Sex-Specific Differences in Sepsis Development in Polytrauma Patients Undergoing Stand-Alone Definitive Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Definition of Sepsis
2.2. Laboratory Analysis
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
4. Discussion
4.1. Comparative Literature
4.2. Injury Profile
4.3. Physiological Parameters
4.4. Surgical Factors
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joestl, J.; Lang, N.W.; Kleine, A.; Platzer, P.; Aldrian, S. The Importance of Sex Differences on Outcome after Major Trauma: Clinical Outcome in Women Versus Men. J. Clin. Med. 2019, 8, 1263. [Google Scholar] [CrossRef] [PubMed]
- Trentzsch, H.; Nienaber, U.; Behnke, M.; Lefering, R.; Piltz, S. Female sex protects from organ failure and sepsis after major trauma haemorrhage. Injury 2014, 45, S20–S28. [Google Scholar] [CrossRef] [PubMed]
- Bösch, F.; Angele, M.K.; Chaudry, I.H. Gender differences in trauma, shock and sepsis. Mil. Med. Res. 2018, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Vallier, H.A.; Wang, X.; Moore, T.A.; Wilber, J.H.; Como, J.J. Timing of orthopaedic surgery in multiple trauma patients: Development of a protocol for early appropriate care. J. Orthop. Trauma 2013, 27, 543–551. [Google Scholar] [CrossRef]
- Tan, J.H.; Wu, T.Y.; Tan, J.Y.H.; Sharon Tan, S.H.; Hong, C.C.; Shen, L.; Loo, L.M.; Iau, P.; Murphy, D.P.; O’Neill, G.K. Definitive Surgery Is Safe in Borderline Patients Who Respond to Resuscitation. J. Orthop. Trauma 2021, 35, e234–e240. [Google Scholar] [CrossRef]
- Dezman, Z.D.W.; Comer, A.C.; Smith, G.S.; Narayan, M.; Scalea, T.M.; Hirshon, J.M. Failure to clear elevated lactate predicts 24-hour mortality in trauma patients. J. Trauma Acute Care Surg. 2015, 79, 580–585. [Google Scholar] [CrossRef]
- Richards, J.E.; Medvecz, A.J.; O’Hara, N.N.; Guillamondegui, O.D.; O’Toole, R.V.; Obremskey, W.T.; Galvagno, S.M.; Scalea, T.M. Musculoskeletal Trauma in Critically Injured Patients: Factors Leading to Delayed Operative Fixation and Multiple Organ Failure. Anesth. Analg. 2020, 131, 1781–1788. [Google Scholar] [CrossRef]
- Jyoti, D.; Kumar, A.; Halim, T.; Hai, A.A. The Association Between Serum Lactate Concentration, Base Deficit, and Mortality in Polytrauma Patients as a Prognostic Factor: An Observational Study. Cureus 2022, 14, e28200. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Farooque, K. Early total care to early appropriate care—What every anesthesiologist must know! J. Anaesthesiol. Clin. Pharmacol. 2023, 39, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.B.; Jenkins, D.H.; Schwab, C.W.; Rotondo, M.F. Damage control:Collective review. J. Trauma 2009, 49, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Bläsius, F.M.; Laubach, M.; Andruszkow, H.; Lichte, P.; Pape, H.C.; Lefering, R.; Horst, K.; Hildebrand, F.; Trauma Register DGU®. Strategies for the treatment of femoral fractures in severely injured patients: Trends in over two decades from the TraumaRegister DGU®. Eur. J. Trauma Emerg. Surg. 2022, 48, 1769–1778. [Google Scholar] [CrossRef] [PubMed]
- Volpin, G.; Pfeifer, R.; Saveski, J.; Hasani, I.; Cohen, M.; Pape, H.C. Damage control orthopaedics in polytraumatized patients- current concepts. J. Clin. Orthop. Trauma 2021, 12, 72–82. [Google Scholar] [CrossRef]
- Sauaia, A.; Moore, F.A.; Moore, E.E.; Haenel, J.B.; Read, R.A. Pneumonia: Cause or symptom of postinjury multiple organ failure? Am. J. Surg. 1993, 166, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, V.; Grigorian, A.; Nahmias, J.; Pejcinovska, M.; Smith, M.; Sun, B.; Won, E.; Bernal, N.; Barrios, C.; Schubl, S.D. Risk Factors for Post-Operative Sepsis and Septic Shock in Patients Undergoing Emergency Surgery. Surg. Infect. 2019, 20, 367–372. [Google Scholar] [CrossRef]
- Trentzsch, H.; Lefering, R.; Nienaber, U.; Kraft, R.; Faist, E.; Piltz, S. The role of biological sex in severely traumatized patients on outcomes: A matched-pair analysis. Ann. Surg. 2015, 261, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Kolte, A.; König, R. Temporal progression of gene regulation of peripheral white blood cells explains gender dimorphism of critically ill patients after trauma. Mol. Med. 2019, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- Frink, M.; Pape, H.C.; van Griensven, M.; Krettek, C.; Chaudry, I.H.; Hildebrand, F. Influence of sex and age on mods and cytokines after multiple injuries. Shock 2007, 27, 151–156. [Google Scholar] [CrossRef]
- Mörs, K.; Braun, O.; Wagner, N.; Auner, B.; Voth, M.; Störmann, P.; Wutzler, S.; Marzi, I.; Relja, B. Influence of gender on systemic IL-6 levels, complication rates and outcome after major trauma. Immunobiology 2016, 221, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Wafaisade, A.; Lefering, R.; Bouillon, B.; Sakka, S.G.; Thamm, O.C.; Paffrath, T.; Neugebauer, E.; Maegele, M.; Trauma Registry of the German Society for Trauma Surgery. Epidemiology and risk factors of sepsis after multiple trauma: An analysis of 29,829 patients from the Trauma Registry of the German Society for Trauma Surgery. Crit. Care Med. 2011, 39, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Xie, J.; Yang, F.; Chen, J.J.; Li, Z.F.; Yi, C.L.; Gao, W.; Bai, X.J. The influence of sex on outcomes in trauma patients: A meta-analysis. Am. J. Surg. 2015, 210, 911–921. [Google Scholar] [CrossRef]
- Copes, W.S.; Champion, H.R.; Sacco, W.J.; Lawnick, M.M.; Keast, S.L.; Bain, L.W. The Injury Severity Score revisited. J. Trauma 1998, 28, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.P.; O’Neill, B.; Haddon, W., Jr.; Long, W.B. The injury severity score: A method for describing patients with multiple injuries and evaluating emergency care. J. Trauma 1974, 14, 187–196. [Google Scholar] [CrossRef]
- American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit. Care Med. 1992, 20, 864–874. [Google Scholar] [CrossRef]
- Levy, M.M.; Fink, M.P.; Marshall, J.C.; Abraham, E.; Angus, D.; Cook, D.; Cohen, J.; Opal, S.M.; Vincent, J.L.; Ramsay, G.; et al. International Sepsis Definitions Conference. Crit. Care Med. 2003, 31, 1250–1256. [Google Scholar] [CrossRef]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD Statement. BMC Med. 2015, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Mair, O.; Greve, F.; Lefering, R.; Biberthaler, P.; Hanschen, M.; TraumaRegister DGU. The outcome of severely injured patients following traumatic brain injury is affected by gender-A retrospective, multicenter, matched-pair analysis utilizing data of the TraumaRegister DGU®. Front. Neurosci. 2022, 16, 974519. [Google Scholar] [CrossRef]
- Mica, L.; Keel, M.; Trentz, O. The impact of body mass index on the physiology of patients with polytrauma. J. Crit. Care 2012, 27, 722–726. [Google Scholar] [CrossRef]
- Bayer, J.; Lefering, R.; Reinhardt, S.; Kühle, J.; Zwingmann, J.; Südkamp, N.P.; Hammer, T.; TraumaRegister DGU. Thoracic trauma severity contributes to differences in intensive care therapy and mortality of severely injured patients: Analysis based on the TraumaRegister DGU®. World J. Emerg. Surg. 2017, 12, 43. [Google Scholar] [CrossRef]
- Schellenberg, M.; Inaba, K. Pneumonia in Trauma Patients. Curr. Trauma Rep. 2017, 3, 308–314. [Google Scholar] [CrossRef]
- Guo, K.; Pan, B.; Zhang, X.; Hu, D.; Xu, G.; Wang, L.; Dong, S. Developing an early warning system for detecting sepsis in patients with trauma. Int. Wound J. 2024, 21, e14652. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.; Hambrecht, J.; Niggli, C.; Pape, H.C.; Mica, L. The time-related role of early pH, base excess and lactate for the development in sepsis in polytrauma patients. An analysis using the IBM Watson Trauma Pathway Explorer. J. Surg. Res. 2023, 6, 283–291. [Google Scholar] [CrossRef]
- Frantz, T.L.; Gaski, G.E.; Terry, C.; Steenburg, S.D.; Zarzaur, B.L.; McKinley, T.O. The effect of pH versus base deficit on organ failure in trauma patients. J. Surg. Res. 2016, 200, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Vetter, P.; Niggli, C.; Hambrecht, J.; Niggli, P.; Vomela, J.; Chaloupka, R.; Pape, H.C.; Mica, L. The Role of Lactate for Sepsis in Polytrauma Patients, a Time related Analysis using the IBM Watson Trauma Pathway Explorer®. J. Surg. Res. 2022, 5, 618–624. [Google Scholar] [CrossRef]
- Pape, H.C.; Pfeifer, R. Safe definitive orthopaedic surgery (SDS): Repeated assessment for tapered application of Early Definitive Care and Damage Control?: An inclusive view of recent advances in polytrauma management. Injury 2015, 46, 1–3. [Google Scholar] [CrossRef]
- AlRawahi, A.N.; AlHinai, F.A.; Doig, C.J.; Ball, C.G.; Dixon, E.; Xiao, Z.; Kirkpatrick, A.W. The prognostic value of serum procalcitonin measurements in critically injured patients: A systematic review. Crit. Care 2019, 23, 390. [Google Scholar] [CrossRef]
- Dekker, A.B.; Krijnen, P.; Schipper, I.B. Predictive value of cytokines for developing complications after polytrauma. World J. Crit. Care Med. 2016, 5, 187–200. [Google Scholar] [CrossRef]
- Vetter, P.; Wolf, N.; Hambrecht, J.; Niggli, C.; Vomela, J.; Pape, H.C.; Mica, L. Prothrombin Time as a Mirror of Immunological Capability in Polytrauma Patients, An IBM Watson Trauma Pathway Explorer© Analysis and Statistical Proof of Sepsis. J. Surg. Res. 2024, 7, 184–190. [Google Scholar] [CrossRef]
- Bone, L.B.; Johnson, K.D.; Weigelt, J.; Scheinberg, R. Early versus delayed stabilization of femoral fractures. A prospective randomized study. J. Bone Jt. Surg. Am. 1989, 71, 336–340. [Google Scholar] [CrossRef]
- Kaplan, L.J.; Frangos, S. Clinical review: Acid-base abnormalities in the intensive care unit—Part II. Crit. Care 2005, 2, 198–203. [Google Scholar] [CrossRef]
- Kamath, S.; Hammad Altaq, H.; Abdo, T. Management of Sepsis and Septic Shock: What Have We Learned in the Last Two Decades? Microorganisms 2023, 11, 2231. [Google Scholar] [CrossRef] [PubMed]
Parameter at Admission | n | Value |
---|---|---|
Age | 276 | 45.0 (42.7–47.2) 1 |
Sex (male) | 276 | 71.7 (198) 3 |
Blunt trauma | 276 | 97.1 (268) 3 |
Type of accident | 276 | 13.0 (36) 3 |
-Work | ||
-Traffic | 55.0 (152) 3 | |
-Sports/Leisure | 9.4 (26) 3 | |
-At home | 10.9 (30) 3 | |
-Suicide | 4.7 (13) 3 | |
-Delinquency | 0.7 (2) 3 | |
-Other | 6.2 (17) 3 | |
ISS | 276 | 27 (20–34) 2 |
AIS (0–5) | ||
-Head | 276 | 26/12/8/24/14/16 (71/33/21/67/40/44) 3 |
-Face | 276 | 66/7/19/8/1/0 (181/20/51/22/2/0) 3 |
-Thorax | 276 | 35/3/5/40/14/3 (96/8/15/111/37/9) 3 |
-Abdomen | 276 | 67/2/8/11/9/3 (185/4/21/31/26/9) 3 |
-Pelvis | 276 | 68/1/10/17/4/0 (187/3/27/48/11/0) 3 |
-Spine | 276 | 48/0/13/26/5/8 (133/0/37/71/14/21) 3 |
-Extremities | 276 | 23/5/28/34/9/1 (63/14/79/93/25/2) 3 |
-Integument | 276 | 63/26/10/1/0/0 (174/73/28/1/0/0) 3 |
GCS | 270 | 14 (7–15) 2 |
Body temperature | 200 | 35.9 (35.7–36.0) 1 |
BMI | 197 | 24.2 (22.3–26.2) 2 |
HR | 204 | 89 (87–92) 1 |
SBP | 203 | 132 (129–135) 1 |
MAP | 168 | 95 (92–97) 1 |
pH | 197 | 7.34 (7.33–7.36) 1 |
BE | 214 | −2.36 (−2.80–−1.91) 1 |
Lactate | 237 | 2.17 (2.00–2.33) 1 |
CRP | 226 | 21.6 (14.5–28.7) 1 |
HB | 246 | 12.1 (11.0–13.1) 1 |
TC | 237 | 218 (207–229) 1 |
PT | 230 | 87 (75–100) 2 |
LC | 263 | 13.4 (12.8–14.1) 1 |
Parameter | n (Female vs. Male) | Values (Female vs. Male) | p-Value |
---|---|---|---|
Age | 78 vs. 198 | 45.2 (40.7–49.7) vs. 44.9 (42.2–47.5) 1 | 0.936 |
Blunt trauma | 78 vs. 198 | 98.7 (77) vs. 96.5 (191) 3 | 0.315 |
Type of accident | 78 vs. 198 | ||
-Work | 0 vs. 18 (36) 3 | <0.001 | |
-Traffic | 62.8 (49) vs. 52.0 (103) 3 | 0.104 | |
-Sports/Leisure | 9.0 (7) vs. 9.6 (19) 3 | 0.874 | |
-At home | 11.5 (9) vs. 10.6 (21) 3 | 0.823 | |
-Suicide | 13 (10) vs. 1 (3) 3 | <0.001 | |
-Delinquency | 0 vs. 1.0 (2) 3 | 0.373 | |
-Other | 3.8 (3) vs. 7.1 (14) 3 | 0.316 | |
ISS | 78 vs. 198 | 27 (20–34) vs. 27 (20–35) 2 | 0.767 |
AIS (0–5) | 78 vs. 198 | ||
-Head | 20/12/8/32/15/13 (16/9/6/25/12/10) vs. 28/12/8/21/14/17 (55/24/15/42/28/34) 3 | 0.467 | |
-Face | 67/9/17/7/0/0 (52/7/13/6/0/0) vs. 65/7/19/8/1/0 (129/13/38/16/2/0) 3 | 0.834 | |
-Thorax | 35/2/10/40/13/0 (27/2/8/31/10/0) vs. 35/3/4/40/14/4 (69/6/7/80/27/9) 3 | 0.142 | |
-Abdomen | 55/3/14/9/14/5/0 (43/2/11/7/11/4/0) vs. 72/1/5/12/8/2/0 (142/2/10/24/15/5/0) 3 | 0.02 | |
-Pelvis | 62/1/13/18/6/0 (48/1/10/14/5/0) vs. 70/2/9/17/3/0 (139/2/17/34/6/0) 3 | 0.508 | |
-Spine | 49/0/14/28/4/5 (38/0/11/22/3/4) vs. 48/0/13/25/5/9 (95/0/26/49/11/17) 3 | 0.825 | |
-Extremities | 24/6/28/30/12/0 (19/5/22/23/9/0) vs. 22/5/29/35/8/1 (44/9/57/70/16/2) 3 | 0.761 | |
-Integument | 63/28/8/1/0/0 (49/22/6/1/0/0) vs. 63/26/11/0/0/0 (125/51/22/0/0/0) 3 | 0.346 | |
GCS | 76 vs. 194 | 15 (11–15) vs. 14 (3–15) 2 | 0.235 |
Body temperature | 55 vs. 145 | 35.7 (35.4–36.0) vs. 35.9 (35.7–36.1) 1 | 0.085 |
BMI | 27 vs. 170 | 24.1 (22.0–26.1) vs. 25.4 (23.6–29.4) 2 | 0.009 |
HR | 60 vs. 144 | 88 (83–93) vs. 90 (87–93) 1 | 0.653 |
SBP | 60 vs. 143 | 128 (123–134) vs. 134 (130–138) 1 | 0.154 |
MAP | 48 vs. 120 | 92 (88–97) vs. 96 (92–99) 1 | 0.175 |
pH | 53 vs. 144 | 7.35 (7.33–7.37) vs. 7.34 (7.33–7.36) 1 | 0.372 |
BE | 58 vs. 156 | −2.19 (−2.89–−1.50) vs. −2.42 (−2.98–−1.85) 1 | 0.813 |
Lactate | 69 vs. 168 | 2.09 (1.84–2.35) vs. 2.20 (2.00–2.41) 1 | 0.929 |
CRP | 61 vs. 165 | 15.2 (2.5–27.9) vs. 24.0 (15.4–32.6) 1 | 0.895 |
HB | 69 vs. 177 | 12.2 (11.0–13.4) vs. 11.3 (10.4–12.1) 1 | <0.001 |
TC | 63 vs. 174 | 221 (205–237) vs. 217 (203–231) 1 | 0.345 |
PT | 61 vs. 169 | 90 (75–100) vs. 87 (75–99) 2 | 0.214 |
LC | 76 vs. 187 | 12.8 (11.6–14.0) vs. 13.7 (12.9–14.5) 1 | 0.339 |
Males | ||||||
---|---|---|---|---|---|---|
Parameter | n | Value-No Sepsis- | n | Value-Sepsis- | p-Value | Sepsis (BLR) |
AIS | ||||||
-Head | 165 | 26/10/8/25/15/16/0 (43/17/14/41/24/26/0) 3 | 33 | 37/21/3/3/12/24/0 (12/7/1/1/4/8/0) 3 | 0.031 | 0.929 |
-Thorax | 165 | 38/4/4/36/15/3/0 (63/6/7/60/24/5/0) 3 | 33 | 18/0/0/61/9/12/0 (6/0/0/20/3/4/0) 3 | 0.009 | 0.018 |
ISS | 165 | 26 (20–34) 2 | 33 | 35 (26–40) 2 | <0.001 | <0.001 |
HR | 120 | 88 (85–91) 1 | 24 | 99 (89–109) 1 | 0.022 | 0.036 |
pH | 120 | 7.35 (7.33–7.36) 1 | 24 | 7.31 (7.27–7.35) 1 | 0.039 | 0.162 |
Females | ||||||
Parameter | n | Value-No Sepsis- | n | Value-Sepsis- | p-value | Sepsis (BLR) |
AIS | ||||||
-Head | 73 | 21/11/8/33/16/11/0 (15/8/6/24/12/8/0) 3 | 5 | 20/20/0/20/0/40/0 (1/1/0/1/0/2/0) 3 | 0.430 | 0.450 |
-Thorax | 73 | 36/3/9/38/14/0/0 (26/2/7/28/10/0/0) 3 | 5 | 20/0/20/60/0/0/0 (1/0/1/3/0/0/0) 3 | 0.699 | 0.747 |
ISS | 73 | 27 (20–34) 2 | 5 | 35 (26–42) 2 | 0.103 | 0.126 |
HR | 57 | 88 (83–93) 1 | 24 | 92 (48–137) 1 | 0.653 | 1 |
pH | 50 | 7.35 (7.33–7.37) 1 | 3 | 7.36 (7.18–7.54) 1 | 1 | 1 |
Males | ||||||
---|---|---|---|---|---|---|
Parameter | n | Value -No Sepsis- | n | Value -Sepsis- | p-Value | Sepsis (BLR) |
BE1 | 97 | 1.25 (0.79–1.72) 1 | 22 | 1.44 (−1.52–4.39) 1 | 0.035 | 0.636 |
Lactate1 | 123 | 1.10 (0.99–1.21) 1 | 27 | 1.56 (1.31–1.82) 1 | <0.001 | 0.306 |
Lactate2 | 73 | 1.06 (0.90–1.22) 1 | 19 | 1.37 (1.15–1.59) 1 | 0.002 | 0.407 |
PT1 | 150 | 91 (78–100) 2 | 22 | 82 (68–99) 2 | 0.035 | 0.124 |
Females | ||||||
Parameter | n | Value -No Sepsis- | n | Value -Sepsis- | p-Value | Sepsis (BLR) |
BE1 | 52 | −0.42 (−1.30–0.46) 1 | 3 | −0.60 (−3.22–2.02) 1 | 0.635 | 0.920 |
Lactate1 | 59 | 1.05 (0.86–1.24) 1 | 4 | 1.25 (0.27–2.23) 1 | 0.290 | 0.974 |
Lactate2 | 37 | 1.11 (0.89–1.32) 1 | 2 | 1.15 (0.20–2.18) 1 | 0.734 | 0.680 |
PT1 | 49 | 94 (81–100) 2 | 3 | 85 (84–86) 2 | 0.552 | 0.973 |
Males | Females | |||
---|---|---|---|---|
Percentage (n) | p-Value | Percentage (n) | p-Value | |
Primary extremity surgery | 29% (n = 58) | 0.039 (r = −1.064) | 32% (n = 25) | 0.242 |
Day of secondary spine surgery | Total: 27% (n = 53) 1: 7% (n = 14) 2: 6% (n = 12) 3 and after: 14% (n = 27) | 0.02 (r = 0.226) | Total:32% (n = 25) 1: 9% (n = 7) 2: 10% (n = 8) 3 and after: 13% (n = 10) | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetter, P.; Niggli, C.; Hambrecht, J.; Pape, H.-C.; Mica, L. Sex-Specific Differences in Sepsis Development in Polytrauma Patients Undergoing Stand-Alone Definitive Surgery. Medicina 2025, 61, 183. https://doi.org/10.3390/medicina61020183
Vetter P, Niggli C, Hambrecht J, Pape H-C, Mica L. Sex-Specific Differences in Sepsis Development in Polytrauma Patients Undergoing Stand-Alone Definitive Surgery. Medicina. 2025; 61(2):183. https://doi.org/10.3390/medicina61020183
Chicago/Turabian StyleVetter, Philipp, Cédric Niggli, Jan Hambrecht, Hans-Christoph Pape, and Ladislav Mica. 2025. "Sex-Specific Differences in Sepsis Development in Polytrauma Patients Undergoing Stand-Alone Definitive Surgery" Medicina 61, no. 2: 183. https://doi.org/10.3390/medicina61020183
APA StyleVetter, P., Niggli, C., Hambrecht, J., Pape, H.-C., & Mica, L. (2025). Sex-Specific Differences in Sepsis Development in Polytrauma Patients Undergoing Stand-Alone Definitive Surgery. Medicina, 61(2), 183. https://doi.org/10.3390/medicina61020183