabilitation for Patients Referred to Transcatheter Aortic Valve Implantation. Am. J. Cardiol. 2021, 158, 98–103. [Google Scholar] [CrossRef]
- Penati, C.; Incorvaia, C.; Mollo, V.; Lietti, F.; Gatto, G.; Stefanelli, M.; Centeleghe, P.; Talarico, G.; Mori, I.; Franzelli, C.; et al. Cardiac Rehabilitation Outcome After Transcatheter Aortic Valve Implantation. Monaldi Arch. Chest Dis. 2021, 91, e1621. [Google Scholar] [CrossRef]
- Kleczynski, P.; Trebacz, J.; Stapor, M.; Sobczynski, R.; Konstanty-Kalandyk, J.; Kapelak, B.; Zmudka, K.; Legutko, J. Inpatient Cardiac Rehabilitation After Transcatheter Aortic Valve Replacement Is Associated with Improved Clinical Performance and Quality of Life. J. Clin. Med. 2021, 10, 2125. [Google Scholar] [CrossRef]
- Butter, C.; Groß, J.; Haase-Fielitz, A.; Sims, H.; Deutsch, C.; Bramlage, P.; Neuss, M. Impact of Rehabilitation on Outcomes After TAVI: A Preliminary Study. J. Clin. Med. 2018, 7, 326. [Google Scholar] [CrossRef]
- Pressler, A.; Förschner, L.; Hummel, J.; Haller, B.; Christle, J.W.; Halle, M. Long-Term Effect of Exercise Training in Patients After Transcatheter Aortic Valve Implantation: Follow-Up of the SPORT:TAVI Randomised Pilot Study. Eur. J. Prev. Cardiol. 2018, 25, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Eichler, S.; Salzwedel, A.; Reibis, R.; Nothroff, J.; Harnath, A.; Schikora, M.; Butter, C.; Wegscheider, K.; Völler, H. Multicomponent Cardiac Rehabilitation in Patients After Transcatheter Aortic Valve Implantation: Predictors of Functional and Psychocognitive Recovery. Eur. J. Prev. Cardiol. 2017, 24, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Tarro Genta, F.; Tidu, M.; Bouslenko, Z.; Bertolin, F.; Salvetti, I.; Comazzi, F.; Giannuzzi, P. Cardiac Rehabilitation After Transcatheter Aortic Valve Implantation Compared to Patients After Valve Replacement. J. Cardiovasc. Med. 2017, 18, 114–120. [Google Scholar] [CrossRef]
- Pressler, A.; Christle, J.W.; Lechner, B.; Grabs, V.; Haller, B.; Hettich, I.; Jochheim, D.; Mehilli, J.; Lange, R.; Bleiziffer, S.; et al. Exercise Training Improves Exercise Capacity and Quality of Life After Transcatheter Aortic Valve Implantation: A Randomized Pilot Trial. Am. Heart J. 2016, 182, 44–53. [Google Scholar] [CrossRef]
- Völler, H.; Salzwedel, A.; Nitardy, A.; Buhlert, H.; Treszl, A.; Wegscheider, K. Effect of Cardiac Rehabilitation on Functional and Emotional Status in Patients After Transcatheter Aortic-Valve Implantation. Eur. J. Prev. Cardiol. 2015, 22, 568–574. [Google Scholar] [CrossRef]
- Fauchère, I.; Weber, D.; Maier, W.; Altwegg, L.; Lüscher, T.F.; Grünenfelder, J.; Nowak, A.; Tüller, D.; Genoni, M.; Falk, V.; et al. Rehabilitation After TAVI Compared to Surgical Aortic Valve Replacement. Int. J. Cardiol. 2014, 173, 564–566. [Google Scholar] [CrossRef]
- Russo, N.; Compostella, L.; Tarantini, G.; Setzu, T.; Napodano, M.; Bottio, T.; D’Onofrio, A.; Isabella, G.; Gerosa, G.; Iliceto, S.; et al. Cardiac Rehabilitation After Transcatheter Versus Surgical Prosthetic Valve Implantation for Aortic Stenosis in the Elderly. Eur. J. Prev. Cardiol. 2014, 21, 1341–1348. [Google Scholar] [CrossRef]
- Zanettini, R.; Gatto, G.; Mori, I.; Pozzoni, M.B.; Pelenghi, S.; Martinelli, L.; Klugmann, S. Cardiac Rehabilitation and Mid-Term Follow-Up After Transcatheter Aortic Valve Implantation. J. Geriatr. Cardiol. 2014, 11, 279–285. [Google Scholar] [CrossRef]
- Zou, J.; Yuan, J.; Liu, J.; Geng, Q. Impact of Cardiac Rehabilitation on Pre- and Post-Operative Transcatheter Aortic Valve Replacement Prognoses. Front. Cardiovasc. Med. 2023, 10, 1164104. [Google Scholar] [CrossRef]
- Tarro Genta, F. Cardiac Rehabilitation for Transcatheter Aortic Valve Replacement. Clin. Geriatr. Med. 2019, 35, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.A.; Greenhaff, P.L.; Bartlett, D.B.; Jackson, T.A.; Duggal, N.A.; Lord, J.M. Multisystem Physiological Perspective of Human Frailty and Its Modulation by Physical Activity. Physiol. Rev. 2023, 103, 1137–1191. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, N.; Ishizu, K.; Shirai, S.; Miyahara, K.; Yamamoto, K.; Suenaga, T.; Otani, A.; Nakano, K.; Fukushima, T.; Ko, E.; et al. Impact of the Clinical Frailty Scale on Long-Term Outcomes After Transcatheter Aortic Valve Implantation. Am. Heart J. 2024, 275, 141–150. [Google Scholar] [CrossRef]
- Green, P.; Woglom, A.E.; Genereux, P.; Daneault, B.; Paradis, J.M.; Schnell, S.; Hawkey, M.; Maurer, M.S.; Kirtane, A.J.; Kodali, S.; et al. The Impact of Frailty Status on Survival After Transcatheter Aortic Valve Replacement in Older Adults with Severe Aortic Stenosis: A Single-Center Experience. JACC Cardiovasc. Interv. 2012, 5, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Nusbickel, A.J.; Randall, M.H.; Plasschaert, J.M.; Brown, M.P.; Anderson, R.D.; Arnaoutakis, G.J.; Massoomi, M.R.; Shah, K.B.; Jeng, E.I.; Beaver, T.M.; et al. Cardiac Rehabilitation Referral After Transcatheter Aortic Valve Replacement. Crit. Pathways Cardiol. 2022, 21, 162–164. [Google Scholar] [CrossRef]
- Vigorito, C.; Abreu, A.; Ambrosetti, M.; Belardinelli, R.; Corrà, U.; Cupples, M.; Davos, C.H.; Hoefer, S.; Iliou, M.C.; Schmid, J.P.; et al. Frailty and Cardiac Rehabilitation: A Call to Action from the EAPC Cardiac Rehabilitation Section. Eur. J. Prev. Cardiol. 2017, 24, 577–590. [Google Scholar] [CrossRef]
- Wójciak, M.; Świątoniowska-Lonc, N.; Węgrzynowska-Teodorczyk, K. Various Forms of Cardiac Rehabilitation and Their Effect on Frailty Syndrome in Cardiac Patients—A Systematic Review. Healthcare 2024, 12, 2401. [Google Scholar] [CrossRef]
- MacEachern, E.; Quach, J.; Giacomantonio, N.; Theou, O.; Hillier, T.; Abel-Adegbite, I.; Gonzalez-Lara, M.; Kehler, D.S. Cardiac Rehabilitation and Frailty: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2024, 31, 1960–1976. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, D.; Yu, J.; Jia, Y.; Jiang, Y.; Chen, T.; Gao, Y.; Wan, Z.; Cao, Y.; Zeng, Z.; et al. Barthel Index as a Predictor of Mortality in Patients with Acute Coronary Syndrome: Better Activities of Daily Living, Better Prognosis. Clin. Interv. Aging 2020, 15, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
Study/ Year/ Country | No. of Patients | Measurements | Follow-Up | Main Findings |
---|---|---|---|---|
CR impact in TAVI vs. SAVR patients | ||||
Ribeiro et al., 2017 [35] | 292 TAVI 570 SAVR | Functional capacity (oxygen uptake and/or workload); exercise tolerance (walked distance, exercise time), 6MWT, BI, FIM, HADS, EQ VAS, data on all-cause and cardiovascular mortality, safety outcomes | Not mentioned | Significant and similar improvement in 6MWD and BI in both TAVI and SAVR patients; CR is safe in both groups. |
Anayo et al., 2019 [36] | 27 TAVI 99 SAVR 129 mixed patients | VO2max, 6MWT, SF-12 or SF-36, KCCQ, NYHA class, return to work, adverse effects of CR, costs | 2–12 months | In the short term, exercise-based CR enhances exercise capacity in patients who have undergone TAVI or SAVR. |
CR impact in TAVI patients | ||||
Oz et al., 2023 [37] | Data for 6MWT: 456 TAVI patients Data for BI: 377 TAVI patients | 6MWT, BI | Before and after CR; the usual duration of CR was 3 weeks in most studies | CR improves exercise tolerance and functional independence measured by 6MWT and BI. CR is safe in this group. |
Hosseinpour et al., 2024 [38] | 685 TAVI patients | 6MWT, BI, HADS, SF-12 | Before and after CR; duration of CR lasted from 2 weeks to 2 months | CR improves 6WMT, Barthel index, SF-12 and mental survey scores, HADS scores. |
Li et al., 2023 [39] | 253 TAVI patients | 6MWT, BI, SF-12, ExCap, MFS, frailty index, FIM score | Before and after CR; duration of CR lasted 16.4 ± 3.9 days; follow-up less than 6 months | CR improves 6MWD and Barthel index irrespective of CR duration/frequency. CR improves QoL, Morse Fall Scale, frailty index. CR improves exercise capacity. |
Study (Year)/ Country/No. Tavi Patients/ Reference | Type of Study | Measurements | Follow-Up | Main Findings |
---|---|---|---|---|
Hu et al. (2023) China 66 [40] | Prospective randomized controlled trial comparing moderate-intensity continuous training vs. control | VO2max, VO2 at AT, MET at AT, 6MWT, SF-12, echocardiography, NYHA class, MACE | 3 months | Improved cardiopulmonary function Improved physical capacity (Δ peak VO2 1.63 mL/kg/min [95% CI 0.58–2.67, p = 0.003]; Δ 6MWD 21.55 m, [95% CI 0.38–42.71, p = 0.046]) Lower low-density lipoprotein cholesterol (Δ 0.62 mmol/L [95% CI e1.00 to _0.23, p = 0.002]) |
Xu et al. (2023) China 96 [41] | Double-blinded, sham-controlled randomized clinical trial comparing CR vs. CR plus inspiratory muscle training (IMT) | 6MWT; lung function FVC, FEV1, FEV1/FVC, MIP, MEP, FIVC; limb muscle force HGS, sit-to-stand test, arm-curl test Functional status mMRC, DASI, PSQI, BI, FS-14, SF-12 | Baseline, discharge of CR, 1 month, and 3 months | CR plus IMT enhances exercise endurance, pulmonary ventilation function, and inspiratory muscle strength and shortens the length of hospital stay (11 days vs. 12.5 days, p = 0.016). Δ 6MWD 33.52m [95% CI: −64.42 to −2.62, p = 0.034]. Effects persistent at 1 month and 3 months. |
Yu Z et al. (2021) China 90 [42] | Retrospective observational evaluating CR in TAVI | BI, MMSE, MNA, HADS, frailty by Fried scale, 6MWD, MET | 1 month | Cognitive impairment, malnutrition, and frailty significantly decreased by 21%, 40%, and 57%, respectively (p = 0.002, p < 0.001, p < 0.001). Improved 6MWD 218.8 m ± 114.3 m to 291.9 m ± 98.8 (p < 0.001); frailty and malnutrition are predictors of 6MWD improvement. |
Penati et al. (2021) Italy 46 [43] | Prospective observational evaluating CR in TAVI patients | 6MWT, SPPB, BI | Baseline, discharge, 18 months | Significantly improved all evaluated measures; BI from 73.80 ± 23.31 to 90.22 ± 16.53 at discharge (p < 0.001); Δ 6MWD from 265.43 m ± 89 to 327.17 m ± 111 at discharge (p = 0.043); SPPB from 4.56 ± 2.27 to 7.13 ± 3.08 at discharge (p = 0.002). |
Kleczynski (2021) Poland 105 [44] | Retrospective cohort comparing CR vs. no CR | Frailty indices: 5MWT, 6MWT, HGS, KI of ADL; QoL: HADS, KCCQ | Baseline, 30 days, 6 months, 12 months | Improved clinical performance and quality of life, but these outcomes declined after one year. A longer time interval following the completion of inpatient CR is associated with a decline in performance. |
Butter et al. (2018) Germany 1056 [45] | Longitudinal cohort study, multicenter, comparing rehabilitation vs. no rehabilitation and comparing cardiac rehabilitation vs. geriatric rehabilitation | Mortality at 6 months | 6 months | Cardiac rehabilitation reduces mortality (adjusted OR: 0.31; 95% CI 0.14–0.71, p = 0.006). |
Pressler et al. (2018) Germany 17 [46] | Randomized pilot study CR vs. no CR in TAVI | VO2 peak, VO2AT; muscular strength, 6MWD; QoL, KCCQ, SF-12; NYHA class, echocardiography; NT-proBNP, creatinine, GFR | 24 ± 6 months | Significant long-term improvements in submaximal exercise performance (Δ VO2AT 2.7 mL/min/kg [95% CI 0.8–4.6, p < 0.008]) were maintained. Not the case for VO2peak, muscular strength, or quality of life. |
Eichler et al. (2016) Germany 136 [47] | Prospective cohort multicenter study evaluating CR in TAVI | 6MWT, SF-12, HADS, frailty index that includes MMSE, MNA, ADL, IADL, TUG, subjective mobility disability | Baseline, discharge | Improved 6MWD and maximum exercise capacity from 56.3 ± 65.3 m (p < 0.001) and 8.0 ± 14.9 watts (p < 0.001), reduced proportion of frail patients by 9%. Improved quality of life (Δ SF-12 physical 2.5 ± 8.7, p < 0.001, mental 3.4 ± 10.2, p < 0.003); reduced anxiety (HADS from 5.2 ± 4.0 to 4.0 ± 3.6, p < 0.001). |
Tarro Genta et al. (2017) Italy 65 [48] | Prospective observational, CR after TAVI compared with CR after SAVR | 6MWT, CIRS-CI BI, MFS, echocardiography | 3 weeks | Improved 6MWT from 162 m ± 92 to 240 m ± 92; p < 0.001; improved BI from 67 ± 24 to 85 ± 17, p < 0.001; MFS difference admission vs. discharge: 5.8 ± 20, p < 0.02; CR is safe. |
Pressler et al. (2016) Germany 27 [49] | Randomized pilot trial comparing CR vs. no CR in TAVI | VO2 peak, VO2AT, RER, Ve/VCO2, max HR, 1-RM on 5 different machines, 6MWT, echocardiography; QoL KCCQ, SF-12; NT-proBNP creatinine, GFR | Baseline, after CR | Improvements in exercise capacity VO2 max (Δ 3.7 mL/min per kg [95% CI, 1.1–6.3; p = 0.007]) but not 6MWD; improvement in quality of life (KCCQ physical limitation Δ 19.2 [95% CI, 4.1–34.2; p = 0.015]) and in muscular strength; CR is safe. |
Voller (2015) Germany 76 [50] | Observational study and propensity score analysis TAVI and SAVR after CR | Functional evaluation 6MWT and exercise capacity on bicycle exercise test; emotional evaluation, HADS | 3 weeks | Improved exercise capacity, increased by 19.84% (95% CI: 20.59 to 36.15, p < 0.05) and 6MWT increased by 28.13% (95% CI: 20.59 to 36.15, p < 0.001). No effect on anxiety and depression. |
Fauchere (2014) Switzerland 34 [51] | Retrospective observational study comparing CR in TAVR vs. CR in SAVR | FIM score, HADS, 6MWT | Admission, discharge | Improvement in 6MWT (from 147.5 m ± 101.7 to 231.7 ± 132.7, p < 0.001), FIM (from 95.8 ± 10.2 to 106.8 ± 9.9, p < 0.001) in TAVI; improvement observed in both groups. |
Russo et al. (2014) Italy 78 [52] | Prospective observational study comparing CR in TAVI vs. CR in SAVR | 6MWT, CPET, echocardiography, BI | Baseline, discharge | CR is feasible, safe, and effective in octogenarians after TAV; enhances functional capacity, Δ 6MWT 60.4 ± 46.4 m, p < 0.001. |
Zanettini et al. (2014) Italy 60 [53] | Prospective observational single-arm evaluating CR in TAVI | Echocardiographic parameters, 6MWT, modified BI, MMSE, GDS, EQ-5D, EQ-VAS | T1 6–12 month T2 18–24 months | Improved functional status: Δ 6MWD from 210 m ± 87 to 275 m ± 97, p < 0.001, Δ BI from 84 ± 21 to 95 ± 10, p < 0.001; quality of life: Δ EQ-VAS from 54 ± 14 to 75 ± 11, p < 0.001. Results stable in mid-term follow-up. |
Study (Year)/ Country/No. Tavi Patients [Reference] | Interval Time Between TAVI and CR Beginning | Duration of CR |
---|---|---|
Hu et al. (2023) China, 66 [40] | 157 days (35.0–200.25 days) | 3 months |
Xu et al. (2023) China, 96 [41] | CR program began the second day following the TAVI procedure. | 12.5 days [10.00–14.00 days] |
Yu Z et al. (2021) China, 90 [42] | Before discharge after TAVI facilitation | 1 month |
Penati et al. (2021) Italy, 46 [43] | Not mentioned | Average of 3 weeks of rehabilitation; exact number of days not mentioned |
Kleczynski (2021) Poland, 105 [44] | Immediately after discharge from TAVI facilitation; exact days of the procedure not mentioned. | 14-night stay |
Butter et al. (2018) Germany, 1056 [45] | 7.0 days; interquartile range: 6.0, 9.0 days | 3 weeks |
Pressler et al. (2018) Germany, 17 [46] | 14 days | 8 weeks |
Eichler et al. (2016) Germany, 136 [47] | 17.7 ± 9.9 days | 19.4 ± 3.1 days |
Tarro Genta et al. (2017) Italy, 65 [48] | 11 ± 6 days | 25 ± 11 days |
Pressler et al. (2016) Germany, 27 [49] | 83 ± 34 days | 8 weeks |
Voller (2015) Germany, 76 [50] | 24.05 ± 15.82 days | 19.17 ± 4.54 days |
Fauchere (2014) Switzerland, 34 [51] | Not mentioned | 19.2 ± 6.4 days |
Russo et al. (2014) Italy, 78 [52] | 13.7 ± 11.7 days | 16.6 ± 4.7 days |
Zanettini (2014) Italy, 60 [53] | 10.6 ± 3.4 days | 18.3 ± 5.6 days |
Parameters | Tools for Measurement | References |
---|---|---|
Functional capacity | 6MWT, Peak VO2, VO2 at AT, metabolic equivalent, MET at AT, bicycle exercise test | [35,36,37,38,40,41,43,44,47,48,49,52,53] |
Frailty and functional independence | KI of ADL, mMRC, DASI, BI, FS-14, 5MWT | [35,36,37,38,41,42,43,48,52,53] |
Muscular strength | HGS, sit-to-stand test, arm-curl test | [41,42,44,46] |
Quality of life | KCCQ, EQ-VAS, SF-12, SF-36, EQ-5D, PSQI | [35,36,42,44,46,47,49,51,53] |
Depression and anxiety | HADS | [35,36,38,40,42,44,45,47,48,49,50,51] |
Lung function | FVC, FEV1, FEV1/FVC, MIP, MEP, FIVC | [41] |
Multimorbidity | CIRS-CI | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamate, T.C.; Adam, C.A.; Gavril, R.S.; Miftode, R.Ș.; Rotundu, A.; Mitu, O.; Cojocaru, D.C.; Tinică, G.; Mitu, F. Cardiac Rehabilitation in TAVI Patients: Safety and Benefits: A Narrative Review. Medicina 2025, 61, 648. https://doi.org/10.3390/medicina61040648
Stamate TC, Adam CA, Gavril RS, Miftode RȘ, Rotundu A, Mitu O, Cojocaru DC, Tinică G, Mitu F. Cardiac Rehabilitation in TAVI Patients: Safety and Benefits: A Narrative Review. Medicina. 2025; 61(4):648. https://doi.org/10.3390/medicina61040648
Chicago/Turabian StyleStamate, Theodor Constantin, Cristina Andreea Adam, Radu Sebastian Gavril, Radu Ștefan Miftode, Andreea Rotundu, Ovidiu Mitu, Doina Clementina Cojocaru, Grigore Tinică, and Florin Mitu. 2025. "Cardiac Rehabilitation in TAVI Patients: Safety and Benefits: A Narrative Review" Medicina 61, no. 4: 648. https://doi.org/10.3390/medicina61040648
APA StyleStamate, T. C., Adam, C. A., Gavril, R. S., Miftode, R. Ș., Rotundu, A., Mitu, O., Cojocaru, D. C., Tinică, G., & Mitu, F. (2025). Cardiac Rehabilitation in TAVI Patients: Safety and Benefits: A Narrative Review. Medicina, 61(4), 648. https://doi.org/10.3390/medicina61040648