The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
- Histologically confirmed high-grade serous carcinoma (HGSC).
- Histologically confirmed PROC, defined as disease progression occurring within 6 months of completing the last platinum-based chemotherapy regimen [9].
- Female patients aged ≥ 18 years at the time of treatment initiation.
- Radiologically measurable disease according to RECIST 1.1 criteria [11].
- FIGO stage IIIC, or IV at the time of diagnosis or progression, representing advanced ovarian cancer with peritoneal or distant metastases [12].
- An ECOG performance status of 0 or 1, indicating that patients were fully active or restricted only in physically strenuous activity but otherwise ambulatory and capable of light work [13].
- Complete hematological data, including ANC at baseline, during chemotherapy cycles (1–3), and post-treatment.
- Patients who could provide informed consent for clinical care and had at least 6 months of documented follow-up post-treatment initiation.
- History of another malignancy within the last 5 years to avoid confounding factors from concurrent cancer treatments or outcomes.
- Presence of active systemic infections, including tuberculosis, HIV, or hepatitis B or C, which could interfere with treatment or immune responses.
- Evidence of severe cardiac, hepatic, renal, or pulmonary dysfunction unrelated to cancer (e.g., congestive heart failure, chronic kidney disease stage IV/V, or severe chronic obstructive pulmonary disease).
- History of active autoimmune diseases requiring systemic treatment, such as lupus or rheumatoid arthritis, due to potential exacerbation by cancer therapy or interaction with immunosuppressive medications.
- Pregnant or breastfeeding women were excluded due to the potential teratogenic effects of chemotherapy and lack of safety data in these populations.
- Known hypersensitivity or allergic reactions to any of the agents used in the study, such as PLD, topotecan, or bevacizumab.
- Participation in another clinical trial or treatment with experimental drugs within the last 6 months, which might introduce confounding factors into treatment outcomes or toxicity profiles.
2.3. Data Collection
2.4. Endpoints
- Tumor response: evaluated using RECIST 1.1 criteria, categorizing outcomes as being a complete response (CR), partial response (PR), stable disease (SD), or progressive disease (PD).
- PFS: defined as the time from treatment initiation to documented disease progression or death from any cause.
- OS: defined as the time from treatment initiation to death from any cause.
- Hematological toxicities: the frequency and severity of toxicities, such as neutropenia, febrile neutropenia, thrombocytopenia, and anemia, are graded according to CTCAE v5.0 criteria.
- Neutrophil dynamics: analysis of changes in ANC during chemotherapy cycles and their correlation with tumor response, PFS, and OS.
- Predictive value of ANC thresholds: evaluation of baseline ANC as a prognostic marker, including sensitivity, specificity, and area under the curve (AUC) using receiver operating characteristic (ROC) analysis.
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Havasi, A.; Cainap, S.S.; Havasi, A.T.; Cainap, C. Ovarian Cancer—Insights into Platinum Resistance and Overcoming It. Medicina 2023, 59, 544. [Google Scholar] [CrossRef]
- Miras, I.; Estévez-García, P.; Muñoz-Galván, S. Clinical and Molecular Features of Platinum Resistance in Ovarian Cancer. Crit. Rev. Oncol. Hematol. 2024, 201, 104434. [Google Scholar] [CrossRef] [PubMed]
- Hamontri, S.; Tantitamit, T. Outcomes and Prognostic Factors of Patients with Platinum- Resistant or Refractory Epithelial Ovarian Cancer, Fallopian Tube Cancer and Peritoneal Cancer. Asian Pac. J. Cancer Prev. 2023, 24, 1401–1405. [Google Scholar] [CrossRef]
- Goodman, A. Combination Bevacizumab/Chemotherapy Improves Outcomes in Platinum-Resistant Ovarian Cancer. ASCO Post 2012. Available online: https://www.ascopost.com/issues/october-15-2012/combination-bevacizumabchemotherapy-improves-outcomes-in-platinum-resistant-ovarian-cancer/ (accessed on 12 October 2024).
- Sassu, C.M.; Palaia, I.; Boccia, S.M.; Caruso, G.; Perniola, G.; Tomao, F.; Di Donato, V.; Musella, A.; Muzii, L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int. J. Mech. Sci. 2021, 22, 13650. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, Y.; Kasai, M.; Fukuda, T.; Ichimura, T.; Yasui, T.; Sumi, T. Chemotherapy-Induced Neutropenia and Febrile Neutropenia in Patients with Gynecologic Malignancy. Anti-Cancer Drugs 2015, 26, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wei, M.; Cheng, X.; Li, X. Chemotherapy-Induced Neutropenia as a Prognostic Factor in Patients With Advanced Epithelial Ovarian Carcinoma. Cancer Control 2023, 30, 10732748231183496. [Google Scholar] [CrossRef]
- McFarlane, A.J.; Fercoq, F.; Coffelt, S.B.; Carlin, L.M. Neutrophil Dynamics in the Tumor Microenvironment. J. Clin. Investig. 2021, 131, e143759. [Google Scholar] [CrossRef]
- Kefas, J.; Flynn, M. Unlocking the Potential of Immunotherapy in Platinum-Resistant Ovarian Cancer: Rationale, Challenges, and Novel Strategies. Cancer Drug Resist. 2024, 7, 39. [Google Scholar] [CrossRef]
- Eskander, R.N.; Moore, K.N.; Monk, B.J.; Herzog, T.J.; Annunziata, C.M.; O’Malley, D.M.; Coleman, R.L. Overcoming the Challenges of Drug Development in Platinum-Resistant Ovarian Cancer. Front. Oncol. 2023, 13, 1258228. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Prat, J. FIGO’s Staging Classification for Cancer of the Ovary, Fallopian Tube, and Peritoneum: Abridged Republication. J. Gynecol. Oncol. 2015, 26, 87. [Google Scholar] [CrossRef]
- Eastern Cooperative Oncology Group. ECOG Performance Status. ECOG-ACRIN Cancer Research Group: Philadelphia, PA, USA. Available online: https://ecog-acrin.org/resources/ecog-performance-status (accessed on 12 September 2024).
- Ba, Y.; Shi, Y.; Jiang, W.; Feng, J.; Cheng, Y.; Xiao, L.; Zhang, Q.; Qiu, W.; Xu, B.; Xu, R.; et al. Current Management of Chemotherapy—Induced Neutropenia in Adults: Key Points and New Challenges. Cancer Biol. Med. 2020, 17, 896–909. [Google Scholar] [CrossRef]
- Crawford, J.; Wolff, D.A.; Culakova, E.; Poniewierski, M.S.; Selby, C.; Dale, D.C.; Lyman, G.H. First Cycle Risk of Severe and Febrile Neutropenia in Cancer Patients Receiving Systemic Chemotherapy: Results from a Prospective Nationwide Study. Blood 2004, 104, 2210. [Google Scholar] [CrossRef]
- Ocana, A.; Nieto-Jiménez, C.; Pandiella, A.; Templeton, A.J. Neutrophils in Cancer: Prognostic Role and Therapeutic Strategies. Mol. Cancer 2017, 16, 137. [Google Scholar] [CrossRef] [PubMed]
- Shaul, M.E.; Fridlender, Z.G. Neutrophil Plasticity in the Tumor Microenvironment. Blood 2019, 133, 2159–2167. [Google Scholar] [CrossRef]
- Kasi, P.M.; Kotani, D.; Cecchini, M.; Shitara, K.; Ohtsu, A.; Ramanathan, R.K.; Hochster, H.S.; Grothey, A.; Yoshino, T. Chemotherapy Induced Neutropenia at 1-Month Mark Is a Predictor of Overall Survival in Patients Receiving TAS-102 for Refractory Metastatic Colorectal Cancer: A Cohort Study. BMC Cancer 2016, 16, 467. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Mao, R.; Yang, J. NF-κB and STAT3 Signaling Pathways Collaboratively Link Inflammation to Cancer. Protein Cell 2013, 4, 176–185. [Google Scholar] [CrossRef]
- Liang, W.; Ferrara, N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunol. Res. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Luyang, H.; Zeng, F.; Lei, Y.; He, Q.; Zhou, Y.; Xu, J. Bidirectional Role of Neutrophils in Tumor Development. Mol. Cancer 2025, 24, 22. [Google Scholar] [CrossRef]
- Gargiulo, P.; Arenare, L.; Gridelli, C.; Morabito, A.; Ciardiello, F.; Gebbia, V.; Maione, P.; Spagnuolo, A.; Palumbo, G.; Esposito, G.; et al. Chemotherapy-Induced Neutropenia and Treatment Efficacy in Advanced Non-Small-Cell Lung Cancer: A Pooled Analysis of 6 Randomized Trials. BMC Cancer 2021, 21, 549. [Google Scholar] [CrossRef]
- He, Y.; Li, T.; Liu, J.; Ou, Q.; Zhou, J. Early Onset Neutropenia: A Useful Predictor of Chemosensitivity and Favorable Prognosis in Patients with Serous Ovarian Cancer. BMC Cancer 2020, 20, 116. [Google Scholar] [CrossRef] [PubMed]
- Daniele, G.; Arenare, L.; Scambia, G.; Pisano, C.; Sorio, R.; Breda, E.; De Placido, S.; Savarese, A.; Ferrandina, G.; Raspagliesi, F.; et al. Prognostic role of chemotherapy-induced neutropenia in first-line treatment of advanced ovarian cancer. A pooled analysis of MITO2 and MITO7 trials. Gynecol. Oncol. 2019, 154, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Carus, A.; Gurney, H.; Gebski, V.; Harnett, P.; Hui, R.; Kefford, R.; Wilcken, N.; Ladekarl, M.; Von Der Maase, H.; Donskov, F. Impact of Baseline and Nadir Neutrophil Index in Non-Small Cell Lung Cancer and Ovarian Cancer Patients: Assessment of Chemotherapy for Resolution of Unfavourable Neutrophilia. J. Transl. Med. 2013, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Kasi, P.M.; Grothey, A. Chemotherapy-Induced Neutropenia as a Prognostic and Predictive Marker of Outcomes in Solid-Tumor Patients. Drugs 2019, 78, 737–745. [Google Scholar]
- Klastersky, J.; de Naurois, J.; Rolston, K.; Rapoport, B.; Maschmeyer, G.; Aapro, M.; Herrstedt, J.; on behalf of the ESMO Guidelines Committee. Management of febrile neutropenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 2016, 27 (Suppl. S5), v111–v118. [Google Scholar]
- Smith, T.J.; Bohlke, K.; Lyman, G.H.; Carson, K.R.; Crawford, J.; Cross, S.J.; Goldberg, J.M.; Khatcheressian, J.L.; Leighl, N.B.; Perkins, C.L.; et al. Recommendations for the use of WBC growth factors: American Society of Clinical Oncology clinical practice guideline update. J. Clin. Oncol. 2015, 33, 3199–3212. [Google Scholar] [CrossRef]
- Bennett, C.L.; Djulbegovic, B.; Norris, L.B.; Armitage, J.O. Colony-stimulating factors for febrile neutropenia during cancer therapy. N. Engl. J. Med. 2013, 368, 1131–1139. [Google Scholar]
Characteristics | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p Value |
---|---|---|---|
Age (a) | 64 ± 12 | 63 ± 19 | 0.785 |
BMI (a) | 27.1 ± 13.2 | 26.5 ± 15.1 | 0.831 |
Menopausal status (b) | |||
Postmenopausal | 77 (90.58%) | 146 (88.48%) | 0.672 |
Premenopausal | 8 (9.41%) | 19 (11.51%) | 0.672 |
Regimens used (b) | |||
Topotecan | 40 (47.05%) | 60 (36.36%) | 0.104 |
PLD | 26 (30.58%) | 62 (37.57%) | 0.328 |
Bevacizumab | 55 (64.70%) | 95 (57.57%) | 0.340 |
Treatment groups (b) | |||
Monotherapy | 44 (51.76%) | 76 (46.06%) | 0.424 |
Bevacizumab + topotecan | 23 (27.05%) | 40 (24.24%) | 0.646 |
Bevacizumab + PLD | 12 (14.11%) | 25 (15.15%) | 1.000 |
Complex combinations | 6 (7.05%) | 24 (14.54%) | 0.101 |
Comorbidities | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p Value |
---|---|---|---|
Cardiovascular Conditions | |||
Congestive heart failure | 15 (17.64%) | 23 (13.93%) | 0.460 |
Coronary artery disease | 21 (24.70%) | 34 (20.73%) | 0.519 |
Venous thromboembolism | 20 (23.52%) | 30 (18.18%) | 0.321 |
Pulmonary Conditions | |||
COPD * | 12 (14.11%) | 18 (10.9%) | 0.538 |
Pulmonary fibrosis | 6 (7.05%) | 7 (4.24%) | 0.374 |
Renal Conditions | |||
Chronic kidney disease | 17 (20%) | 26 (15.75%) | 0.479 |
Nephrotic syndrome | 5 (5.88%) | 7 (4.24%) | 0.548 |
Gastrointestinal Conditions | |||
Peptic ulcer disease | 10 (11.76%) | 19 (11.51%) | 1.000 |
Inflammatory bowel disease | 5 (5.88%) | 5 (3.03%) | 0.314 |
Intestinal obstruction | 17 (20%) | 28 (16.96%) | 0.603 |
Metabolic Disorders | |||
Dyslipidemia | 30 (35.29%) | 45 (27.27%) | 0.193 |
Hypothyroidism | 12 (14.11%) | 18 (10.90%) | 0.538 |
Neurological Conditions | |||
Peripheral neuropathy | 28 (32.94%) | 39 (23,63%) | 0.132 |
Stroke | 8 (9.41%) | 12 (7.27%) | 0.624 |
Hematological Disorders | |||
Anemia | 61 (71.76%) | 89 (53.93%) | 0.006 ** |
Thrombocytopenia | 25 (29.41%) | 38 (23.03%) | 0.284 |
Febrile neutropenia | 35 (41.17%) | 53 (32.12%) | 0.164 |
Psychiatric Disorders | |||
Depression | 28 (32.94%) | 47 (28.48%) | 0.470 |
Anxiety | 24 (28.23%) | 38 (23.03%) | 0.439 |
Cognitive impairment | 9 (10.58%) | 14 (8.48%) | 0.645 |
Other Conditions | |||
Obesity | 34 (40%) | 53 (32.12%) | 0.262 |
Osteoporosis | 14 (16.47%) | 23 (13.93%) | 0.579 |
Chronic infections | 5 (5.88%) | 8 (4.84%) | 0.765 |
Hematological Parameter | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p-Value | |
---|---|---|---|---|
ANC (a) | Baseline | 1453 ± 351 | 3256 ± 809 | <0.001 |
After Cycle 1 | 1203 ± 311 | 2807 ± 701 | <0.001 | |
After Cycle 2 | 956 ± 420 | 2511 ± 805 | <0.001 | |
After Cycle 3 | 1101 ± 543 | 2727 ± 854 | <0.001 | |
Post-treatment | 1302 ± 451 | 3146 ± 932 | <0.001 | |
p Value | <0.001 | <0.001 | ||
Hb. (b) | Baseline | 9.2 ± 1.3 | 10.8 ± 1.2 | <0.001 |
after Cycle 1 | 8.7 ± 1.2 | 9.9 ± 1.5 | <0.001 | |
after Cycle 2 | 8.4 ± 1.1 | 9.7 ± 1.4 | <0.001 | |
after Cycle 3 | 8.6 ± 1.3 | 9.8 ± 1.6 | <0.001 | |
post-treatment | 9.0 ± 1.4 | 10.5 ± 1.6 | <0.001 | |
p Value | <0.001 | <0.001 | ||
Platelets (c) | Baseline | 183 ± 40 | 210 ± 51 | <0.001 |
After Cycle 1 | 144 ± 32 | 197 ± 45 | <0.001 | |
After Cycle 2 | 130 ± 30 | 185 ± 42 | <0.001 | |
After Cycle 3 | 138 ± 35 | 190 ± 47 | <0.001 | |
Post-treatment | 151 ± 38 | 201 ± 48 | <0.001 | |
p Value | <0.001 | <0.001 |
Response Type | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p-Value |
---|---|---|---|
CR | 2 (2.35%) | 2 (1.21%) | 0.640 |
PR | 32 (37.64%) | 38 (23.03%) | 0.023 * |
SD | 28 (32.94%) | 59 (35.75%) | 0.610 |
PD | 23 (27.05%) | 66 (40.00%) | 0.051 |
CR + PR | 34 (40%) | 40 (24.24%) | 0.015 * |
Survival Parameter | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p-Value |
---|---|---|---|
Median PFS ** | 8.2 (95% CI: 6.9–9.5) | 6.3 (95% CI: 5.5–7.1) | 0.008 * |
Median OS ** | 14.5/95% CI: 12.8–16.2 | 11.2/95% CI: 10.1–12.3 | 0.002 * |
6-month PFS rate (%) | 61.17% | 42.42% | 0.023 * |
12-month OS rate (%) | 48.23% | 31.51% | 0.014 * |
Hazard Ratio (HR) for PFS | 0.75 (95% CI: 0.62–0.91) | Reference | 0.005 * |
Hazard Ratio (HR) for OS | 0.68 (95% CI: 0.56–0.83) | Reference | <0.001 * |
Type of Toxicity | With Initial Neutropenia (N = 85) | Without Initial Neutropenia (N = 165) | p-Value |
---|---|---|---|
Hematological Toxicities | |||
-Neutropenia (Grade ≥ 3) | 50 (58.82%) | 40 (24.24%) | <0.001 * |
-Febrile neutropenia | 35 (41.17%) | 30 (18.18%) | 0.001 * |
-Anemia (Grade ≥ 3) | 30 (35.29%) | 20 (12.12%) | <0.001 * |
-Thrombocytopenia (Grade ≥ 3) | 20 (23.52%) | 18 (10.90%) | 0.014 * |
Non-Hematological Toxicities | |||
-Gastrointestinal toxicity | 15 (17.64%) | 20 (12.12%) | 0.251 |
-Fatigue (Grade ≥ 2) | 40 (47.05%) | 50 (30.30%) | 0.012 * |
-Peripheral neuropathy | 12 (14.11%) | 18 (10.90%) | 0.538 |
-Mucositis (Grade ≥ 2) | 10 (11.76%) | 12 (7.27%) | 0.246 |
Serious Adverse Events (SAEs) | 25 (29.41%) | 30 (18.18%) | 0.052 |
Outcome | Baseline ANC Threshold (Cells/mm3) | Sensitivity (%) | Specificity (%) | AUC (95% CI) | p-Value |
---|---|---|---|---|---|
Tumor Response (CR + PR) | 2000 | 72.5 | 68.4 | 0.74 (0.68–0.80) | <0.001 |
Progression-Free Survival | 2200 | 78.3 | 65.2 | 0.76 (0.70–0.82) | 0.002 |
Overall Survival | 2500 | 80.1 | 70.5 | 0.79 (0.73–0.85) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dragomir, R.-D.; Negru, A.-G.; Mercioni, M.-A.; Popovici, D.; Săftescu, S.; Blidari, A.R.; Curcă, R.O.; Sas, I. The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer. Medicina 2025, 61, 470. https://doi.org/10.3390/medicina61030470
Dragomir R-D, Negru A-G, Mercioni M-A, Popovici D, Săftescu S, Blidari AR, Curcă RO, Sas I. The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer. Medicina. 2025; 61(3):470. https://doi.org/10.3390/medicina61030470
Chicago/Turabian StyleDragomir, Radu-Dumitru, Alina-Gabriela Negru, Marina-Adriana Mercioni, Dorel Popovici, Sorin Săftescu, Andiana Roxana Blidari, Răzvan Ovidiu Curcă, and Ioan Sas. 2025. "The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer" Medicina 61, no. 3: 470. https://doi.org/10.3390/medicina61030470
APA StyleDragomir, R.-D., Negru, A.-G., Mercioni, M.-A., Popovici, D., Săftescu, S., Blidari, A. R., Curcă, R. O., & Sas, I. (2025). The Role of Initial Neutropenia and Neutrophil Dynamics in Personalizing Chemotherapy for Platinum-Resistant Ovarian Cancer. Medicina, 61(3), 470. https://doi.org/10.3390/medicina61030470