Patterns of Meniscal Injuries in Adults Aged 35 and Older: A Retrospective Analysis of Surgical Cases
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Cohort
2.3. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weber, J.; Szymski, D.; Huber, L.; Straub, J.; Alt, V.; Lenz, J.E. Knee joint dislocations—Current epidemiology and treatment in Germany. Knee Surg. Sports Traumatol. Arthrosc. 2024, in press. [Google Scholar] [CrossRef]
- Maniar, N.; Verhagen, E.; Bryant, A.L.; Opar, D.A. Trends in Australian knee injury rates: An epidemiological analysis of 228,344 knee injuries over 20 years. Lancet Reg. Health–West. Pac. 2022, 21, 100409. [Google Scholar] [PubMed]
- Adams, B.G.; Houston, M.N.; Cameron, K.L. The epidemiology of meniscus injury. Sports Med. Arthrosc. Rev. 2021, 29, e24–e33. [Google Scholar] [CrossRef] [PubMed]
- Mérida-Velasco, J.A.; Sánchez-Montesinos, I.; Espín-Ferra, J.; Rodríguez-Vázquez, J.F.; Mérida-Velasco, J.R.; Jiménez-Collado, J. Development of the human knee joint. Anat. Rec. 1997, 248, 269–278. [Google Scholar]
- Afzali, T.; Fangel, M.V.; Vestergaard, A.S.; Rathleff, M.S.; Ehlers, L.H.; Jensen, M.B. Cost-effectiveness of treatments for non-osteoarthritic knee pain conditions: A systematic review. PLoS ONE 2018, 13, e0209240. [Google Scholar] [CrossRef]
- Salmon, J.H.; Rat, A.C.; Sellam, J.; Michel, M.; Eschard, J.P.; Guillemin, F.; Lutaud, R.; Gerster, J.C.; Belmin, J.; Fautrel, B. Economic impact of lower-limb osteoarthritis worldwide: A systematic review of cost-of-illness studies. Osteoarthr. Cartil. 2016, 24, 1500–1508. [Google Scholar] [CrossRef]
- Tamimi, R. The financial burden of knee osteoarthritis patients: A study of healthcare costs and expenses. J. Soc. Health Sci. 2022, 1, 5–12. [Google Scholar]
- Tsujii, A.; Nakamura, N.; Horibe, S. Age-related changes in the knee meniscus. Knee 2017, 24, 1262–1270. [Google Scholar] [CrossRef]
- Tsai, C.H.; Hsu, C.J.; Hung, C.H.; Hsu, H.C. Primary traumatic patellar dislocation. J. Orthop. Surg. Res. 2012, 7, 21. [Google Scholar] [CrossRef]
- Nutarelli, S.; Lodi, C.M.T.D.; Cook, J.L.; Deabate, L.; Filardo, G. Epidemiology of patellar tendinopathy in athletes and the general population: A systematic review and meta-analysis. Orthop. J. Sports Med. 2023, 11, 23259671231173659. [Google Scholar] [CrossRef]
- Logerstedt, D.; Snyder-Mackler, L. Knee pain and mobility impairments: Meniscal and articular lesions. J. Orthop. Sports Phys. Ther. 2010, 40, A1–A35. [Google Scholar] [CrossRef]
- Crossland, H.; Brook, M.S.; Quinlan, J.I.; Franchi, M.V.; Phillips, B.E.; Wilkinson, D.J.; Maganaris, C.N.; Greenhaff, P.L.; Szewczyk, N.J.; Smith, K.; et al. Metabolic and molecular responses of human patellar tendon to concentric- and eccentric-type exercise in youth and older age. GeroScience 2023, 45, 331–344. [Google Scholar] [CrossRef]
- Demehri, S.; Shakoor, D. Structural changes in aging-knee vs early-knee osteoarthritis: Review of current evidence and future challenges. Osteoarthr. Cartil. 2018, 26, 1412–1414. [Google Scholar] [CrossRef]
- Bhan, K. Meniscal tears: Current understanding, diagnosis, and management. Cureus 2020, 12, e8502. [Google Scholar] [CrossRef]
- Inoue, R.; Ishibashi, Y.; Tsuda, E.; Yamamoto, Y.; Matsuzaka, M.; Takahashi, I.; Kikuchi, A.; Toh, S. Knee osteoarthritis, knee joint pain and aging in relation to increasing serum hyaluronan level in the Japanese population. Osteoarthr. Cartil. 2011, 19, 51–57. [Google Scholar] [CrossRef]
- Englund, M.; Felson, D.T.; Guermazi, A.; Roemer, F.W.; Wang, K.; Crema, M.D.; Hunter, D.J.; Marra, M.D.; Zhang, Y.; Nevitt, M.C.; et al. Risk factors for medial meniscal pathology on knee MRI in older US adults: A multicentre prospective cohort study. Ann. Rheum. Dis. 2011, 70, 1733–1739. [Google Scholar] [CrossRef]
- Sedgwick, M.J.; Saunders, C.; Getgood, A.M. Systematic review and meta-analysis of clinical outcomes following meniscus repair in patients 40 years and older. Orthop. J. Sports Med. 2024, 12, 23259671241258974. [Google Scholar] [CrossRef]
- Widuchowski, W.; Widuchowski, J.; Trzaska, T. Articular cartilage defects: Study of 25,124 knee arthroscopies. Knee 2007, 14, 177–182. [Google Scholar] [CrossRef]
- Fithian, D.C.; Paxton, E.W.; Stone, M.L.; Silva, P.; Davis, D.K.; Elias, D.A.; White, L.M. Epidemiology and natural history of acute patellar dislocation. Am. J. Sports Med. 2004, 32, 1114–1121. [Google Scholar] [CrossRef]
- Bradley, K.E.; Cevallos, N.; Jansson, H.L.; Lansdown, D.A.; Pandya, N.K.; Feeley, B.T.; Zhang, A.L. Younger patients are more likely to undergo arthroscopic meniscal repair and revision meniscal surgery in a large cross-sectional cohort. Arthroscopy 2022, 38, 2875–2883. [Google Scholar] [CrossRef]
- Yelland, M. Clinical examination is often as accurate as magnetic resonance imaging for diagnosing meniscus tears. Evid.-Based Med. 2007, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Mesiha, M.; Zurakowski, D.; Soriano, J.; Nielson, J.H.; Zarins, B.; Murray, M.M. Pathologic characteristics of the torn human meniscus. Am. J. Sports Med. 2007, 35, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Rothermel, S.D.; Smuin, D.; Dhawan, A. Are outcomes after meniscal repair age dependent? A systematic review. Arthroscopy 2018, 34, 979–987. [Google Scholar] [CrossRef] [PubMed]
- Steadman, J.R.; Matheny, L.M.; Singleton, S.B.; Johnson, N.S.; Rodkey, W.G.; Crespo, B.; Briggs, K.K. Meniscus suture repair: Minimum 10-year outcomes in patients younger than 40 years compared with patients 40 and older. Am. J. Sports Med. 2015, 43, 2222–2227. [Google Scholar] [CrossRef]
- Wang, J.; Antony, B.; Zhu, Z.; Han, W.; Pan, F.; Wang, X.; Blizzard, L.; Cicuttini, F.; Jones, G.; Ding, C.; et al. Association of patellar bone marrow lesions with knee pain, patellar cartilage defect, and patellar cartilage volume loss in older adults: A cohort study. Osteoarthr. Cartil. 2015, 23, 1330–1336. [Google Scholar] [CrossRef]
- Brelin, A.M.; Donohue, M.A.; Balazs, G.C.; LeClere, L.E.; Rue, J.H.; Dickens, J.F. Incidence and risk factors for reoperation following meniscal repair in a military population. J. Surg. Orthop. Adv. 2018, 27, 47–51. [Google Scholar]
- Sajjadi, M.M.; Dehghan, P.; Ehsani, A. Pattern in simultaneous rupture of the medial collateral ligament and anterior cruciate ligament assessed by magnetic resonance imaging. J. Orthop. Spine Trauma 2023, 9, 171–174. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, C.; Ji, Y.; Zhang, H.; Wang, Y.; Bi, W.; Zhao, Q.; Li, F.; Wang, X.; Guo, B.; et al. The burden of knee osteoarthritis worldwide, regionally, and nationally from 1990 to 2019, along with an analysis of cross-national inequalities. Arch. Orthop. Trauma Surg. 2024, 144, 2731–2743. [Google Scholar] [CrossRef]
- Baker, B.E.; Peckham, A.C.; Pupparo, F.; Sanborn, J.C. Review of meniscal injury and associated sports. Am. J. Sports Med. 1985, 13, 1–4. [Google Scholar] [CrossRef]
- Maffulli, N.; Chan, K.M.; Miao, M.; Fu, F.H.; Kurosaka, M. Athletic knee injuries: Similarities and differences between Asian and Western experience. Clin. Orthop. Relat. Res. 1996, 323, 98–105. [Google Scholar] [CrossRef]
- Tropf, J.G.; Colantonio, D.F.; Tucker, C.J.; Rhon, D.I. Epidemiology of meniscus injuries in the military health system and predictive factors for arthroscopic surgery. J. Knee Surg. 2022, 35, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Charan, J.; Kaur, R.; Bhardwaj, P.; Singh, K.; Ambwani, S.R.; Misra, S. Sample size calculation in medical research: A primer. Ann. Natl. Acad. Med. Sci. India 2021, 57, 74–80. [Google Scholar] [CrossRef]
- Nica, D.V.; Bordean, D.M.; Pet, I.; Pet, E.; Alda, S.; Gergen, I. A novel exploratory chemometric approach to environmental monitoring by combining block clustering with Partial Least Square (PLS) analysis. Chem. Cent. J. 2013, 7, 145. [Google Scholar] [CrossRef] [PubMed]
- Grelus, A.; Nica, D.V.; Miklos, I.; Belengeanu, V.; Ioiart, I.; Popescu, C. Clinical significance of measuring global hydroxymethylation of white blood cell DNA in prostate cancer: Comparison to PSA in a pilot exploratory study. Int. J. Mol. Sci. 2017, 18, 2465. [Google Scholar] [CrossRef]
- Azghadi, S.M.R.; Suciu, M.; Gruia, A.T.; Barbu-Tudoran, L.; Cristea, M.I.; Mic, A.A.; Muntean, D.; Nica, D.V.; Mic, F.A. Mesenchymal stromal cells support the viability and differentiation of thymocytes through direct contact in autologous co-cultures. Histochem. Cell Biol. 2016, 146, 153–165. [Google Scholar] [CrossRef]
- Allison, P. Logistic Regression Using SAS: Theory and Application, 2nd ed.; SAS Institute: Cary, NC, USA, 2012; pp. 40–95. [Google Scholar]
- Cheng, R.; Krell, E.C.; Chiu, Y.F.; Stimac, J.D.; Heyse, T.J.; Abdel, M.P.; Jacofsky, D.J.; Clarke, H.D.; Sierra, R.J.; Blevins, J.L.; et al. Survivorship and clinical outcomes of primary total knee arthroplasty performed in patients 35 years of age and younger. J. Arthroplasty 2023, 38, 2316–2323. [Google Scholar] [CrossRef]
- Abrams, G.D.; Frank, R.M.; Gupta, A.K.; Harris, J.D.; McCormick, F.M.; Cole, B.J.; Bach, B.R.; Verma, N.N.; Forsythe, B.; Wilson, J.K.; et al. Trends in meniscus repair and meniscectomy in the United States, 2005–2011. Am. J. Sports Med. 2013, 41, 2333–2339. [Google Scholar] [CrossRef]
- Leblanc, D.R.; Schneider, M.; Angele, P.; Vollmer, G.; Docheva, D. The effect of estrogen on tendon and ligament metabolism and function. J. Steroid Biochem. Mol. Biol. 2017, 172, 106–116. [Google Scholar] [CrossRef]
- Mai, C.; Mai, P.; Hinz, M.; Saenger, R.; Seil, R.; Tischer, T.; Roessler, P.P. Females show worse functional outcome and quality of life compared to males 2 years after meniscus surgery: Data analysis from the German Arthroscopy Registry. Knee Surg. Sports Traumatol. Arthrosc. 2024, 32, 2644–2654. [Google Scholar] [CrossRef]
- Giordano, L.; Maffulli, N.; Carimati, G.; Morenghi, E.; Volpi, P. Increased time to surgery after anterior cruciate ligament tear in female patients results in greater risk of medial meniscus tear: A study of 489 female patients. Arthrosc. J. Arthrosc. Relat. Surg. 2023, 39, 613–622. [Google Scholar] [CrossRef]
- Carroll, C.C.; Dickinson, J.M.; Haus, J.M.; Lee, G.A.; Hollon, C.J.; Aagaard, P.; Magnusson, S.P.; Ploutz-Snyder, L.L.; Trappe, T.A.; Rennie, M.J.; et al. Influence of aging on the in vivo properties of human patellar tendon. J. Appl. Physiol. 2008, 105, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Mass, H.; Katz, J.N. The influence of meniscal pathology in the incidence of knee osteoarthritis: A review. Skelet. Radiol. 2023, 52, 2045–2055. [Google Scholar] [CrossRef] [PubMed]
- Buckley, M.R.; Dunkman, A.A.; Reuther, K.E.; Kumar, A.; Pathmanathan, L.; Beason, D.P.; Kalyanam, S.; Sarver, J.J.; Freeman, J.W.; Soslowsky, L.J.; et al. Validation of an empirical damage model for aging and in vivo injury of the murine patellar tendon. J. Biomech. Eng. 2013, 135, 041005. [Google Scholar] [CrossRef]
- Kaledzera, T.; Alblas, A.; Rampf, N. A new method of estimating age-at-death using patellar morphology. Forensic Sci. Int. Rep. 2023, 8, 100339. [Google Scholar] [CrossRef]
- Kluczynski, M.A.; Marzo, J.M.; Rauh, M.A.; Bernas, G.A.; Bisson, L.J. Sex-specific predictors of intra-articular injuries observed during anterior cruciate ligament reconstruction. Orthop. J. Sports Med. 2015, 3, 2325967115571300. [Google Scholar] [CrossRef]
- Dandy, D.J. The arthroscopic anatomy of symptomatic meniscal lesions. J. Bone Jt. Surg. Br. 1990, 72, 628–633. [Google Scholar] [CrossRef]
- Wu, M.; Jiang, J.; Liu, Z.; Dai, X.; Dong, Y.; Xia, Y. Age, male sex, higher posterior tibial slope, deep sulcus sign, bone bruises on the lateral femoral condyle, and concomitant medial meniscal tears are risk factors for lateral meniscal posterior root tears: A systematic review and meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 4144–4155. [Google Scholar] [CrossRef]
- Snoeker, B.A.; Bakker, E.W.; Kegel, C.A.; Lucas, C. Risk factors for meniscal tears: A systematic review including meta-analysis. J. Orthop. Sports Phys. Ther. 2013, 43, 352–367. [Google Scholar] [CrossRef]
- Valderrama, J.; Carredano, X.; León, A.; Vigueras, C.; Marín, F.; Acevedo, M.; Hernández, P.; López, R.; García, T.; Redenz, G.; et al. Prevalence of articular surface injuries in patients undergoing meniscal surgery: A retrospective analysis of 758 cases. Cureus 2024, 16, e66789. [Google Scholar] [CrossRef]
- Bloecker, K.; Wirth, W.; Hudelmaier, M.; Burgkart, R.; Frobell, R.; Eckstein, F. Size and position of the healthy meniscus, and its correlation with sex, height, weight, bone size, and age. Osteoarthr. Cartil. 2011, 19, S195–S196. [Google Scholar] [CrossRef]
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: A systematic review with meta-analysis by sex, age, sport, participation level, and exposure type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.; Hidaka, C.; Valdez, A.S.; Hetsroni, I.; Pan, T.J.; Do, H.; Green, D.W.; Marx, R.G. Risk factors for meniscectomy after meniscal repair. Am. J. Sports Med. 2013, 41, 2772–2778. [Google Scholar] [CrossRef] [PubMed]
- Gage, B.E.; McIlvain, N.M.; Collins, C.L.; Fields, S.K.; Comstock, R.D. Epidemiology of 6.6 million knee injuries presenting to United States emergency departments from 1999 through 2008. Acad. Emerg. Med. 2012, 19, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.; Fabricant, P.D.; Beck, N.; Storey, E.; Patel, N.M.; Ganley, T.J. Epidemiology, injury patterns, and treatment of meniscal tears in pediatric patients: A 16-year experience of a single center. Orthop. J. Sports Med. 2019, 7, 2325967119890325. [Google Scholar] [CrossRef]
- Ridley, T.J.; McCarthy, M.A.; Bollier, M.J.; Wolf, B.R.; Amendola, A. Age differences in the prevalence of isolated medial and lateral meniscal tears in surgically treated patients. Iowa Orthop. J. 2017, 37, 91–94. [Google Scholar]
- Petersen, W. Editorial Commentary: Medial and lateral meniscus root injuries are distinct, and indications for repair may differ: Get down to the root of the problem! Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 2217–2219. [Google Scholar] [CrossRef]
- Raj, M.A.; Bubnis, M.A. Knee Meniscal Tears. 2017. Available online: https://www.ncbi.nlm.nih.gov/books/NBK431067/ (accessed on 20 December 2024).
- Niu, X.; Zhao, Q.; Zheng, H.; Chen, X.; Zhao, D.; Wu, J.; Li, Y.; Zhang, L.; Liu, H.; Huang, J.; et al. Study on clinical characteristics and surgical methods of bucket-handle meniscal tears. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2023, 37, 1335–1341. [Google Scholar] [CrossRef]
- Narendra, A.; Madhusudhana, A.; Bharath, E.V.; Prakash, D.R. Management of meniscal tears by arthroscopic partial meniscectomy in traumatic and degenerative cases. J. Evid. Based Med. Healthc. 2019, 6, 171–179. [Google Scholar]
- Zhang, M. Classification, risk factors, diagnoses, and examination for six-type meniscus tears. Highlights Sci. Eng. Technol. 2022, 8, 454–462. [Google Scholar] [CrossRef]
- Achtnich, A.; Petersen, W.; Willinger, L.; Sauter, A.; Rasper, M.; Wörtler, K.; Imhoff, A.B.; Ficklscherer, A.; Feucht, M.J.; Diermeier, T.; et al. Medial meniscus extrusion increases with age and BMI and is depending on different loading conditions. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 2282–2288. [Google Scholar] [CrossRef]
- Popper, H.R.; Fliegel, B.E.; Elliott, D.M.; Su, A.W. Surgical management of traumatic meniscus injuries. Pathophysiology 2023, 30, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. Complementarity of Logistic Regression over the Nonparametric Classifications for Improved Decision-Making—A Case of Maternal Health Risk Data. In Proceedings of the Frontiers of ICT in Healthcare; Springer Nature: Singapore, 2022; pp. 87–98. [Google Scholar]
- Popețiu, R.O.; Donath-Miklos, I.; Borta, S.M.; Rus, L.A.; Vîlcea, A.; Nica, D.V.; Pușchiță, M. Serum YKL-40 levels, leukocyte profiles, and acute exacerbations of advanced COPD. J. Clin. Med. 2023, 12, 6106. [Google Scholar] [CrossRef] [PubMed]
- Corser, W.; Sikorskii, A.; Olomu, A.; Stommel, M.; Proden, C.; Holmes-Rovner, M. Concordance between comorbidity data from patient self-report interviews and medical record documentation. BMC Health Serv. Res. 2008, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Hallingberg, B.; Turley, R.; Segrott, J.; Wight, D.; Craig, P.; Moore, L.; Murphy, S.; Littlecott, H.; Waters, J.; Moore, G.; et al. Exploratory studies to decide whether and how to proceed with full-scale evaluations of public health interventions: A systematic review of guidance. Pilot Feasibility Stud. 2018, 4, 104. [Google Scholar] [CrossRef]
Knee Joint Damage | With Damage | Without Damage | p | ||
---|---|---|---|---|---|
Median Age | n | Median Age | n | ||
Medial meniscus damage | 46 (39; 53) | 202 | 44 (38; 53) | 218 | 0.878 |
Lateral meniscus damage | 42 (38; 49) | 76 | 46 (39; 54) | 344 | 0.180 |
Any patella damage | 46 (39; 53) | 366 | 39 (36; 51) | 54 | 0.048 * |
Knee Joint Damage | With Damage | Without Damage | p | ||
---|---|---|---|---|---|
Male | Female | Male | Female | ||
Medial meniscus damage | 126 (56.75%) | 76 (33.25%) | 138 (63.30%) | 80 (36.70%) | 0.889 |
Lateral meniscus damage | 60 (78.91%) | 16 (21.06%) | 204 (59.30%) | 140 (41.70%) | 0.023 * |
Any patella damage | 42 (77.77%) | 12 (32.23%) | 222 (60.65%) | 144 (29.35%) | 0.085 |
With Damage | Without Damage | |||
---|---|---|---|---|
BH | PB | Other | ||
Medial meniscus | 78 (18.57%) | 38 (9.05%) | 74 (17.61%) | 230 (54.77%) |
Lateral meniscus | 26 (6.19%) | 8 (1.91%) | 20 (9.52%) | 173 (82.38%) |
OR (95% CI) | p | β | SE | Wald (Z) | |
---|---|---|---|---|---|
Medial meniscal damage | |||||
Age | 1.14 (0.63; 2.09) | 0.621 | 0.131 | 0.303 | 0.43 |
Sex | 0.99 (0.96; 1.02) | 0.557 | −0.010 | 0.015 | −0.65 |
HMR | 2.86 (1.45; 1.56) | 0.003 *** | 1.050 | 0.338 | 3.11 |
Lateral meniscal damage | |||||
Age | 0.43 (0.13; 1.03) | 0.335 | −0.847 | 0.451 | −1.88 |
Sex | 1.09 (1.01; 1.16) | 0.046 * | 0.086 | 0.037 | 2.32 |
HMR | 0.87 (0.39; 1.93) | 0.695 | −0.140 | 0.396 | −0.35 |
Any patellar damage | |||||
Age | 1.92 (0.71; 5.14) | 0.153 | 0.653 | 0.445 | 1.47 |
Sex | 0.96 (0.91; 1.01) | 0.179 | −0.041 | 0.026 | −1.55 |
HMR | 0.97 (0.39; 2.43) | 0.794 | −0.030 | 0.437 | −0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şuşan, M.; Cristea, A.M.; Drăghici, G.A.; Nica, D.V.; Florescu, S.; Damian, C.G. Patterns of Meniscal Injuries in Adults Aged 35 and Older: A Retrospective Analysis of Surgical Cases. Medicina 2025, 61, 643. https://doi.org/10.3390/medicina61040643
Şuşan M, Cristea AM, Drăghici GA, Nica DV, Florescu S, Damian CG. Patterns of Meniscal Injuries in Adults Aged 35 and Older: A Retrospective Analysis of Surgical Cases. Medicina. 2025; 61(4):643. https://doi.org/10.3390/medicina61040643
Chicago/Turabian StyleŞuşan, Monica, Andreea Maria Cristea, George Andrei Drăghici, Dragoş Vasile Nica, Sorin Florescu, and Cosmin Grațian Damian. 2025. "Patterns of Meniscal Injuries in Adults Aged 35 and Older: A Retrospective Analysis of Surgical Cases" Medicina 61, no. 4: 643. https://doi.org/10.3390/medicina61040643
APA StyleŞuşan, M., Cristea, A. M., Drăghici, G. A., Nica, D. V., Florescu, S., & Damian, C. G. (2025). Patterns of Meniscal Injuries in Adults Aged 35 and Older: A Retrospective Analysis of Surgical Cases. Medicina, 61(4), 643. https://doi.org/10.3390/medicina61040643