Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Size
2.3. Procedure
2.4. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gil-Garcia, C.A.; Flores-Alvarez, E.; Cebrian-Garcia, R.; Mendoza-Lopez, A.C.; Gonzalez-Hermosillo, L.M.; Garcia-Blanco, M.-D.; Roldan-Valadez, E. Essential topics about the imaging diagnosis and treatment of hemorrhagic stroke: A comprehensive review of the 2022 AHA guidelines. Curr. Probl. Cardiol. 2022, 47, 101328. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Sun, Q.; Li, J.; Zhang, W.; He, Y.; Zhou, Y. Disability status and its influencing factors among stroke patients in northeast china: A 3-year follow-up study. Neuropsychiatr. Dis. Treat. 2021, 7, 2567–2573. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics—2019 update: A report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, R.; Armand, S.; Allali, G.; Schnider, A.; Baillieul, S. Cognitive-motor dual-task interference modulates mediolateral dynamic stability during gait in post-stroke individuals. Hum. Mov. Sci. 2018, 58, 175–184. [Google Scholar] [CrossRef]
- Simpson, L.A.; Miller, W.C.; Eng, J.J. Effect of stroke on fall rate, location and predictors: A prospective comparison of older adults with and without stroke. PLoS ONE 2011, 6, e19431. [Google Scholar] [CrossRef]
- Vishakha, D.; Suruliraj, K. Lower limb motor function and hip muscle weakness in stroke survivors and their relationship with pelvic tilt, weight-bearing asymmetry, and gait speed: A cross-sectional study. Curr. J. Neurol. 2020, 19, 1–7. [Google Scholar]
- Larissa, T.A.; Júlia, C.M.; Sherindan, A.; Camila, L.G.M.; Luci, F.; Christina, D.C.F. Knee extensor muscles strength indicates global lower-limb strength in individuals who have suffered a stroke: A cross-sectional study. Braz. J. Phys. Ther. 2018, 23, 221–227. [Google Scholar] [CrossRef]
- Elnaggar, R.K. Effects of plyometric exercises on muscle-activation strategies and response-capacity to balance threats in children with hemiplegic cerebral palsy. Physiother. Theory Pract. 2022, 38, 1165–1173. [Google Scholar] [CrossRef]
- Yuan, Y.; Soh, K.G.; Samsudin, S.; Wazir, M.; Qi, F.; Bashir, M.; Xiao, W.; Zhao, N. Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLoS ONE 2023, 18, e0295531. [Google Scholar] [CrossRef]
- Liguori, G. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021; pp. 249–250. [Google Scholar]
- Elnaggar, R.K.; Elbanna, M.F.; Mahmoud, W.S.; Alqahtani, B.A. Plyometric exercises: Subsequent changes of weight-bearing symmetry, muscle strength and walking performance in children with unilateral cerebral palsy. J. Musculoskelet. Neuronal Interact. 2019, 19, 507–515. [Google Scholar]
- Peller, A.; Garib, R.; Garbe, E.; Komforti, D.; Joffe, C.; Magras, A.; Trapuzzano, A.; Stock, M.; Dawson, N.T. Validity and reliability of the NIH Toolbox® Standing Balance Test As compared to the Biodex Balance System SD. Physiother. Theory Pract. 2023, 39, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM&R 2011, 3, 472–479. [Google Scholar] [CrossRef]
- Larén, A.; Odqvist, A.; Hansson, P.O.; Persson, C.U. Fear of falling in acute stroke: The Fall Study of Gothenburg (FallsGOT). Top Stroke Rehabil. 2018, 25, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Brian, B.; Naveed, A.; Anas, A.; Khurshid, K.; Ashfaq, S. Stroke mimics: Incidence, aetiology, clinical features and treatment. Ann. Med. 2021, 53, 420–436. [Google Scholar] [CrossRef]
- Thompson, E.D.; Pohlig, R.T.; McCartney, K.M.; Hornby, T.G.; Kasner, S.E.; Raser-Schramm, J.; Allison, M.; Christopher, H.; Henry, W.; Tamara, W.; et al. Increasing activity after stroke: A randomized controlled trial of high-intensity walking and step activity intervention. Stroke 2024, 55, 5–13. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, S.; Shi, L.; Wang, P.; Li, M.; Yuan, S. High intensity exercise for walking competency in individuals with stroke: A systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 2019, 28, 104414. [Google Scholar] [CrossRef]
- Mah, S.M.; Goodwill, A.M.; Seow, H.C.; Teo, W.P. Evidence of high-intensity exercise on lower limb functional outcomes and safety in acute and subacute stroke population: A systematic review. Int. J. Environ. Res. Public Health 2022, 20, 153. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Steffl, M.; Stastny, P.; Tufano, J.J. The efficacy and safety of lower-limb plyometric training in older adults: A systematic review. Sports Med. 2019, 49, 113–131. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Campillo, R.; Izquierdo, M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 2019, 49, 1079–1094. [Google Scholar] [CrossRef]
- Mansfield, A.; Wong, J.S.; Bryce, J.; Knorr, S.; Patterson, K.K. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys. Ther. 2015, 95, 700–709. [Google Scholar] [CrossRef]
- Moreland, J.D.; Richardson, J.A.; Goldsmith, C.H.; Clase, C.M. Muscle weakness and falls in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2004, 52, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
Exercise 1: Supine Leg Press (Knee Extensor) | Exercise 2: Clamshells (Hip Abductor) | Exercise 3: Ankle Dorsiflexion | Exercise 4: Foot Eversion | |
---|---|---|---|---|
Eccentric Phase | Patient lies supine with knees flexed and feet flat on the bed/floor. Therapist applies resistance to knee flexion. | Patient lies on their side with knees bent at a 90-degree angle. Therapist applies resistance to hip adduction. | Patient lies on the back with the knee flexed at a right angle. Therapist applies resistance to plantarflexion. | Patient lies supine with the foot in an everted position. Therapist applies resistance to inversion. |
Concentric Phase | Patient forcefully extends the knee against therapist resistance. | Patient forcefully abducts the top leg against resistance. | Patient forcefully dorsiflexes the ankle against resistance. | Patient forcefully everts the foot against resistance. |
Horizontal Training Paradigm | |||
---|---|---|---|
Exercise | Prescription | Repetition in 1st Month | Repetition in 2nd Month |
Forward jumping | Double-footed forward jump to maximum achievable distance preceded arm swing | 1 set/5 R | 1 set/10 R |
Walking Sideward | Practice walking using lateral side-steps | Walk each side 1 min | Practice walking using crossed-steps and side-steps each side for 1 min |
Walking Backward | Practice walking Backward (retro-walking) | Walking on ground for 1 min | Walking backward over obstacle 1 min |
Vertical training paradigm | |||
Step up | Stand behind a step, step up and then back down, switching between RT and LT foot each time. | 1 set/5 R | 1 set/10 R |
Marching on a foam pad | The patient stands on a dense foam pad, The patient performs alternating hip and knee flexion, marching in place. The therapist provides verbal cues and guarding | 2 sets/10 R with eye open | 2 sets/10 R with eye closed |
Items | Groups (Mean ± SD) | p Value | |
---|---|---|---|
Study Group | Control Group | ||
Age (year) | 54.5 ± 4.64 | 54.4 ± 3.2 | 0.937 (NS) |
BMI (kg/m2) | 19 ± 1.43 | 19 ± 2.13 | 0.78 (NS) |
Sex | |||
Male | 12 (60%) | 12 (60%) | 1 |
Female | 8 (40%) | 8 (40%) |
Variables | Groups (Mean ± SD) | F Value | p Value | ||
---|---|---|---|---|---|
Study Group | Control Group | ||||
Muscle strength | |||||
Knee extensor | Pre-treatment | 73.4 ± 8.35 | 72.5 ± 7.96 | 1.10 | 0.72 |
Post-treatment | 95.9 ± 8.64 | 83.7 ± 4.71 | 3.36 | <0.0001 (S) | |
F value | 1.07 | 2.86 | |||
p value | <0.0001 (S) | <0.0001 (S) | |||
Hip abductors | Pre-treatment | 57.7 ± 7.07 | 54.9 ± 4.28 | 2.79 | 0.13 |
Post-treatment | 76.1 ± 7.63 | 65.7 ± 3.91 | 3.81 | <0.0001 (S) | |
F value | 1.16 | 1.20 | |||
p value | <0.0001 (S) | <0.0001 (S) | |||
Ankle dorsiflexion | Pre-treatment | 21.7 ± 4.08 | 23.5 ± 3.34 | 1.49 | 0.13 |
Post-treatment | 35.2 ± 6.42 | 30.9 ± 4.84 | 1.76 | <0.02 (S) | |
F value | 2.48 | 2.10 | |||
p value | <0.0001 (S) | <0.0001 (S) | |||
Ankle eversion | Pre-treatment | 16 ± 2.98 | 14.8 ± 2.14 | 1.94 | 0.15 |
Post-treatment | 21.7 ± 3.52 | 17.7 ± 1.8 | 3.82 | <0.0001 (S) | |
F value | 1.40 | 1.14 | |||
p value | <0.0001 (S) | <0.0001 (S) | |||
Postural stability | |||||
Overall stability index | Pre-treatment | 3.44 ± 0.52 | 3.78 ± 0.59 | 1.29 | 0.06 |
Post-treatment | 2.74 ± 0.68 | 3.46 ± 0.61 | 1.24 | 0.0001 (S) | |
F value | 1.71 | 1.07 | |||
p value | 0.0008 (S) | 0.09 | |||
Anteroposterior stability | Pre-treatment | 2.24 ± 0.39 | 2.45 ± 0.31 | 1.58 | 0.06 |
Post-treatment | 1.81 ± 0.47 | 2.43 ± 0.29 | 2.63 | <0.001 (S) | |
F value | 1.45 | 1.14 | |||
p value | 0.003 (S) | 0.8 | |||
Mediolateral stability | Pre-treatment | 2.11 ± 0.46 | 2.35 ± 0.39 | 1.39 | 0.08 |
Post-treatment | 1.79 ± 0.5 | 2.16 ± 0.39 | 1.64 | 0.01 (S) | |
F value | 1.18 | 1.00 | |||
p value | <0.041 (S) | 0.13 | |||
Fall risk test | |||||
Overall stability index | Pre-treatment | 3.69 ± 0.35 | 3.95 ± 0.53 | 2.29 | 0.7 |
Post-treatment | 2.47 ± 0.51 | 3.85 ± 0.54 | 1.12 | <0.001 (S) | |
F value | 2.12 | 1.04 | |||
p value | <0.0001 (S) | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd Elsabour, A.K.; Zakaria, H.M.; Fahmy, E.M.; Khalil, A.S.A.; Alwhaibi, R.M.; Ragab, W.M.; Taha, S.I. Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients. Medicina 2025, 61, 223. https://doi.org/10.3390/medicina61020223
Abd Elsabour AK, Zakaria HM, Fahmy EM, Khalil ASA, Alwhaibi RM, Ragab WM, Taha SI. Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients. Medicina. 2025; 61(2):223. https://doi.org/10.3390/medicina61020223
Chicago/Turabian StyleAbd Elsabour, Ahmed K., Hoda M. Zakaria, Ebtesam M. Fahmy, Azza Sayed Abdelrehim Khalil, Reem M. Alwhaibi, Walaa M. Ragab, and Shreen I. Taha. 2025. "Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients" Medicina 61, no. 2: 223. https://doi.org/10.3390/medicina61020223
APA StyleAbd Elsabour, A. K., Zakaria, H. M., Fahmy, E. M., Khalil, A. S. A., Alwhaibi, R. M., Ragab, W. M., & Taha, S. I. (2025). Effect of Plyometric Exercises of Lower Limb on Strength, Postural Control, and Risk of Falling in Stroke Patients. Medicina, 61(2), 223. https://doi.org/10.3390/medicina61020223