Visceral and Dysfunctional Adiposity Indices as Predictors of Insulin Resistance and Metabolic Syndrome in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Study Population
2.3. Data Collection and Biochemical Analysis
2.4. Calculation of Adiposity Indices and Insulin Resistance
2.4.1. Visceral Adiposity Index (VAI)
2.4.2. Dysfunctional Adiposity Index (DAI)
2.4.3. Homeostatic Model Assessment of Insulin Resistance (HOMA-IR)
2.5. Definition of Metabolic Syndrome (MetS)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Che, Y.; Yu, J.; Li, Y.S.; Zhu, Y.C.; Tao, T. Polycystic Ovary Syndrome: Challenges and Possible Solutions. J. Clin. Med. 2023, 12, 1500. [Google Scholar] [CrossRef]
- Wu, Z.; Liang, G.; Zhang, Y.; Li, R. Risk factors for metabolic dysfunction-associated steatotic liver disease in patients with polycystic ovary syndrome in East Asia: A review and meta-analysis. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, K.; Decrinis, C.; Bitterlich, N.; Tropschuh, K.; Stute, P.; Bachmann, A. Body image and mental health in women with polycystic ovary syndrome-a cross-sectional study. Arch. Gynecol. Obstet. 2025. [Google Scholar] [CrossRef] [PubMed]
- Sangaraju, S.L.; Yepez, D.; Grandes, X.A.; Talanki Manjunatha, R.; Habib, S. Cardio-Metabolic Disease and Polycystic Ovarian Syndrome (PCOS): A Narrative Review. Cureus 2022, 14, e25076. [Google Scholar] [CrossRef] [PubMed]
- Moreira, V.C.; de Souza Silva, C.M. Altered Visceral Adipose Tissue Predictors and Women’s Health: A Unicenter Study. Int. J. Environ. Res. Public Health 2022, 19, 5505. [Google Scholar] [CrossRef] [PubMed]
- Bril, F.; Ezeh, U.; Amiri, M.; Hatoum, S.; Pace, L.; Chen, Y.H.; Bertrand, F.; Gower, B.; Azziz, R. Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 109, 10–24. [Google Scholar] [CrossRef]
- Rey-Roldan, E.; Perez Lana, M.B.; Galluzzo, L.; Blanco, G.; Onetto, C.; Straminsky, V.; Nolting, M.P. Is the polycystic ovary syndrome the causative of the increase in inflammatory markers and metabolic risk? Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2013, 29, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Herrero, M.T.; Egea Sancho, M.; Ramírez Íñiguez de la Torre, M.V.; López González, Á.A. Visceral adiposity index (VAI) and dysfunctional adiposity index (DAI). Relationship with obesity parameters. Semergen 2023, 49, 101965. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.R.; Shin, K.A. Visceral Adiposity Index and Lipid Accumulation Product as Effective Markers of Different Obesity Phenotypes in Korean Adults: A Cross-Sectional Analysis. Diabetes Metab. Syndr. Obes. Targets Ther. 2023, 16, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.M.; Adeli, I. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int. J. Mol. Sci. 2022, 23, 583. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fang, R.; Han, H.; Zhang, J.; Chen, K.; Fu, X.; He, Q.; Yang, Y. Association between visceral adiposity index and risk of prediabetes: A meta-analysis of observational studies. J. Diabetes Investig. 2022, 13, 543–551. [Google Scholar] [CrossRef]
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef] [PubMed]
- Jungert, A.; Frank, J. Intra-Individual Variation and Reliability of Biomarkers of the Antioxidant Defense System by Considering Dietary and Lifestyle Factors in Premenopausal Women. Antioxidants 2021, 10, 448. [Google Scholar] [CrossRef]
- Okamura, T.; Hashimoto, Y.; Hamaguchi, M.; Obora, A.; Kojima, T.; Fukui, M. The visceral adiposity index is a predictor of incident nonalcoholic fatty liver disease: A population-based longitudinal study. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 375–383. [Google Scholar] [CrossRef]
- Reyes-Barrera, J.; Sainz-Escárrega, V.H. Dysfunctional adiposity index as a marker of adipose tissue morpho-functional abnormalities and metabolic disorders in apparently healthy subjects. Adipocyte 2021, 10, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Horáková, D.; Štěpánek, L.; Janout, V.; Janoutová, J.; Pastucha, D.; Kollárová, H.; Petráková, A.; Štěpánek, L.; Husár, R.; Martiník, K. Optimal Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) Cut-Offs: A Cross-Sectional Study in the Czech Population. Medicina 2019, 55, 158. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Wang, X.; Luan, Q. Impact of body mass index and polycystic ovary syndrome (PCOS) subtypes on periodontal health in Chinese women with PCOS and periodontitis. Gynecol. Endocrinol. Off. J. Int. Soc. Gynecol. Endocrinol. 2024, 40, 2405097. [Google Scholar] [CrossRef] [PubMed]
- Apaydin, M.; Kazan, E.D.; Beysel, S.; Sari, A.; Özgül, E.; Cengiz, H.; Demirci, T.; Yilmazer, M. The novel predictor of metabolic risk in patients with polycystic ovary syndrome: Could it be the visceral adiposity index? Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 7182–7187. [Google Scholar] [CrossRef] [PubMed]
- Durmus, U.; Duran, C.; Ecirli, S. Visceral adiposity index levels in overweight and/or obese, and non-obese patients with polycystic ovary syndrome and its relationship with metabolic and inflammatory parameters. J. Endocrinol. Investig. 2017, 40, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Uysal, E.; Tammo, O.; Soylemez, E.; Incebıyık, M.; Filiz, D.; Alci, M. Significance of measuring anthropometric and atherogenic indices in patients with polycystic ovary syndrome. BMC Endocr. Disord. 2024, 24, 160. [Google Scholar] [CrossRef]
- Annagür, B.B.; Tazegül, A.; Akbaba, N. Body Image, Self-Esteem and Depressive Symptomatology in Women with Polycystic Ovary Syndrome. Noro Psikiyatr. Ars. 2014, 51, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Pourkhani, Z.; Jahanian Sadatmahalleh, S. The association between the follicular distribution pattern of polycystic ovaries and metabolic syndrome development in patients with polycystic ovary syndrome a prospective cohort study. Sci. Rep. 2025, 15, 5284. [Google Scholar] [CrossRef]
- Fu, L.; Xie, N. The Association Between Polycystic Ovary Syndrome and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-analysis. Reprod. Sci. 2023, 30, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Akinola, L.A.; Inyangudo, G.N.; Ottun, A.T.; Olumodeji, A.M.; Adewunmi, A.A.; Olalere, F.H.; Omololu, O.M.; Ogungbemile, B.D. Exploring Serum Vitamin D, Sex Hormones, and Lipid Profile Disparities in Women with and Without Polycystic Ovarian Syndrome: A Case-Control Study. Cureus 2024, 16, e60975. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Gao, X.; Pan, X.F.; Zhou, T.; Zhu, C.; Li, F.; Fan, J.G.; Targher, G.; Zhao, J. The hepato-ovarian axis: Genetic evidence for a causal association between non-alcoholic fatty liver disease and polycystic ovary syndrome. BMC Med. 2023, 21, 62. [Google Scholar] [CrossRef]
- Mouchti, S.; Orliacq, J.; Reeves, G.; Chen, Z. Assessment of correlation between conventional anthropometric and imaging-derived measures of body fat composition: A systematic literature review and meta-analysis of observational studies. BMC Med. Imaging 2023, 23, 127. [Google Scholar] [CrossRef] [PubMed]
- Szydłowska, I.; Nawrocka-Rutkowska, J.; Gorzko, A.; Pawłowski, H.; Starczewski, A.; Szczuko, M. Changes in Hormonal Profile and Body Mass Index in Women with Polycystic Ovary Syndrome After Probiotic Intake: A 12-Week Placebo-Controlled and Randomized Clinical Study. Nutrients 2025, 17, 405. [Google Scholar] [CrossRef]
- Fry, J.M.; Temple, J.B. Discrepancies in self-reported and measured anthropometric measurements and indices among older Australians: Prevalence and correlates. BMC Public Health 2022, 22, 1928. [Google Scholar] [CrossRef] [PubMed]
- Samouda, H.; Lee, S.; Arslanian, S.; Han, M.; Kuk, J.L. Anthropometric Equations to Predict Visceral Adipose Tissue in European and American Youth. J. Pediatr. 2023, 253, 33–39.e33. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Sung, Y.A.; Lee, H.J. The visceral adiposity index as a predictor of insulin resistance in young women with polycystic ovary syndrome. Obesity 2013, 21, 1690–1694. [Google Scholar] [CrossRef] [PubMed]
- Hatami, H.; Montazeri, S.A.; Hashemi, N.; Ramezani Tehrani, F. Optimal Cutoff Points for Anthropometric Variables to Predict Insulin Resistance in Polycystic Ovary Syndrome. Int. J. Endocrinol. Metab. 2017, 15, e12353. [Google Scholar] [CrossRef]
- Mantovani, A.; Mingolla, L.; Rigolon, R.; Pichiri, I.; Cavalieri, V.; Zoppini, G.; Lippi, G.; Bonora, E.; Targher, G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular disease in adult patients with type 1 diabetes. Int. J. Cardiol. 2016, 225, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Barrera, J.; Antonio-Villa, N.E.; Posadas-Sánchez, R.; Vargas-Alarcón, G.; Medina-Urrutia, A.X. The dysfunctional adiposity index is a clinical surrogate of pericardial fat in adults without premature CVD: A sub-analysis of the GEA Mexican study control group. Nutrition, metabolism, and cardiovascular diseases. NMCD 2024, 34, 2002–2011. [Google Scholar] [CrossRef] [PubMed]
- López-González, A.A.; Jover, A.M.; Martínez, C.S.; Artal, P.M.; Bote, S.A.; Jané, B.A.; Ramírez-Manent, J.I. The CUN-BAE, Deurenberg Fat Mass, and visceral adiposity index as confident anthropometric indices for early detection of metabolic syndrome components in adults. Sci. Rep. 2022, 12, 15486. [Google Scholar] [CrossRef]
- Jalali, M.; Bahadoran, Z.; Mirmiran, P.; Azizi, F.; Hosseinpanah, F. Severity of adipose tissue dysfunction is associated with progression of pre-diabetes to type 2 diabetes: The Tehran Lipid and Glucose Study. BMC Public Health 2024, 24, 121. [Google Scholar] [CrossRef]
PCOS (100%/n = 92) | Control (100%/n = 68) | p Value a,b | |
---|---|---|---|
Age (years) Ω | 22 (18–40) | 29 (20–48) | <0.001 |
Height (cm) Ω | 163 (120–175) | 163 (149–179) | 0.654 |
Weight (kg) Ω | 62.5 (43–115) | 60 (39–87) | 0.037 |
BMI (kg/m2) Ω | 23.74 (17.3–48.61) | 22.8 (15.17–33.2) | 0.015 |
Underweight (<18.5) | 6.5% (6) | 8.8% (6) | 0.087 |
Normal Weight (18.5–24.9) | 45.7% (42) | 58.8% (40) | |
Overweight (25–29.9) | 23.9% (22) | 25.0% (17) | |
Obese (30–39.9) | 22.8% (21) | 7.4% (50) | |
Morbidly Obese (>40) | 1.1% (1) | 0.0% (0) | |
WC (cm) Ω | 86 (60–130) | 78 (57–114) | 0.034 |
Hip circumference (cm) Ω | 103.5 (80–138) | 100.5 (86–127) | 0.085 |
WHR Ω | 0.79 (0.66–0.94) | 0.77 (0.65–0.94) | 0.053 |
Low Risk (<0.80) | 51.1% (47) | 58.8% (40) | 0.364 |
Medium Risk (0.80–0.85) | 21.7% (20) | 23.5% (16) | |
High Risk (>0.85) | 27.2% (25) | 17.6% (12) | |
IR | |||
(+) | 46.7% (42) | 20.6% (14) | <0.001 |
(−) | 53.3% (50) | 79.4% (54) | |
MetS Ω | |||
(+) | 27.2% (25) | 14.7% (10) | 0.059 |
(−) | 72.8% (67) | 85.3% (58) |
PCOS (n = 92/100%) | Control (n = 68/100%) | p Value a,b | |
---|---|---|---|
FSH (mIU/mL) | 5.59 (0.54–49.35) | 6.78 (3.12–16.83) | <0.001 |
LH (mIU/mL) | 7.77 (0.43–57) | 6.15 (2.76–16.13) | 0.013 |
E2 (pg/mL) | 38.39 (5–341) | 50.53 (5–292.4) | 0.029 |
Total Testosterone (ng/dL) | 0.34 (0.05–0.89) | 0.25 (0.03–0.65) | <0.001 |
Prolactin (mIU/L) | 19.19 (0.65–68.38) | 16.95 (8.22–42.76) | 0.106 |
TSH (mIU/L) | 1.87 (0.32–11.19) | 1.91 (0.02–7.02) | 0.918 |
HbA1C (mmol/mol) | 5.05 (4.5–6) | 5.10 (4.5–8) | 0.499 |
FINS (mIU/mL) | 11.08 (0.44–73.45) | 7.72 (1.72–51.33) | <0.001 |
TC (mg/dL) | 161.15 (0.25–284.4) | 160.25 (105–237.2) | 0.875 |
LDL-C (mg/dL) | 85.05 (7.46–163) | 89.18 (39.38–151.06) | 0.865 |
HDL-C (mg/dL) | 51.45 (26.9–97.8) | 53.60 (28.6–90.4) | 0.352 |
TG (Mmol/L) | 91.40 (39.7–329.2) | 70.65 (30.5–224.6) | <0.001 |
FPG (mmol/L) | 90.60 (69.8–123) | 91.15 (56.8–129.4) | 0.556 |
SBP (mmHg) | 109.00 (80–138) | 106.00 (80–135) | 0.542 |
DBP (mmHg) | 69.00 (50–90) | 67.50 (40–87) | 0.918 |
HOMA-IR (unit) | 2.45 (0.09–15.23) | 1.46 (0.34–10.77) | <0.001 |
VAI (unit) | 3.43 (1.03–18.15) | 2.16 (0.65–10.60) | 0.003 |
DAI (unit) | 2.48 (0.72–10.05) | 1.54 (0.46–5.97) | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keyif, B.; Yavuzcan, A. Visceral and Dysfunctional Adiposity Indices as Predictors of Insulin Resistance and Metabolic Syndrome in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study. Medicina 2025, 61, 424. https://doi.org/10.3390/medicina61030424
Keyif B, Yavuzcan A. Visceral and Dysfunctional Adiposity Indices as Predictors of Insulin Resistance and Metabolic Syndrome in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study. Medicina. 2025; 61(3):424. https://doi.org/10.3390/medicina61030424
Chicago/Turabian StyleKeyif, Betül, and Ali Yavuzcan. 2025. "Visceral and Dysfunctional Adiposity Indices as Predictors of Insulin Resistance and Metabolic Syndrome in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study" Medicina 61, no. 3: 424. https://doi.org/10.3390/medicina61030424
APA StyleKeyif, B., & Yavuzcan, A. (2025). Visceral and Dysfunctional Adiposity Indices as Predictors of Insulin Resistance and Metabolic Syndrome in Women with Polycystic Ovary Syndrome: A Cross-Sectional Study. Medicina, 61(3), 424. https://doi.org/10.3390/medicina61030424