Effect of Autologous Skin Cell Suspensions Versus Standard Treatment on Re-Epithelialization in Burn Injuries: A Meta-Analysis of RCTs
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Database Searching
2.3. Eligibility Criteria
2.3.1. Inclusion Criteria
- P: Patients with skin injuries, including thermal burns, flame burns, contact burns, injuries, electric arc injuries, or post-burn pigmentation issues.
- I: Autologous cell suspensions (ReCell), alone or with adjuncts like Biobrane or hydrosurgery.
- C: Standard treatment approaches (including classic skin grafting, Biobrane alone, surgical excision with dressings, or alternative delivery methods like the injection of cell suspensions.
- O: With a focus on efficacy outcomes.
2.3.2. Exclusion Criteria
- No review;
- Letter to the editor;
- Abstract;
- Opinion;
- Study involving non-human subjects;
- Trials that compared abrocitinib to non-placebo controls;
- Trials that were not published in English.
2.4. Study Selection and Data Extraction
2.5. Outcomes
2.5.1. Primary Outcomes
- Time recorded to re-epithelization.
2.5.2. Secondary Outcomes
2.6. Risk of Bias Assessment
2.7. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies
3.3. Risk of Bias and Quality Assessment
3.4. Primary Outcomes
Time to Re-Epithelization
3.5. Secondary Outcomes
3.5.1. Postoperative Pain
3.5.2. Patient and Observer Scar Assessment Scale (POSAS)
3.5.3. Vancouver Scar Scale
3.5.4. Incidence of Complete Healing in the 4th Week
3.5.5. Infection
3.5.6. Patients Requiring Another Intervention
4. Discussion
- Main findings
- Clinical implications
- Limitations
- Previous research
5. Conclusions
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Peck, M.; Molnar, J.; Swart, D. A global plan for burn prevention and care. Bull. World Health Organ. 2009, 87, 802–803. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A.C.; Parungao, R.; Lajevardi, S.; Li, Z.; Maitz, P. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev. 2018, 123, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Smolle, C.; Cambiaso-Daniel, J.; Forbes, A.A.; Wurzer, P.; Hundeshagen, G.; Branski, L.K.; Huss, F.; Kamolz, L. Recent trends in burn epidemiology worldwide: A systematic review. Burns 2017, 43, 249–257. [Google Scholar] [CrossRef]
- Campanella, S.D.; Rapley, P.; Ramelet, A.S. A randomised controlled pilot study comparing Mepitel(®) and SurfaSoft(®) on paediatric donor sites treated with Recell(®). Burns 2011, 37, 1334–1342. [Google Scholar] [CrossRef]
- Molnar, J.A.; Walker, N.; Steele, T.N.; Craig, C.; Williams, J.; Carter, J.E.; Holmes, J. Initial Experience with Autologous Skin Cell Suspension for Treatment of Deep Partial-Thickness Facial Burns. J. Burn Care Res. 2020, 41, 1045–1051. [Google Scholar] [CrossRef]
- Cooper-Jones, B.; Visintini, S. A Noncultured Autologous Skin Cell Spray Graft for the Treatment of Burns. CADTH Issues in Emerging Health Technologies; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2016.
- Burn Incidence Fact Sheet—American Burn Association [Internet]. Available online: https://ameriburn.org/resources/burn-incidence-fact-sheet/ (accessed on 30 November 2024).
- Iwayama-Hibino, M.; Sugiura, K.; Muro, Y.; Tomita, Y. Successful topical hemotherapy with a new occlusive dressing for an intractable ulcer on the toe. J. Dermatol. 2009, 36, 245–248. [Google Scholar] [CrossRef]
- Jackson, D.M. The evolution of burn treatment in the last 50 years. Burns 1991, 17, 329–334. [Google Scholar] [CrossRef]
- Burke, J.F.; Quinby, W.C.; Bondoc, C.C. Primary excision and prompt grafting as routine therapy for the treatment of thermal burns in children. Hand Clin. 1976, 56, 477–494. [Google Scholar] [CrossRef]
- Duncan, C.O.; Shelton, R.M.; Navsaria, H.; Balderson, D.S.; Papini, R.P.G.; Barralet, J.E. In vitro transfer of keratinocytes: Comparison of transfer from fibrin membrane and delivery by aerosol spray. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 73, 221–228. [Google Scholar] [CrossRef]
- Grant, I.; Warwick, K.; Marshall, J.; Green, C.; Martin, R. The co-application of sprayed cultured autologous keratinocytes and autologous fibrin sealant in a porcine wound model. Br. J. Plast. Surg. 2002, 55, 219–227. [Google Scholar] [CrossRef]
- Navarro, F.A.; Stoner, M.L.; Park, C.S.; Huertas, J.C.; Lee, H.B.; Wood, F.M.; Orgill, D. Sprayed keratinocyte suspensions accelerate epidermal coverage in a porcine microwound model. J. Burn Care Rehabil. 2000, 21, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, Y.; Surleve-Bazeille, J.E. Autologous grafting with noncultured melanocytes: A simplified method for treatment of depigmented lesions. J. Am. Acad. Dermatol. 1992, 26 Pt 1, 191–194. [Google Scholar] [CrossRef] [PubMed]
- El-Zawahry, B.M.; Zaki, N.S.; Bassiouny, D.A.; Sobhi, R.M.; Zaghloul, A.; Khorshied, M.M.; Gouda, H. Autologous melanocyte-keratinocyte suspension in the treatment of vitiligo. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 215–220. [Google Scholar] [CrossRef]
- Stoner, M.L.; Wood, F.M. The treatment of hypopigmented lesions with cultured epithelial autograft. J. Burn Care Rehabil. 2000, 21 Pt 1, 50–54. [Google Scholar] [CrossRef]
- Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C. Growth of melanocytes in human epidermal cell cultures. J. Trauma 1990, 30, 1037–1042; discussion 1043. [Google Scholar] [CrossRef]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef]
- EndNote|The Best Citation & Reference Management Tool [Internet]. EndNote. Available online: https://endnote.com/ (accessed on 19 September 2023).
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Draaijers, L.J.; Tempelman, F.R.H.; Botman, Y.A.M.; Tuinebreijer, W.E.; Middelkoop, E.; Kreis, R.W.; Zuijlen, P. The patient and observer scar assessment scale: A reliable and feasible tool for scar evaluation. Plast. Reconstr. Surg. 2004, 113, 1960–1965; discussion 1966. [Google Scholar] [CrossRef]
- Chae, J.K.; Kim, J.H.; Kim, E.J.; Park, K. Values of a patient and observer scar assessment scale to evaluate the facial skin graft scar. Ann. Dermatol. 2016, 28, 615–623. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.; Cheng, H.; Corbett, M.; Eldrige, S.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- The Cochrane Collaboration. Review Manager 5 (RevMan 5); The Cochrane Collaboration: Copenhagen, Denmark, 2020. [Google Scholar]
- Gravante, G.; Di Fede, M.C.; Araco, A.; Grimaldi, M.; De Angelis, B.; Arpino, A.; Cervelli, V.; Montone, A. A randomized trial comparing ReCell system of epidermal cells delivery versus classic skin grafts for the treatment of deep partial thickness burns. Burns 2007, 33, 966–972. [Google Scholar] [CrossRef] [PubMed]
- Sood, R.; Roggy, D.E.; Zieger, M.J.; Nazim, M.; Hartman, B.C.; Gibbs, J.T. A comparative study of spray keratinocytes and autologous meshed split-thickness skin graft in the treatment of acute burn injuries. Wounds 2015, 27, 31–40. [Google Scholar]
- Wood, F.; Martin, L.; Lewis, D.; Rawlins, J.; McWilliams, T.; Burrows, S. A prospective randomised clinical pilot study to compare the effectiveness of Biobrane® synthetic wound dressing, with or without autologous cell suspension, to the local standard treatment regimen in paediatric scald injuries. Burns 2012, 38, 830–839. [Google Scholar] [CrossRef]
- Guerid, S.; Darwiche, S.E.; Berger, M.M.; Applegate, L.A.; Benathan, M.; Raffoul, W. Autologous keratinocyte suspension in platelet concentrate accelerates and enhances wound healing—A prospective randomized clinical trial on skin graft donor sites: Platelet concentrate and keratinocytes on donor sites. Fibrogenesis Tissue Repair 2013, 6, 8. [Google Scholar] [CrossRef]
- Holmes Iv, J.H.; Molnar, J.A.; Carter, J.E.; Hwang, J.; Cairns, B.A.; King, B.T.; Smith, D.; Cruse, C.; Foster, K.; Peck, M.; et al. A Comparative Study of the ReCell® Device and Autologous Spit-Thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries. J. Burn Care Res. 2018, 39, 694–702. [Google Scholar] [CrossRef]
- Holmes, J.H.; Molnar, J.A.; Shupp, J.W.; Hickerson, W.L.; King, B.T.; Foster, K.N.; Cairns, B.; Carter, J. Demonstration of the safety and effectiveness of the RECELL® System combined with split-thickness meshed autografts for the reduction of donor skin to treat mixed-depth burn injuries. Burns 2019, 45, 772–782. [Google Scholar] [CrossRef]
- Guo, Y.F.; Song, X.G.; Song, G.R.; Duan, Y.W.; Zhu, W.P. Application of hydrosurgical debridement and autologous skin cell suspension in the treatment of electric arc injury. Burns Open 2022, 6, 19–22. [Google Scholar] [CrossRef]
- Bairagi, A.; Tyack, Z.; Kimble, R.; Vagenas, D.; McPhail, S.M.; Griffin, B. A Pilot Randomised Controlled Trial Evaluating a Regenerative Epithelial Suspension for Medium-Size Partial-Thickness Burns in Children: The BRACS Trial. EBJ 2023, 4, 121–141. [Google Scholar] [CrossRef]
- Iman, A.; Akbar, M.A.; Mohsen, K.M.; Ali, F.; Armin, A.; Sajjad, A.; Ahmad, M.; Ghavipisheh, M.; Leila, R. Comparison of intradermal injection of autologous epidermal cell suspension vs. spraying of these cells on dermabraded surface of skin of patients with post-burn hypopigmentation. Indian J. Dermatol. 2013, 58, 240. [Google Scholar]
- Nischwitz, S.P.; Luze, H.; Popp, D.; Winter, R.; Draschl, A.; Schellnegger, M.; Kargl, L.; Rappl, T.; Giretzlehner, M.; Kamolz, L. Global burn care and the ideal burn dressing reloaded—A survey of global experts. Burns 2021, 47, 1665–1674. [Google Scholar] [CrossRef] [PubMed]
- Sahni, K.; Parsad, D.; Kanwar, A.J.; Mehta, S.D. Autologous noncultured melanocyte transplantation for stable vitiligo: Can suspending autologous melanocytes in the patients’ own serum improve repigmentation and patient satisfaction? Dermatol. Surg. 2011, 37, 176–182. [Google Scholar] [CrossRef] [PubMed]
- van de Kar, A.L.; Corion, L.U.M.; Smeulders, M.J.C.; Draaijers, L.J.; van der Horst, C.M.A.M.; van Zuijlen, P.P.M. Reliable and feasible evaluation of linear scars by the Patient and Observer Scar Assessment Scale. Plast. Reconstr. Surg. 2005, 116, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Tyack, Z.; Simons, M.; Kimble, R.M. Brisbane Burn Scar Impact Profile (BBSIP): Children 8 to 18 Yrs. 30 January 2019. Available online: https://www.researchgate.net/publication/330725288_Brisbane_Burn_Scar_Impact_Profile_BBSIP_Children_8_to_18_yrs (accessed on 30 November 2024).
- Hu, X.; Yu, W.; Sun, H.; Wang, X.; Han, C. Epidermal cells delivered for cutaneous wound healing. J. Dermatol. Treat. 2012, 23, 224–237. [Google Scholar] [CrossRef]
Study ID | Design | Location | Population | Interv. | Comparator | Follow Up | Main Finding |
---|---|---|---|---|---|---|---|
Gravante 2007 [26] | RCT | Italy | Patients with deep partial-thickness burns | Autologous skin cell suspensions (ReCell) n = 42 | Classic skin grafting in 40 | 6 M | ReCell demonstrated similar but slower functional outcomes compared to classic grafting, with reduced postoperative pain. |
Sood 2015 [27] | Randomized prospective comparative study | India | Patients with a partial-thickness to deep partial-thickness burn of 4–25% of total body surface area | Autologous cell harvesting | (MSTSG) | 52 weeks | Patients treated with ReCell had smaller donor site sizes and achieved comparable esthetic outcomes to those treated with meshed split-thickness skin grafting (MSTSG). |
Wood 2012 [28] | Pilot RCT | Australia | Pediatric patients with partial-thickness scald injury | Autologous skin cell suspensions (ReCell) + Biobrane | G2: Biobrane alone, G3: standard treatment care (dressing) | 6 M | The combination of ReCell and Biobrane resulted in faster healing, fewer dressing changes, reduced pain, and better scar outcomes compared to Biobrane alone in pediatric scald burns. |
Guerid 2013 [29] | RCT | Switzerland | Patients aged between 18 and 80 years and presenting graft donor sites not exceeding 15% of TBSA | Keratinocytes suspended in autologous platelet concentrate (PC + K) | G2: Autologous platelet concentrate (PC), G3: Standard care | 1 week | The use of autologous platelets with keratinocyte suspension showed promising results in enhancing wound healing and reducing donor site pain. |
Holmes 2018 [30] | Within-body RCT | USA | Adult patients with an acute, deep partial-thickness thermal burn from 1% to 20% TBSA that required autografting | Autologous cell harvesting (Recell) | (MSTSG) | 12 M | ReCell provided comparable healing to STSG in acute burn injuries, with significantly smaller donor site sizes, reduced pain, and improved cosmetic outcomes. |
Holmes 2019 [31] | Within-body RCT | USA | Patients aged 5 years or older with mixed-depth burn injuries | Autologous cell harvesting (Recell) | (MSTSG) | 12 M | ReCell reduced mean donor skin use by 32% while maintaining wound healing outcomes comparable to standard treatments in mixed burn injuries. |
Guo 2022 [32] | Prospective comparative study | China | Patients with acute electric arc injuries | Hydrosurgery + RECELL | Surgical excision + dressing (standard care) | NR | Patients treated with hydrological debridement and autologous skin cell suspension showed faster healing and improved scar appearance compared to traditional methods in electrical burns. |
Bairagi 2023 [33] | RCT | Australia | Children (age 16 years; 5% TBSA; 48 h of medium-size partial-thickness burns) | Regenerative epidermal suspension (Recell) + Biobrane | G2: Biobrane, G3: Standard dressing | 12 M | The combination of regenerative epidermal suspension and Biobrane in partial-thickness burns led to lower pain, fewer infections, no sepsis, no need for skin grafts, and minimal impact on health-related quality of life. |
Iman 2013 [34] | Prospective comparative study | Iran | Patients with post-burn hypo/depigmentation | Epidermal cell suspension spray | Epidermal cell suspension injection | 9–15 months | There was no significant difference in outcomes between cell spray and intradermal injection methods, and both were unsatisfactory for patients and physicians clinically. |
Study ID | Arms | N | Age (Years), Mean (SD) | Male, n | Skin Lesion Area, cm2, Mean (SD) |
---|---|---|---|---|---|
Gravante 2007 [26] | Recell | 42 | 49 (9) | 24 (57.14) | 186 (96) |
Skin grafting | 40 | 53 (10) | 26 (40) | 180 (100) | |
Sood 2015 [27] | Autologous cell harvesting | 10 | 44.4 (11.55) | 9 (90) | NR |
MSTSG | |||||
Wood 2012 [28] | Recell + Biobrane alone | 5 | 1.32 (0.55) | 3 (60) | 5.2 (3.19) |
Biobrane alone | 4 | 4.95 (3.91) | 2 (50) | 8 (5.23) | |
Standard care | 4 | 5.03 (2.5) | 1 (25) | 4.5 (0.58) | |
Guerid 2013 [29] | PC + k | 15 | 46.9 (5.3) | 5 (33.33) | NR |
Standard care | 15 | 42.5 (3.1) | 11 (73.33) | ||
Holmes 2018 [30] | Recall | 83 | 39.5 (13.1) | 70 (84.2) | 10 (4.5) |
MSTSG | |||||
Holmes 2019 [31] | Recall | 30 | 39.1 (15.8) | 25 (83) | 2443 (1675) |
MSTSG | |||||
Guo 2022 [32] | Hydrosurgery + RECELL | 30 | NR | ||
Surgical excision + dressing (standard care) | 30 | ||||
Bairagi 2023 [33] | Recell/Biobrane | 7 | 1.33 (0.92) | 5 (71.4) | |
Biobrane alone | 7 | 2.67 (1.84) | 1 (14.3) | ||
Silver dressing | 8 | 1.75 (1.56) | 4 (50) | ||
Iman 2013 [34] | Cell spray | 18 | 28.5 (9.9) | 8 (44) | 1.44 (0.7) |
Cell injection | 10 | 29.2 (4) | 5 (50) | 1.3 (0.67) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeid, F.M. Effect of Autologous Skin Cell Suspensions Versus Standard Treatment on Re-Epithelialization in Burn Injuries: A Meta-Analysis of RCTs. Medicina 2025, 61, 529. https://doi.org/10.3390/medicina61030529
Obeid FM. Effect of Autologous Skin Cell Suspensions Versus Standard Treatment on Re-Epithelialization in Burn Injuries: A Meta-Analysis of RCTs. Medicina. 2025; 61(3):529. https://doi.org/10.3390/medicina61030529
Chicago/Turabian StyleObeid, Faisal M. 2025. "Effect of Autologous Skin Cell Suspensions Versus Standard Treatment on Re-Epithelialization in Burn Injuries: A Meta-Analysis of RCTs" Medicina 61, no. 3: 529. https://doi.org/10.3390/medicina61030529
APA StyleObeid, F. M. (2025). Effect of Autologous Skin Cell Suspensions Versus Standard Treatment on Re-Epithelialization in Burn Injuries: A Meta-Analysis of RCTs. Medicina, 61(3), 529. https://doi.org/10.3390/medicina61030529