Neurotrophic Receptor Tyrosine Kinase 3 as a Prognostic Biomarker in Breast Cancer Using Bioinformatic Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. TIMER Database Analysis
2.2. OSLIHC Database Analysis
2.3. UALCAN Database Analysis
2.4. Statistical Analysis
3. Results
3.1. Assessment of NTRK3 Expression in Different Cancer and Normal Tissues
3.2. Clinicopathological Characteristics of NTRK3 in BC
3.3. Prognostic Value of NTRK3 in BC
3.4. Association of NTRK3 Expression with Immune Cell Infiltration in BC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NTRK | Neurotrophic receptor tyrosine kinase |
BC | Breast cancer |
TRK | Tropomyosin receptor kinase |
TIICs | Tumor-infiltrating immune cells |
TIMER | Tumor ImTmune Estimation Resource |
OS | Overall survival |
PFI | Progression-free interval |
DSS | Disease-specific survival |
TCGA | The Cancer Genome Atlas |
HRs | Hazard ratios |
References
- Hamann, U.; Ankel, C. Mammakarzinom: Diagnostik und Therapie—Das Wichtigste für den Internisten [Breast cancer: Diagnostics and therapy—The most important facts for internists]. Dtsch. Med. Wochenschr. 2018, 143, 267–278. [Google Scholar]
- World Health Organization. Breast Cancer; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Chetty, R. Neurotrophic tropomyosin or tyrosine receptor kinase (NTRK) genes. J. Clin. Pathol. 2019, 72, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Kue, C.S.; Kamkaew, A.; Voon, S.H.; Kiew, L.V.; Chung, L.Y.; Burgess, K.; Lee, H.B. Tropomyosin receptor kinase C targeted delivery of a peptidomimetic ligand-photosensitizer conjugate induces antitumor immune responses following photodynamic therapy. Sci. Rep. 2016, 6, 37209. [Google Scholar] [CrossRef]
- Jin, W.; Kim, G.M.; Kim, M.S.; Lim, M.H.; Yun, C.; Jeong, J.; Nam, J.-S.; Kim, S.-J. TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 2010, 31, 1939–1947. [Google Scholar] [CrossRef] [PubMed]
- Walker, A. Neurotrophic tyrosine kinase inhibitors: A review of implications for patients, clinicians and healthcare services. J. Oncol. Pharm. Pract. 2020, 26, 8. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Yue, X.; Zhou, D.; Li, H. Long non coding RNA OIP5AS1 promotes metastasis of breast cancer via miR3405p/ZEB2 axis. Oncol. Rep. 2020, 44, 1662–1670. [Google Scholar]
- Li, T.; Fu, J.; Zeng, Z.; Cohen, D.; Li, J.; Chen, Q.; Li, B.; Liu, X.S. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020, 48, 509–514. [Google Scholar] [CrossRef]
- Kim, H.R.; Kim, J.; Woo, H.J.; Park, M.S. TMEM14C is a novel biomarker for prognosis and diagnosis of liver hepatocellular carcinoma. Anat. Biol. Anthropol. 2024, 37, 189–199. [Google Scholar]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes. Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The cancer genome. Nature 2009, 458, 719–724. [Google Scholar] [CrossRef]
- Nik-Zainal, S.; Davies, H.; Staaf, J.; Ramakrishna, M.; Glodzik, D.; Zou, X.; Martincorena, I.; Alexandrov, L.B.; Martin, S.; Wedge, D.C.; et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 2016, 534, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Beltjens, F.; Molly, D.; Bertaut, A.; Richard, C.; Desmoulins, I.; Loustalot, C.; Charon-Barra, C.; Courcet, E.; Bergeron, A.; Ladoire, S.; et al. ER−/PR+ breast cancer: A distinct entity, which is morphologically and molecularly close to triple-negative breast cancer. Int. J. Cancer 2021, 149, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Filippi, A.; Mocanu, M.M. Mining TCGA database for genes with prognostic value in breast cancer. Int. J. Mol. Sci. 2023, 24, 1622. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Ji, Z.; Zhang, Q.; Zhang, X.; Chen, J.; Hu, J.; Wang, R.; Ding, Y. Investigation of LGALS2 expression in the TCGA database reveals its clinical relevance in breast cancer immunotherapy and drug resistance. Sci. Rep. 2023, 13, 17445. [Google Scholar] [CrossRef]
- Luo, Y.; Kaz, A.M.; Kanngurn, S.; Welsch, P.; Morris, S.M.; Wang, J.; Lutterbaugh, J.D.; Markowitz, S.D.; Grady, W.M. NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet. 2013, 9, e1003552. [Google Scholar] [CrossRef]
- Kamiya, A.; Inokuchi, M.; Otsuki, S.; Sugita, H.; Kato, K.; Uetake, H.; Sugihara, K.; Takagi, Y.; Kojima, K. Prognostic value of tropomyosin-related kinases A, B, and C in gastric cancer. Clin. Transl. Oncol. 2016, 18, 599–607. [Google Scholar] [CrossRef]
- Greco, A.; Miranda, C.; Pierotti, M.A. Rearrangements of NTRK1 gene in papillary thyroid carcinoma. Mol. Cell Endocrinol. 2010, 321, 44–49. [Google Scholar] [CrossRef]
- Vaishnavi, A.; Capelletti, M.; Le, A.T.; Kako, S.; Butaney, M.; Ercan, D.; Mahale, S.; Davies, K.D.; Aisner, D.L.; Pilling, A.B.; et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat. Med. 2013, 19, 1469–1472. [Google Scholar] [CrossRef]
- Wu, G.; Diaz, A.K.; Paugh, B.S.; Rankin, S.L.; Ju, B.; Li, Y.; Zhu, X.; Qu, C.; Chen, X.; Zhang, J.; et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat. Genet. 2014, 46, 444–450. [Google Scholar]
- Xu, X.; Tahan, S.R.; Pasha, T.L.; Zhang, P.J. Expression of neurotrophin receptor Trk-C in nevi and melanomas. J. Cutan. Pathol. 2003, 30, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Bouzas-Rodriguez, J.; Cabrera, J.R.; Delloye-Bourgeois, C.; Ichim, G.; Delcros, J.G.; Raquin, M.A.; Rousseau, R.; Combaret, V.; Bénard, J.; Tauszig-Delamasure, S.; et al. Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J. Clin. Investig. 2010, 120, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Cosar, R.; Sut, N.; Ozen, A.; Tastekin, E.; Topaloglu, S.; Cicin, I.; Nurlu, D.; Ozler, T.; Demir, S.; Yıldız, G.; et al. Breast cancer subtypes and prognosis: Answers to subgroup classification questions, identifying the worst subgroup in our single-center series. Breast Cancer Targets Ther. 2022, 14, 259–280. [Google Scholar] [CrossRef]
- Kumar, N.; Gann, P.H.; McGregor, S.M.; Sethi, A. Quantification of subtype purity in Luminal A breast cancer predicts clinical characteristics and survival. Breast Cancer Res. Treat. 2023, 200, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Koo, J.S.; Kim, M.S.; Park, H.S.; Lee, J.S.; Lee, J.S.; Kim, S.I.; Park, B.W. Characteristics and outcomes according to molecular subtypes of breast cancer as classified by a panel of four biomarkers using immunohistochemistry. Breast 2012, 21, 50–57. [Google Scholar] [CrossRef]
NTRK3 | |||
---|---|---|---|
High | Low | p-Value | |
Age | |||
Gender | 0.13 | ||
Male | 3 (27.3) | 8 (72.7) | |
Female | 50 (50.3) | 498 (49.7) | |
T stage | 0.002 | ||
T1 | 144 (55.0) | 118 (45.0) | |
T2 | 275 (47.1) | 309 (52.9) | |
T3 | 72 (59.0) | 50 (41.0) | |
T4 | 10 (28.6) | 25 (71.4) | |
N stage | 0.09 | ||
N0 | 248 (52.5) | 224 (47.5) | |
N1 | 167 (49.9) | 168 (50.1) | |
N2 | 45 (39.8) | 68 (60.2) | |
N3 | 38 (54.3) | 32 (45.7) | |
M stage | 0.40 | ||
M0 | 413 (49.5) | 422 (50.5) | |
M1 | 8 (40.0) | 12 (60.0) | |
Stage | 0.22 | ||
I | 97 (56.7) | 74 (43.3) | |
II | 279 (48.9) | 292 (51.1) | |
III | 110 (48.7) | 116 (51.3) | |
IV | 7 (38.9) | 11 (61.1) | |
Race | 0.011 | ||
White | 385 (55.4) | 360 (44.6) | |
Black | 68 (40.0) | 102 (60.0) | |
Asian | 23 (41.1) | 33 (58.9) | |
Pathology | <0.001 | ||
Invasive ductal carcinoma | 200 (42.7) | 268 (57.3) | |
Invasive lobular carcinoma | 99 (80.5) | 24 (19.5) | |
Mixed | 38 (49.4) | 39 (50.) | |
Subtype | <0.001 | ||
Luminal A | 303 (61.5) | 190 (38.5) | |
Luminal B | 41 (22.9) | 138 (77.1) | |
HER2-enriched | 10 (14.1) | 61 (85.9) | |
Triple negative | 96 (57.1) | 72 (42.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kim, J.; Jung, Y.W.; Park, J.H.; Lee, J.-H. Neurotrophic Receptor Tyrosine Kinase 3 as a Prognostic Biomarker in Breast Cancer Using Bioinformatic Analysis. Medicina 2025, 61, 474. https://doi.org/10.3390/medicina61030474
Choi J, Kim J, Jung YW, Park JH, Lee J-H. Neurotrophic Receptor Tyrosine Kinase 3 as a Prognostic Biomarker in Breast Cancer Using Bioinformatic Analysis. Medicina. 2025; 61(3):474. https://doi.org/10.3390/medicina61030474
Chicago/Turabian StyleChoi, Jeongmin, Jongwan Kim, Yong Wook Jung, Jong Ho Park, and Jae-Ho Lee. 2025. "Neurotrophic Receptor Tyrosine Kinase 3 as a Prognostic Biomarker in Breast Cancer Using Bioinformatic Analysis" Medicina 61, no. 3: 474. https://doi.org/10.3390/medicina61030474
APA StyleChoi, J., Kim, J., Jung, Y. W., Park, J. H., & Lee, J.-H. (2025). Neurotrophic Receptor Tyrosine Kinase 3 as a Prognostic Biomarker in Breast Cancer Using Bioinformatic Analysis. Medicina, 61(3), 474. https://doi.org/10.3390/medicina61030474