Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Study Period
2.2. Data Management and Confidentiality
2.3. Inclusion and Exclusion Criteria
2.4. Study Setting and Data Collection
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. Demographics and Clinical Characteristics
4.2. Antibiotic Types and Utilization
4.3. Antibiotic Sensitivity and Resistance
4.4. Factors Influencing AWaRe Classification-Based Usage of Antibiotics
4.5. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelsalam Elshenawy, R.; Umaru, N.; Aslanpour, Z. WHO AWaRe classification for antibiotic stewardship: Tackling antimicrobial resistance—A descriptive study from an English NHS Foundation Trust prior to and during the COVID-19 pandemic. Front. Microbiol. 2023, 14, 1298858. [Google Scholar] [CrossRef] [PubMed]
- Adedeji, W.A. The Treasure Called Antibiotics. Ann. Ibadan Postgrad. Med. 2016, 14, 56–57. [Google Scholar]
- Darkwah, T.O.; Afriyie, D.K.; Sneddon, J.; Cockburn, A.; Opare-Addo, M.N.A.; Tagoe, B.; Amponsah, S.K. Assessment of Prescribing Patterns of Antibiotics Using National Treatment Guidelines and World Health Organization Prescribing Indicators at the Ghana Police Hospital: A Pilot Study. Pan Afr. Med. J. 2021, 39, 222. [Google Scholar] [CrossRef] [PubMed]
- Sharland, M.; Zanichelli, V.; Ombajo, L.A.; Bazira, J.; Cappello, B.; Chitatanga, R.; Chuki, P.; Gandra, S.; Getahun, H.; Harbarth, S.; et al. The WHO Essential Medicines List AWaRe Book: From a List to a Quality Improvement System. Clin. Microbiol. Infect. 2022, 28, 1533–1535. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book—Infographics. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2022.02 (accessed on 12 December 2024).
- Sharland, M.; Pulcini, C.; Harbarth, S.; Zeng, M.; Gandra, S.; Mathur, S.; Magrini, N. Classifying Antibiotics in the WHO Essential Medicines List for Optimal Use—Be AWaRe. Lancet Infect. Dis. 2018, 18, 18–20. [Google Scholar] [CrossRef]
- World Health Organization. 2021 AWaRe Classification. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 12 December 2024).
- Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M. Use of the WHO Access, Watch, and Reserve Classification to Define Patterns of Hospital Antibiotic Use (AWaRe): An Analysis of Paediatric Survey Data from 56 Countries. Lancet Glob. Health 2019, 7, e861–e871. [Google Scholar] [CrossRef]
- Budd, E.; Cramp, E.; Sharland, M.; Hand, K.; Howard, P.; Wilson, P.; Wilcox, M.; Muller-Pebody, B.; Hopkins, S. Adaptation of the WHO Essential Medicines List for National Antibiotic Stewardship Policy in England: Being AWaRe. J. Antimicrob. Chemother. 2019, 74, 3384–3389. [Google Scholar] [CrossRef]
- Martens, E.; Demain, A.L. The Antibiotic Resistance Crisis, with a Focus on the United States. J. Antibiot. 2017, 70, 520–526. [Google Scholar] [CrossRef]
- Pacios, E. Antibiotic Stewardship in the Real World. Lancet Infect. Dis. 2022, 22, 448–449. [Google Scholar] [CrossRef]
- Godman, B.; Egwuenu, A.; Haque, M.; Malande, O.O.; Schellack, N.; Kumar, S.; Saleem, Z.; Sneddon, J.; Hoxha, I.; Islam, S.; et al. Strategies to Improve Antimicrobial Utilization with a Special Focus on Developing Countries. Life 2021, 11, 528. [Google Scholar] [CrossRef]
- Hardefeldt, L.Y.; Weese, J.S.; Page, S.W. General Concepts in Antimicrobial Stewardship. Antimicrob. Ther. Vet. Med. 2024, 30, 401–423. [Google Scholar]
- Liu, S.; Yu, C.; Tu, Q.; Zhang, Q.; Fu, Z.; Huang, Y.; He, C.; Yao, L. Bacterial co-infection in COVID-19: A call to stay vigilant. PeerJ 2024, 12, e18041. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Alam Tumpa, M.A.; Zehravi, M.; Sarker, M.T.; Yamin, M.D.; Islam, M.R.; Harun-Or-Rashid, M.; Ahmed, M.; Ramproshad, S.; Mondal, B.; et al. An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics 2022, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Asghar, R.; Muzammil, S.; Shafique, M.; Siddique, A.B.; Khurshid, M.; Ijaz, M.; Rasool, M.H.; Chaudhry, T.H.; Aamir, A.; et al. AMR and Sustainable Development Goals: At a crossroads. Glob. Health 2024, 20, 73. [Google Scholar] [CrossRef]
- Abrar, S.; Hussain, S.; Khan, R.A.; Ul Ain, N.; Haider, H.; Riaz, S. Prevalence of extended-spectrum-β-lactamase-producing Enterobacteriaceae: First systematic meta-analysis report from Pakistan. Antimicrob. Resist. Infect. Control. 2018, 7, 1–11. [Google Scholar] [CrossRef]
- Yasmin, F.; Akhtar, N.; Hameed, A. In vitro synergistic effect of ciprofloxacin with aminoglycosides against multidrug resistant-Pseudomonas aeruginosa. Pak. J. Pharm. Sci. 2013, 26, 1041–1045. [Google Scholar]
- Qamar, F.N.; Yousafzai, M.T.; Khalid, M.; Kazi, A.M.; Lohana, H.; Karim, S.; Khan, A.; Hotwani, A.; Qureshi, S.; Kabir, F.; et al. Outbreak investigation of ceftriaxone-resistant Salmonella enterica serotype Typhi and its risk factors among the general population in Hyderabad, Pakistan: A matched case-control study. Lancet Infect. Dis. 2018, 18, 1368–1376. [Google Scholar] [CrossRef]
- Latif, S.; Anwar, M.S.; Ahmad, I. Bacterial pathogens responsible for blood stream infection (BSI) and pattern of drug resistance in a tertiary care hospital of Lahore. Biomedica 2009, 25, 101–105. [Google Scholar]
- Faizullah, M.; Umar, M.I.; Anwar, M.; Sarfraz, M.K. A cross-sectional study on knowledge, attitude and practices of medical doctors towards antibiotic prescribing patterns and resistance in Khyber Pakhtun Khawah, Pakistan. J. Appl. Pharm. Sci. 2017, 7, 38–46. [Google Scholar]
- Mirha, H.T.; Ali, S.H.; Aamar, H.; Sadiq, M.; Tharwani, Z.H.; Habib, Z.; Malikzai, A. The impact of antibiotic resistance on the rampant spread of infectious diseases in Pakistan: Insights from a narrative review. Health Sci. Rep. 2024, 7, e2050. [Google Scholar] [CrossRef]
- Akhtar, H.; Akhtar, S.; Rahman, F.U.; Afridi, M.; Khalid, S.; Ali, S.; Akhtar, N.; Khader, Y.S.; Ahmad, H.; Khan, M.M. An overview of the treatment options used for the management of COVID-19 in Pakistan: Retrospective observational study. JMIR Public Health Surveill 2021, 7, e28594. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Mustafa, Z.U.; Ikram, M.N.; Ijaz-Ul-Haq, M.; Noor, I.; Rasool, M.F.; Ishaq, H.M.; Rehman, A.U.; Hasan, S.S.; Fang, Y. Perception, attitude, and confidence of physicians about antimicrobial resistance and antimicrobial prescribing among COVID-19 patients: A cross-sectional study from Punjab, Pakistan. Front. Pharmacol. 2022, 12, 794453. [Google Scholar] [CrossRef] [PubMed]
- Saleem, Z.; Hassali, M.A.; Versporten, A.; Godman, B.; Hashmi, F.K.; Goossens, H.; Saleem, F. A multicenter point prevalence survey of antibiotic use in Punjab, Pakistan: Findings and implications. Expert Rev. Anti-Infect Ther. 2019, 17, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Khilnani, G.C.; Zirpe, K.; Hadda, V.; Mehta, Y.; Madan, K.; Kulkarni, A.; Mohan, A.; Dixit, S.; Guleria, R.; Bhattacharya, P. Guidelines for Antibiotic Prescription in Intensive Care Unit. Indian J. Crit. Care Med. 2019, 23 (Suppl. S1), S1–S63. [Google Scholar]
- Silva, A.R.O.; Salgado, D.R.; Lopes, L.P.N.; Castanheira, D.; Emmerick, I.C.M.; Lima, E.C. Increased Use of Antibiotics in the Intensive Care Unit During Coronavirus Disease (COVID-19) Pandemic in a Brazilian Hospital. Front. Pharmacol. 2021, 12, 778386. [Google Scholar] [CrossRef]
- Ul Mustafa, Z.; Salman, M.; Aldeyab, M.; Kow, C.S.; Hasan, S.S. Antimicrobial consumption among hospitalized patients with COVID-19 in Pakistan. SN Compr. Clin. Med. 2021, 3, 1691–1695. [Google Scholar] [CrossRef]
- Saleem, Z.; Saeed, H.; Hassali, M.A.; Godman, B.; Asif, U.; Yousaf, M.; Ahmed, Z.; Riaz, H.; Raza, S.A. Pattern of Inappropriate Antibiotic Use among Hospitalized Patients in Pakistan: A Longitudinal Surveillance and Implications. Antimicrob. Resist. Infect. Control 2019, 8, 188. [Google Scholar] [CrossRef]
- Saleem, Z.; Godman, B.; Azhar, F.; Kalungia, A.C.; Fadare, J.; Opanga, S.; Markovic-Pekovic, V.; Hoxha, I.; Saeed, A.; Al-Gethamy, M.; et al. Progress on the national action plan of Pakistan on antimicrobial resistance (AMR): A narrative review and the implications. Expert Rev. Anti-Infect. Ther. 2022, 20, 71–93. [Google Scholar] [CrossRef]
- Grau, S.; Hernandez, S.; Echeverria-Esnal, D.; Almendral, A.; Ferrer, R.; Limon, E.; Horcajada, J.P.; Catalan Infection Control Antimicrobial Stewardship Program (VINCat-PROA). Antimicrobial Consumption Among 66 Acute Care Hospitals in Catalonia: Impact of the COVID-19 Pandemic. Antibiotics 2021, 10, 943. [Google Scholar] [CrossRef]
- Young, D.; McKenzie, C.A.; Gupta, S.; Sparkes, D.; Beecham, R.; Browning, D.; Dushianthan, A.; Saeed, K. Exploring Antibacterial Usage and Pathogen Surveillance over Five Years in a Tertiary Referral Teaching Hospital Adult General Intensive Care Unit (ICU). Pathogens 2024, 13, 961. [Google Scholar] [CrossRef]
- Pandolfo, A.M.; Horne, R.; Jani, Y.; Reader, T.W.; Bidad, N.; Brealey, D.; Enne, V.I.; Livermore, D.M.; Gant, V.; Brett, S.J. Understanding decisions about antibiotic prescribing in ICU: An application of the necessity concerns framework. BMJ Qual. Saf. 2022, 31, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Volz, E.; Mishra, S.; Chand, M.; Barrett, J.C.; Johnson, R.; Geidelberg, L.; Hinsley, W.R.; Laydon, D.J.; Dabrera, G.; O’Toole, Á.; et al. Transmission of SARS-CoV-2 Lineage B. 1.1. 7 in England: Insights from linking epidemiological and genetic data. medRxiv 2021, 2021, 20249034. [Google Scholar]
- Umair, M.; Ikram, A.; Salman, M.; Alam, M.M.; Badar, N.; Rehman, Z.; Tamim, S.; Khurshid, A.; Ahad, A.; Ahmad, H.; et al. Importation of SARS-CoV-2 variant B. 11 7 in Pakistan. J. Med. Virol. 2021, 93, 2623–2625. [Google Scholar] [CrossRef] [PubMed]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Katiyar, C.P.; Jain, R.; Aldrich, M.; Weston, G.; et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef]
- Rawson, T.M.; Wilson, R.C.; Holmes, A. Understanding the role of bacterial and fungal infection in COVID-19. Clin. Microbiol. Infect. 2021, 27, 9–11. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- O’ Neill, J. The Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://apo.org.au/node/63983 (accessed on 15 February 2025).
- Świder, K.; Babicki, M.; Biesiada, A.; Suszko, M.; Mastalerz-Migas, A.; Kłoda, K. Factors Influencing Antibiotic Prescribing and Antibiotic Resistance Awareness Among Primary Care Physicians in Poland. Antibiotics 2025, 14, 212. [Google Scholar] [CrossRef]
- El-Shabasy, R.M.; Nayel, M.A.; Taher, M.M.; Abdelmonem, R.; Shoueir, K.R. Three waves changes, new variant strains, and vaccination effect against COVID-19 pandemic. Int. J. Biol. Macromol. 2022, 204, 161–168. [Google Scholar] [CrossRef]
- Marasine, N.R.; Shrestha, S.; Sankhi, S.; Paudel, N.; Gautam, A.; Poudel, A. Antibiotic utilization, sensitivity, and cost in the medical intensive care unit of a tertiary care teaching hospital in Nepal. SAGE Open Med. 2021, 9, 20503121211043710. [Google Scholar] [CrossRef]
- Saleem, Z.; Faller, E.M.; Godman, B.; Malik, M.S.A.; Iftikhar, A.; Iqbal, S.; Hassali, M.A. Antibiotic consumption at community pharmacies: A multicenter repeated prevalence surveillance using WHO methodology. Med. Access@ Point Care 2021, 5, 23992026211064714. [Google Scholar] [CrossRef]
- Christensen, I.; Haug, J.B.; Berild, D.; Bjørnholt, J.V.; Skodvin, B.; Jelsness-Jørgensen, L.-P. Factors Affecting Antibiotic Prescription among Hospital Physicians in a Low-Antimicrobial-Resistance Country: A Qualitative Study. Antibiotics 2022, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Kasse, G.E.; Humphries, J.; Cosh, S.M.; Islam, M.S. Factors contributing to the variation in antibiotic prescribing among primary health care physicians: A systematic review. BMC Prim. Care 2024, 25, 8. [Google Scholar] [CrossRef] [PubMed]
- Xin, S.; Chen, W.; Yu, Q.; Gao, L.; Lu, G. Effect of the number of coronavirus disease 2019 (COVID-19) vaccination shots on the occurrence of pneumonia, severe pneumonia, and death in SARS-CoV-2-infected patients. Front. Public Health 2024, 11, 1330106. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Szyndler, A.; Olszanecka, A.; Kapłon-Cieślicka, A.; Wełnicki, M.; Jankowski, P.; Narkiewicz, K.; Wolf, J. Physician–patient partnership—Can it help increase adherence to the therapeutic recommendations in cardiovascular disease? Arter. Hypertens. 2024, 28, 50–70. [Google Scholar] [CrossRef]
- Schwartz, K.L.; Brown, K.A.; Etches, J.; Langford, B.J.; Daneman, N.; Tu, K.; Johnstone, J.; Achonu, C.; Garber, G. Predictors and variability of antibiotic prescribing amongst family physicians. J. Antimicrob. Chemother. 2019, 74, 2098–2105. [Google Scholar] [CrossRef]
- Sharaf, N.; Al-Jayyousi, G.F.; Radwan, E.; Shams Eldin, S.M.E.; Hamdani, D.; Al-Katheeri, H.; Elawad, K.; Habib, S.A. Barriers of appropriate antibiotic prescription at PHCC in Qatar: Perspective of physicians and pharmacists. Antibiotics 2021, 10, 317. [Google Scholar] [CrossRef]
- Khurram, M.; Umar, M.; Akhter, T.S.; Faheem, M. Frequently isolated bacteria and their culture and sensitivity pattern in a medical ICU. J. Coll. Physicians Surg. Pak. 2013, 23, 681–683. [Google Scholar]
- Sözen, H.; Gönen, I.; Sözen, A.; Kutlucan, A.; Kalemci, S.; Sahan, M. Application of ATC/DDD methodology to evaluate of antibiotic use in a general hospital in Turkey. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 1–6. [Google Scholar] [CrossRef]
- Saleem, Z.; Haseeb, A.; Abuhussain, S.S.A.; Moore, C.E.; Kamran, S.H.; Qamar, M.U.; Azmat, A.; Pichierri, G.; Raees, F.; Asghar, S.; et al. Antibiotic Susceptibility Surveillance in the Punjab Province of Pakistan: Findings and Implications. Medicina 2023, 59, 1215. [Google Scholar] [CrossRef]
- Dohou, A.M.; Buda, V.O.; Yemoa, L.A.; Anagonou, S.; Van Bambeke, F.; Van Hees, T.; Dalleur, O. Antibiotic Usage in Patients Having Undergone Caesarean Section: A Three-Level Study in Benin. Antibiotics 2022, 11, 617. [Google Scholar] [CrossRef]
- Vincent, J.L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Epic II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- De Bus, L.; Gadeyne, B.; Steen, J.; Boelens, J.; Claeys, G.; Benoit, D.; Depuydt, P. A complete and multifaceted overview of antibiotic use and infection diagnosis in the intensive care unit: Results from a prospective four-year registration. Crit. Care 2018, 22, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ohnuma, T.; Hayashi, Y.; Yamashita, K.; Marquess, J.; Lefor, A.K.; Sanui, M.; Andoh, K.; Egi, M.; Fujita, M.; Fujitani, S.; et al. A nationwide survey of intravenous antimicrobial use in intensive care units in Japan. Int. J. Antimicrob. Agents 2018, 51, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, S.; Bhatti, S.M.; Amir, M.; Zaman, Q.U.; Raza, A. Scenario of Antibiotic Resistance in Pakistan: A Systematic Review. Pak. J. Med. Health Sci. 2022, 16, 643–649. [Google Scholar] [CrossRef]
- Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial Resistance in Low- and Middle-Income Countries: Current Status and Future Directions. Expert Rev. Anti Infect. Ther. 2022, 20, 147–160. [Google Scholar] [CrossRef]
- Impact of COVID-19 on People’s Livelihoods, Their Health and Our Food Systems. Available online: https://www.eurofoodbank.org/what-s-new-2020-10-19-impact-of-covid-19-on-people-s-livelihoods-their-health-and-our-food-systems/ (accessed on 15 February 2025).
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Nausheen, S.; Hammad, R.; Khan, A. Rational use of antibiotics--a quality improvement initiative in hospital setting. J. Pak. Med. Assoc. 2013, 63, 60. [Google Scholar]
- World Health Organization. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240062382 (accessed on 12 December 2024).
- Kamran, K.; Ali, A. Challenges and Strategies for Pakistan in the Third Wave of COVID-19: A Mini Review. Front. Public Health 2021, 9, 690820. [Google Scholar] [CrossRef]
- Anand, N.; Nayak, I.N.; Advaitha, M.V.; Thaikattil, N.J.; Kantanavar, K.A.; Anand, S. Antimicrobial agents’ utilization and cost pattern in an Intensive Care Unit of a Teaching Hospital in South India. Indian J. Crit. Care Med. 2016, 20, 274–279. [Google Scholar] [CrossRef]
- Shankar, P.R.; Partha, P.; Dubey, A.K.; Mishra, P.; Deshpande, V.Y. Intensive care unit drug utilization in a teaching hospital in Nepal. Kathmandu Univ. Med. J. (KUMJ) 2005, 3, 130–137. [Google Scholar]
- Hawkings, N.J.; Butler, C.C.; Wood, F. Antibiotics in the community: A typology of user behaviours. Patient Educ. Couns. 2008, 73, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, N.P.; Acharya, S.P.; Mishra, S.K.; Parajuli, K.; Rijal, B.P.; Pokhrel, B.M. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrob. Resist. Infect. Control 2017, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Ahmad, J.; Khan, A.U.; Khan, T.M.; Khan, J.; Ul-Haq, Z. Self-medication and non-adherence with antibiotics: The current situation in Pakistan. J. Pharm. Pract. Res. 2016, 46, 34–37. [Google Scholar] [CrossRef]
- Arshad, H.; Gillani, A.H.; Akbar, J.; Abbas, H.; Bashir Ahmed, A.; Gillani, S.N.H.; Anum, R.; Ji, W.; Fang, Y. Knowledge on Multi-Drug Resistant Pathogens, Antibiotic Use and Self-Reported Adherence to Antibiotic Intake: A Population-Based Cross Sectional Survey From Pakistan. Front. Pharmacol. 2022, 13, 903503. [Google Scholar] [CrossRef]
- Kaleem, F.; Usman, J.; Hassan, A.; Khan, A. Frequency and susceptibility pattern of metallo-beta-lactamase producers in a hospital in Pakistan. J. Infect. Dev. Ctries. 2010, 4, 810–813. [Google Scholar] [CrossRef]
- Afzal, A.; Sarwar, Y.; Ali, A.; Maqbool, A.; Salman, M.; Habeeb, M.A.; Haque, A. Molecular evaluation of drug resistance in clinical isolates of Salmonella enterica serovar Typhi from Pakistan. J. Infect. Dev. Ctries. 2013, 7, 929–940. [Google Scholar] [CrossRef]
- Walther, S.M.; Erlandsson, M.; Burman, L.G.; Cars, O.; Gill, H.; Hoffman, M.; Isaksson, B.; Kahlmeter, G.; Lindgren, S.; Nilsson, L.; et al. Antibiotic prescription practices, consumption and bacterial resistance in a cross section of Swedish intensive care units. Acta Anaesthesiol. Scand. 2002, 46, 1075–1081. [Google Scholar] [CrossRef]
- Weber, R.J.; Kane, S.L.; Oriolo, V.A.; Saul, M.; Skledar, S.J.; Dasta, J.F. Impact of intensive care unit (ICU) drug use on hospital costs: A descriptive analysis, with recommendations for optimizing ICU pharmacotherapy. Crit. Care Med. 2003, 31 (Suppl. S1), S17–S24. [Google Scholar] [CrossRef]
Characteristics | Categories | Hospitals | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Hospital A (n = 82) | Hospital B (n = 91) | Hospital C (n = 76) | Hospital D (n = 64) | |||||||
n | % | n | % | n | % | n | % | |||
Age | <18 | 17 | 20.7 | 18 | 19.7 | 21 | 27.6 | 11 | 17.2 | 0.301 a |
18–35 | 31 | 37.8 | 43 | 47.3 | 18 | 23.7 | 24 | 37.5 | ||
36–55 | 27 | 32.9 | 26 | 28.6 | 31 | 40.8 | 16 | 25 | ||
>55 | 7 | 8.6 | 4 | 4.4 | 6 | 7.9 | 13 | 20.3 | ||
Gender | Male | 28 | 34.1 | 38 | 41.4 | 29 | 38.2 | 21 | 32.8 | 0.122 a |
Female | 54 | 65.9 | 53 | 64.6 | 47 | 61.8 | 43 | 67.2 | ||
Reason for admission | Respiratory tract infection | 26 | 31.7 | 27 | 29.7 | 21 | 27.6 | 18 | 28.1 | 0.097 a |
Renal infection | 20 | 24.4 | 24 | 26.4 | 21 | 27.6 | 17 | 26.6 | ||
CNS infection | 16 | 19.5 | 17 | 18.7 | 14 | 18.4 | 12 | 18.8 | ||
GIT infection | 9 | 11.0 | 11 | 12.1 | 9 | 11.8 | 8 | 12.5 | ||
Urinary tract infection | 8 | 11.7 | 8 | 8.8 | 9 | 11.8 | 6 | 9.4 | ||
Miscellaneous | 3 | 3.7 | 4 | 4.4 | 2 | 2.6 | 3 | 4.7 | ||
Length of stay (days) | 1 | 20 | 24.4 | 21 | 23.1 | 16 | 21.1 | 12 | 18.8 | <0.001 b |
2–3 | 42 | 51.2 | 45 | 49.5 | 38 | 49.9 | 34 | 53.1 | ||
4–5 | 12 | 14.6 | 15 | 16.5 | 13 | 17.1 | 9 | 14 | ||
6–7 | 3 | 3.7 | 4 | 4.4 | 4 | 5.3 | 5 | 7.8 | ||
>7 | 5 | 6.1 | 6 | 6.5 | 5 | 6.6 | 4 | 6.3 | ||
Therapy outcomes | Death | 5 | 6.1 | 4 | 4.3 | 4 | 5.2 | 3 | 4.7 | 0.036 b |
Discharged on request | 28 | 34.2 | 33 | 36.3 | 24 | 31.6 | 22 | 34.4 | ||
Shifted to general ward | 33 | 40.2 | 36 | 39.6 | 31 | 40.8 | 24 | 37.5 | ||
Shifted to specialized ward | 16 | 19.5 | 18 | 19.8 | 17 | 22.4 | 15 | 23.4 | ||
APACHE(II) score | 0–10 | 19 | 23.3 | 22 | 24.5 | 17 | 22.6 | 14 | 22.1 | 0.059 a |
11–20 | 48 | 59.3 | 51 | 56.3 | 44 | 57.8 | 38 | 59.4 | ||
21–30 | 12 | 14.2 | 13 | 13.4 | 12 | 15.8 | 9 | 13.8 | ||
31–40 | 3 | 3.2 | 5 | 5.8 | 3 | 3.8 | 3 | 4.7 | ||
3–5 | 4 | 4.9 | 5 | 5.5 | 6 | 7.9 | 6 | 9.4 | 0.053 a | |
GCS Score | 6–8 | 15 | 18.3 | 19 | 20.9 | 15 | 19.7 | 10 | 15.6 | |
9–12 | 42 | 51.2 | 43 | 47.3 | 36 | 47.4 | 27 | 42.2 | ||
13–15 | 21 | 25.6 | 24 | 26.4 | 19 | 25.0 | 21 | 32.8 |
Types | ATC Code | No. of Prescriptions | % | DDD (g) | ACI (DDD/Bed Days × 100) | |
---|---|---|---|---|---|---|
Access | Amoxicillin/clavulanic acid | J01CR02 | 75 | 9.8 | 7.6 | 4.5 |
Metronidazole | J01XD01 | 66 | 8.6 | 2.1 | 4.2 | |
Ampicillin | J01CA01 | 59 | 7.7 | 1.9 | 3.1 | |
Amikacin | J01GB06 | 44 | 5.6 | 9.9 | 7.5 | |
Watch | Cefoperazone | J01DB09 | 21 | 2.7 | 2 | 2.8 |
Ceftazidime | J01DB05 | 20 | 2.6 | 2 | 2.6 | |
Ciprofloxacin | J01MA02 | 38 | 4.9 | 1 | 1.3 | |
Cefotaxime | J01DD01 | 60 | 7.8 | 4 | 2.3 | |
Azithromycin | J01FA10 | 37 | 4.8 | 0.3 | 1.1 | |
Lincomycin | J01FF02 | 29 | 3.8 | 1.8 | 4.1 | |
Meropenem | J01DH02 | 29 | 3.8 | 2 | 2.3 | |
Cefuroxime | J01DC02 | 48 | 6.3 | 0.5 | 1.8 | |
Vancomycin | J01XA01 | 25 | 3.3 | 1.9 | 2.2 | |
Imipenem/cilastatin | J01DH51 | 48 | 6.3 | 2 | 1.5 | |
Ceftriaxone | J01DD04 | 57 | 7.4 | 2 | 1.6 | |
Piperacillin/tazobactam | J01CR05 | 45 | 5.9 | 14 | 8.3 | |
Reserve | Linezolid | J01XX08 | 38 | 4.9 | 1.2 | 2.3 |
Colistin | J01XB01 | 29 | 3.8 | 9 (MU) | 0.7 | |
Total antibiotic consumption | 768 | 100 | 54.2 |
AWaRe Classification 2021 | Types | Hospital A | No. of Prescriptions (%) | Hospital B | No. of Prescriptions (%) | Hospital C | No. of Prescriptions (%) | Hospital D | No. of Prescriptions (%) | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
Access | Amoxicillin/clavulanic acid | 17 | 49 (28) | 14 | 49 (21.7) | 20 | 68 (37.8) | 24 | 78 (41.7) | <0.001 b |
Metronidazole | 13 | 13 | 19 | 21 | ||||||
Ampicillin | 11 | 12 | 17 | 19 | ||||||
Amikacin | 8 | 10 | 12 | 14 | ||||||
Watch | Cefoperazone | 4 | 106 (60.6) | 9 | 150 (66.4) | 5 | 99 (55) | 3 | 102 (54.5) | |
Ceftazidime | 4 | 9 | 4 | 3 | ||||||
Ciprofloxacin | 9 | 17 | 7 | 5 | ||||||
Cefotaxime | 13 | 26 | 10 | 11 | ||||||
Azithromycin | 8 | 10 | 9 | 10 | ||||||
Lincomycin | 7 | 9 | 8 | 5 | ||||||
Meropenem | 6 | 4 | 9 | 10 | ||||||
Cefuroxime | 10 | 12 | 12 | 14 | ||||||
Vancomycin | 5 | 9 | 6 | 5 | ||||||
Imipenem/cilastatin | 14 | 15 | 9 | 10 | ||||||
Ceftriaxone | 12 | 20 | 11 | 14 | ||||||
Piperacillin/tazobactam | 14 | 10 | 9 | 12 | ||||||
Reserve | Linezolid | 11 | 20 (11.4) | 18 | 27 (11.9) | 6 | 13 (7.2) | 3 | 7 (3.8) | |
Colistin | 9 | 9 | 7 | 4 | ||||||
Total antibiotic consumption | 768 | 175 (100) | 226 (100) | 180 (100) | 187 (100) |
Characteristics | Categories | Hospitals | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Hospital A (n = 82) | Hospital B (n = 91) | Hospital C (n = 76) | Hospital D (n = 64) | |||||||
n | % | n | % | n | % | n | % | |||
Antibiotic therapy type | Empirical | 29 | 35.4 | 33 | 36.3 | 24 | 31.6 | 24 | 37.5 | 0.039 b |
Definitive (after C&S test) | 34 | 41.5 | 37 | 40.6 | 34 | 44.7 | 27 | 42.2 | ||
Prophylaxis | 19 | 23.1 | 21 | 23.1 | 18 | 23.7 | 13 | 20.3 | ||
Number of antibiotics given per day | 1 | 17 | 20.7 | 19 | 20.9 | 14 | 18.4 | 14 | 21.9 | <0.001 b |
2 | 35 | 42.7 | 38 | 41.8 | 35 | 46.1 | 26 | 40.6 | ||
3 | 16 | 19.5 | 15 | 16.5 | 16 | 21.1 | 14 | 21.9 | ||
≥4 | 14 | 17.1 | 19 | 20.9 | 11 | 14.5 | 10 | 15.6 | ||
Route of administration | Parenteral (intravenous) | 67 | 81.7 | 74 | 81.3 | 57 | 75 | 53 | 82.8 | 0.021 b |
Oral | 15 | 18.3 | 17 | 18.7 | 19 | 25 | 11 | 17.2 |
AWaRe Classification 2021 | Types | Gram-Positive (Sensitivity) | Gram-Positive (Resistance) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | N1 | Hospital A | Hospital B | Hospital C | Hospital D | N2 | Hospital A | Hospital B | Hospital C | Hospital D | ||
Access | Amoxicillin/clavulanic acid | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
17 | 13 | 4 (30.7) | 3 (23.1) | 3 (23.1) | 3 (23.1) | 4 | 1 (25) | 1 (25) | 1 (25) | 1 (25) | ||
Metronidazole | 5 | 4 | 1 (25) | 3 (75) | 0 (0) | 0 (0) | 1 | 0 (0) | 1 (100) | 0 (0) | 0 (0) | |
Ampicillin | 11 | 9 | 1 (11.1) | 5 (55.6) | 2 (22.2) | 1 (11.1) | 2 | 1 (50) | 1 (50) | 0 (0) | 0 (0) | |
Amikacin | 4 | 3 | 1 (33.3) | 0 (0) | 0 (0) | 2 (66.7) | 1 | 0 (0) | 0 (0) | 1 (100) | 0 (0) | |
Watch | Cefoperazone | 9 | 8 | 2 (25) | 1 (12.5) | 2 (25) | 3 (37.5) | 1 | 1 (100) | 0 (0) | 0 (0) | 0 (0) |
Ceftazidime | 7 | 4 | 0 (0) | 0 (0) | 1 (25) | 3 (75) | 3 | 1 (33.3) | 0 (0) | 1 (33.4) | 1 (33.3) | |
Ciprofloxacin | 5 | 1 | 0 (0) | 1 (100) | 0 (0) | 0 (0) | 4 | 1 (25) | 3 (75) | 0 (0) | 0 (0) | |
Cefotaxime | 3 | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) | 1 | 1 (100) | 0 (0) | 0 (0) | 0 (0) | |
Azithromycin | 9 | 7 | 1 (14.3) | 1 (14.3) | 1 (14.3) | 4 (57.1) | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) | |
Lincomycin | 5 | 5 | 0 (0) | 1 (20) | 1 (20) | 3 (60) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Meropenem | 4 | 4 | 0 (0) | 0 (0) | 0 (0) | 4 (100) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Cefuroxime | 12 | 9 | 2 (22.2) | 4 (44.5) | 1 (11.1) | 2 (22.2) | 3 | 1 (33.3) | 1 (33.3) | 0 (0) | 1 (33.4) | |
Vancomycin | 7 | 6 | 1 (16.7) | 1 (16.7) | 1 (16.6) | 3 (50) | 1 | 0 (0) | 0 (0) | 0 (0) | 1 (100) | |
Imipenem/cilastatin | 8 | 8 | 1 (12.5) | 0 (0) | 1 (12.5) | 6 (75) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Ceftriaxone | 22 | 14 | 3 (21.4) | 4 (28.6) | 3 (21.4) | 4 (28.6) | 8 | 1 (12.5) | 2 (25) | 2 (25) | 3 (37.5) | |
Piperacillin/tazobactam | 4 | 3 | 0 (0) | 0 (0) | 1 (33.3) | 2 (66.7) | 1 | 0 (0) | 0 (0) | 0 (0) | 1 (100) | |
Reserve | Linezolid | 11 | 9 | 3 (33.3) | 0 (0) | 3 (33.3) | 3 (33.4) | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) |
Colistin | 4 | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) | 2 | 1 (50) | 0 (0) | 0 (0) | 1 (50) |
AWaRe Classification 2021 | Types | Gram-Negative (Sensitivity) | Gram-Negative (Resistance) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | N1 | Hospital A | Hospital B | Hospital C | Hospital D | N2 | Hospital A | Hospital B | Hospital C | Hospital D | ||
Access | Amoxicillin/clavulanic acid | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
32 | 14 | 3 (21.4) | 4 (28.6) | 3 (21.4) | 4 (28.6) | 18 | 4 (22.2) | 5 (27.8) | 5 (27.8) | 4 (22.2) | ||
Metronidazole | 6 | 2 | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 4 | 0 (0) | 2 (50) | 0 (0) | 2 (50) | |
Ampicillin | 9 | 6 | 1 (16.7) | 3 (50) | 1 (16.7) | 1 (16.6) | 3 | 1 (33.4) | 1 (33.3) | 1 (33.3) | 0 (0) | |
Amikacin | 14 | 10 | 2 (20) | 0 (0) | 2 (20) | 6 (60) | 4 | 0 (0) | 0 (0) | 2 (50) | 2 (50) | |
Watch | Cefoperazone | 10 | 9 | 2 (22.2) | 3 (33.4) | 2 (22.2) | 2 (22.2) | 1 | 1 (100) | 0 (0) | 0 (0) | 0 (0) |
Ceftazidime | 8 | 6 | 1 (16.7) | 1 (16.7) | 1 (16.6) | 3 (50) | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) | |
Ciprofloxacin | 11 | 8 | 1 (12.5) | 5 (62.5) | 1 (12.5) | 1 (12.5) | 3 | 1 (33.3) | 2 (66.7) | 0 (0) | 0 (0) | |
Cefotaxime | 10 | 8 | 2 (25) | 2 (25) | 2 (25) | 2 (25) | 2 | 0 (0) | 0 (0) | 1 (50) | 1 (50) | |
Azithromycin | 17 | 16 | 2 (12.5) | 2 (12.5) | 3 (18.7) | 9 (56.3) | 1 | 0 (0) | 0 (0) | 1 (100) | 0 (0) | |
Lincomycin | 11 | 4 | 0 (0) | 0 (0) | 2 (50) | 2 (50) | 7 | 1 (14.3) | 1 (14.3) | 2 (28.6) | 3 (42.8) | |
Meropenem | 7 | 6 | 1 (16.7) | 0 (0) | 1 (16.7) | 4 (66.6) | 1 | 0 (0) | 0 (0) | 0 (0) | 1 (100) | |
Cefuroxime | 9 | 6 | 1 (16.7) | 2 (33.3) | 2 (33.3) | 1 (16.7) | 3 | 1 (33.4) | 1 (33.3) | 1 (33.3) | 0 (0) | |
Vancomycin | 6 | 4 | 1 (25) | 0 (0) | 1 (25) | 2 (50) | 2 | 0 (0) | 0 (0) | 0 (0) | 2 (100) | |
Imipenem/cilastatin | 8 | 8 | 0 (0) | 1 (12.5) | 1 (12.5) | 6 (75) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Ceftriaxone | 13 | 8 | 3 (37.5) | 2 (25) | 2 (25) | 1 (12.5) | 5 | 1 (20) | 2 (40) | 1 (20) | 1 (20) | |
Piperacillin/tazobactam | 11 | 8 | 1 (12.5) | 1 (12.5) | 2 (25) | 4 (50) | 3 | 0 (0) | 0 (0) | 1 (33.3) | 2 (66.7) | |
Reserve | Linezolid | 0 | NP | NP | NP | NP | NP | NP | NP | NP | NP | NP |
Colistin | 4 | 4 | 2 (50) | 0 (0) | 1 (25) | 1 (25) | 0 | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Total = 768 (100%) | Access 244 (31.8%) | Watch 457 (59.5%) | Reserve 67 (8.7%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Characteristics | β | AOR (95% CI) | p-Value | β | AOR (95% CI) | p-Value | β | AOR (95% CI) | p-Value |
Gender | |||||||||
Male | Referent | Referent | Referent | ||||||
Female | 0.34 | 0.267 (0.078–1.298) | 0.448 | −0.13 | 0.185 (0.041–0.977) | 0.058 | 0.16 | 0.356 (0.298–1.718) | 0.103 |
Length of stay (days) | |||||||||
1 | Referent | Referent | Referent | ||||||
2–3 | 0.21 | 0.218 (0.074–0.778) | 0.116 | −0.24 | 0.193 (0.048–0.387) | 0.063 | 0.17 | 0.197 (0.067–0.989) | 0.035 |
4–5 | 0.32 | 0.378 (0.055–1.927) | 0.238 | 0.23 | 0.378 (0.055–1.927) | 0.082 | 0.28 | 0.276 (0.359–2.174) | 0.029 |
6–7 | −0.12 | 0.514 (0.298–1.718) | 0.137 | −0.23 | 0.876 (0.359–2.174) | 0.096 | 0.19 | 0.569 (0.144–0.891) | 0.047 |
>7 | −0.18 | 0.389 (0.117–1.498) | 0.143 | −0.36 | 0.444 (0.363–0.875) | 0.059 | 0.15 | 0.914 (0.298–1.718) | 0.041 |
Number of antibiotics given per day | |||||||||
1 | Referent | Referent | Referent | ||||||
2 | 0.12 | 0.391 (0.192–0.767) | 0.319 | 0.11 | 1.091 (0.581–2.561) | 0.278 | 0.05 | 0.219 (0.192–0.767) | 0.014 |
3 | −0.14 | 0.485 (0.185–1.317) | 0.174 | −0.09 | 0.485 (0.185–1.317) | 0.094 | 0.08 | 0.787 (0.178–0.956) | 0.032 |
≥4 | −0.16 | 0.289 (0.078–0.456) | 0.152 | −0.12 | 0.671 (0.612–1.781) | 0.198 | 0.07 | 1.293 (0.185–0.478) | 0.048 |
Route of administration | |||||||||
Parenteral (intravenous) | Referent | Referent | Referent | ||||||
Oral | 0.25 | 0.478 (0.362–0.991) | 0.231 | 0.26 | 1.091 (0.581–2.561) | 0.173 | 0.22 | 0.719 (0.451–1.981) | 0.155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, M.S.; Khan, M.F.; Farooqui, S.; Khan, S.-U.-D.; Vohra, S.; Rasheed, S.; Iqbal, M.Z.; Qamer, S. Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications. Medicina 2025, 61, 481. https://doi.org/10.3390/medicina61030481
Iqbal MS, Khan MF, Farooqui S, Khan S-U-D, Vohra S, Rasheed S, Iqbal MZ, Qamer S. Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications. Medicina. 2025; 61(3):481. https://doi.org/10.3390/medicina61030481
Chicago/Turabian StyleIqbal, Muhammad Shahid, Mohd Faiyaz Khan, Sadaf Farooqui, Salah-Ud-Din Khan, Saeed Vohra, Shahzad Rasheed, Muhammad Zahid Iqbal, and Shafqat Qamer. 2025. "Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications" Medicina 61, no. 3: 481. https://doi.org/10.3390/medicina61030481
APA StyleIqbal, M. S., Khan, M. F., Farooqui, S., Khan, S.-U.-D., Vohra, S., Rasheed, S., Iqbal, M. Z., & Qamer, S. (2025). Antibiotic Utilization and Resistance According to the WHO AWaRe Classification in Intensive Care Units After COVID-19 Third Wave in Pakistan: Findings and Implications. Medicina, 61(3), 481. https://doi.org/10.3390/medicina61030481