Nutritional Status, Body Composition and Cardiometabolic Profile in Individuals with Tetraplegia: A Pilot Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Considerations
2.3. Anthropometric and Body Composition Assessment
2.4. Dietary Assessment
2.5. Biochemical Analysis
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Sample
3.2. Anthropometric and Body Composition Characteristics
3.3. Dietary Intake
3.4. Biochemical Parameters
3.5. Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SCI | Spinal Cord Injury |
| TDEE | Estimated total daily energy expenditure |
| BMI | Body Mass Index |
| BIA | Bioelectrical Impedance Analysis |
| DXA | Dual-energy X-ray Absorptiometry |
| HDL | High-Density Lipoprotein |
| SD | Standard Deviation |
| IQR | Interquartile Range |
| CH | Carbohydrate |
| RMR | Resting Metabolic Rate |
| ALT | Alanine Aminotransferase |
| AST | Aspartate Aminotransferase |
| GGT | Gamma-Glutamyl Transferase |
| WC | Waist Circumference |
| HC | Hip Circumference |
| LDH | Lactate dehydrogenase |
| SF | Skinfold |
| ISAK | Society for the Advancement of Kinanthropometry |
References
- Li, Z.; Wang, X.; Yu, Y.; Jing, Y.; Du, H.; Liu, W.; Zhang, C.; Talifu, Z.; Xu, X.; Pan, Y.; et al. Nutritional Alterations, Adverse Consequences, and Comprehensive Assessment in Spinal Cord Injury: A Review. Front. Nutr. 2025, 12, 1576976. [Google Scholar] [CrossRef] [PubMed]
- Raguindin, P.F.; Bertolo, A.; Zeh, R.M.; Fränkl, G.; Itodo, O.A.; Capossela, S.; Bally, L.; Minder, B.; Brach, M.; Eriks-Hoogland, I.; et al. Body Composition According to Spinal Cord Injury Level: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 3911. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Pitot, M.A.; Berg, A.S.; Gater, D.R. Nutritional Status in Chronic Spinal Cord Injury: A Systematic Review and Meta-Analysis. Spinal Cord 2019, 57, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Farkas, G.J.; Sneij, A.; Gater, D.R. Energy Expenditure Following Spinal Cord Injury: A Delicate Balance. Top. Spinal Cord Inj. Rehabil. 2021, 27, 92–99. [Google Scholar] [CrossRef]
- Farkas, G.J.; Berg, A.S.; Sneij, A.; Dolbow, D.R.; Gorgey, A.S. The Comparison of Total Energy and Protein Intake Relative to Estimated Requirements in Chronic Spinal Cord Injury. Br. J. Nutr. 2024, 131, 489–499. [Google Scholar] [CrossRef]
- Areni, A.; Capeci, W.; Cassinis, A.; De Palma, L.; Del Popolo, G.; Fergnani, F.; Pelizzari, L. What We Do and What We Should Do Against Malnutrition in Spinal Cord Injury: A Position Paper from Italian Spinal Cord Injury Network Rehabilitation Centers. J. Clin. Med. Res. 2024, 16, 138. [Google Scholar] [CrossRef]
- Sabour, H.; Javidan, A.N.; Soltani, Z.; Pakpour, A.H.; Yekaninejad, M.S.; Mousavifar, S.A. The Effect of Behavioral Intervention and Nutrition Education Program on Serum Lipid Profile, Body Weight and Blood Pressure in Iranian Individuals with Spinal Cord Injury: A Randomized Clinical Trial. J. Spinal Cord Med. 2018, 41, 28–35. [Google Scholar] [CrossRef]
- Catapano, A.; Trinchese, G.; Cimmino, F.; Petrella, L.; D’Angelo, M.; Di Maio, G.; Crispino, M.; Cavaliere, G.; Monda, M.; Mollica, M.P. Impedance Analysis to Evaluate Nutritional Status in Physiological and Pathological Conditions. Nutrients 2023, 15, 2264. [Google Scholar] [CrossRef]
- Dietz, N.; Boakye, M.; Bjurström, M.F.; Ugiliweneza, B.; Barve, S.; Mokshagundam, S. Obesity in Chronic Spinal Cord Injury Is Associated with Poorer Body Composition and Increased Risk of Cardiometabolic Disease. Sci. Rep. 2025, 15, 29073. [Google Scholar] [CrossRef]
- Farkas, G.J.; Caldera, L.J.; Hodgkiss, D.D.; Mitchell, J.R.; Pelaez, T.F.; Cusnier, M.A.; Cole, A.J.; Daniel, S.G.; Farrow, M.T.; Gee, C.M.; et al. Cardiometabolic Risk in Chronic Spinal Cord Injury: A Systematic Review with Meta-Analysis and Temporal and Geographical Trends. J. Clin. Med. 2025, 14, 2872. [Google Scholar] [CrossRef]
- Gilhooley, S.K.; Bauman, W.A.; La Fountaine, M.F.; Cross, G.T.; Kirshblum, S.C.; Spungen, A.M.; Cirnigliaro, C.M. Cardiometabolic Risk Factor Clustering in Persons with Spinal Cord Injury: A Principal Component Analysis Approach. J. Spinal Cord Med. 2024, 47, 627–639. [Google Scholar] [CrossRef]
- Goldsmith, J.A.; Holman, M.E.; Puri, P.; Khalil, R.E.; Ennasr, A.N.; Gorgey, A.S. The Interaction of Macronutrients and Body Composition among Individuals with Chronic Spinal Cord Injury. Br. J. Nutr. 2022, 129, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Abilmona, S.M.; Gorgey, A.S. Associations of the Trunk Skeletal Musculature and Dietary Intake to Biomarkers of Cardiometabolic Health after Spinal Cord Injury. Clin. Physiol. Funct. Imaging 2018, 38, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Gater, D.R. Regional and Relative Adiposity Patterns in Relation to Carbohydrate and Lipid Metabolism in Men with Spinal Cord Injury. Appl. Physiol. Nutr. Metab. 2011, 36, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Caudill, C.; Sistrun, S.; Khalil, R.E.; Gill, R.; Castillo, T.; Lavis, T.; Gater, D.R. Frequency of Dietary Recalls, Nutritional Assessment, and Body Composition Assessment in Men with Chronic Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2015, 96, 1646–1653. [Google Scholar] [CrossRef]
- Shin, J.C.; Cho, K.H.; Han, E.Y.; Ahn, K.H.; Im, S.H. Impact of Rehabilitation Nutrition and Healthy Weight Maintenance in Motor-Complete Tetraplegia Patients. J. Clin. Med. 2022, 11, 4970. [Google Scholar] [CrossRef]
- Ishimoto, R.; Mutsuzaki, H.; Shimizu, Y.; Kishimoto, H.; Takeuchi, R.; Hada, Y. Prevalence of Sarcopenic Obesity and Factors Influencing Body Composition in Persons with Spinal Cord Injury in Japan. Nutrients 2023, 15, 473. [Google Scholar] [CrossRef]
- Stewart, A.; Markfell-Jones, M.; Olds, T.; Ridder, H. Protocolo Internacional Para La Valoracion Antropométrica; Esparza Ros, F., Vaquero-Cristóbal, R., Marfell-Jones, M., Eds.; Sociedad Internacional para el Avance de la Cineantropometría (ISAK): Alicante, Spain, 2019; Volume 82, pp. 1–117. [Google Scholar]
- Desport, J.C.; Preux, P.M.; Truong, C.T.; Courat, L.; Vallat, J.M.; Couratier, P. Nutritional Assessment and Survival in ALS Patients. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 91–96. [Google Scholar] [CrossRef]
- Farkas, G.J.; Gorgey, A.S.; Dolbow, D.R.; Berg, A.S.; Gater, D.R. Caloric Intake Relative to Total Daily Energy Expenditure Using a Spinal Cord Injury-Specific Correction Factor: An Analysis by Level of Injury. Am. J. Phys. Med. Rehabil. 2019, 98, 947–952. [Google Scholar] [CrossRef]
- Ortega, R.M.; Perez-Rodrigo, C.; Lopez-Sobaler, A.M. Dietary Assessment Methods: Dietary Records. Nutr. Hosp. 2015, 31, 38–45. [Google Scholar] [CrossRef]
- Spungen, A.M.; Adkins, R.H.; Stewart, C.A.; Wang, J.; Pierson, R.N.; Waters, R.L.; Bauman, W.A. Factors Influencing Body Composition in Persons with Spinal Cord Injury: A Cross-Sectional Study. J. Appl. Physiol. 2003, 95, 2398–2407. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, T.E.; Walhin, J.P.; Thompson, D.; Bilzon, J.L.J. Impact of Exercise on Cardiometabolic Component Risks in Spinal Cord–Injured Humans. Med. Sci. Sports Exerc. 2017, 49, 2469. [Google Scholar] [CrossRef] [PubMed]
- Gorgey, A.S.; Dolbow, D.R.; Dolbow, J.D.; Khalil, R.K.; Castillo, C.; Gater, D.R. Effects of Spinal Cord Injury on Body Composition and Metabolic Profile—Part I. J. Spinal Cord Med. 2014, 37, 693. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.; Dumont, F.; Leblond, J.; Noreau, L.; Giangregorio, L.; Craven, B. Self-Report of One-Year Fracture Incidence and Osteoporosis Prevalence in a Community Cohort of Canadians with Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2014, 20, 302–309. [Google Scholar] [CrossRef]
- Bauman, W.A.; Spungen, A.M.; Wang, J.; Pierson, R.N.; Schwartz, E. Relationship of Fat Mass and Serum Estradiol with Lower Extremity Bone in Persons with Chronic Spinal Cord Injury. Am. J. Physiol. Endocrinol. Metab. 2006, 290, 1098–1103. [Google Scholar] [CrossRef]
- Nash, M.S.; Tractenberg, R.E.; Mendez, A.J.; David, M.; Ljungberg, I.H.; Tinsley, E.A.; Burns-Drecq, P.A.; Betancourt, L.F.; Groah, S.L. Cardiometabolic Syndrome in People with Spinal Cord Injury/Disease: Guideline-Derived and Nonguideline Risk Components in a Pooled Sample. Arch. Phys. Med. Rehabil. 2016, 97, 1696–1705. [Google Scholar] [CrossRef]
- Buchholz, A.C.; Pencharz, P.B. Energy Expenditure in Chronic Spinal Injury. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 635–639. [Google Scholar] [CrossRef]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984. [Google Scholar] [CrossRef]
- Hodgkiss, D.D.; Bhangu, G.S.; Lunny, C.; Jutzeler, C.R.; Chiou, S.Y.; Walter, M.; Lucas, S.J.E.; Krassioukov, A.V.; Nightingale, T.E. Exercise and Aerobic Capacity in Individuals with Spinal Cord Injury: A Systematic Review with Meta-Analysis and Meta-Regression. PLoS Med. 2023, 20, e1004082. [Google Scholar] [CrossRef]
- Duran, F.S.; Lugo, L.; Ramirez, L.; Lic, E.E. Effects of an Exercise Program on the Rehabilitation of Patients with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2001, 82, 1349–1354. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Eun, S.-D.; Kang, D. Clinical Medicine Effectiveness of Exercise Programs for Alleviation of Upper Body Pain in Patients with Spinal Cord Injury: A Systematic Review. J. Clin. Med. 2024, 13, 3066. [Google Scholar] [CrossRef]
- Hicks, A.L.; Martin Ginis, K.A.; Pelletier, C.A.; Ditor, D.S.; Foulon, B.; Wolfe, D.L. The Effects of Exercise Training on Physical Capacity, Strength, Body Composition and Functional Performance among Adults with Spinal Cord Injury: A Systematic Review. Spinal Cord 2011, 49, 1103–1127. [Google Scholar] [CrossRef]
- Rayes, R.; Ball, C.; Lee, K.; White, C. Adaptive Sports in Spinal Cord Injury: A Systematic Review. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 145–153. [Google Scholar] [CrossRef]
- Gujba, F.K.; Maharaj, S.S.; Ibrahim, A.A. Effects of Upper-Limb Aerobic Exercise plus General Exercise versus General Exercise Alone among Patients with Spinal Cord Injury in Northern Nigeria: A Protocol for a Randomized Controlled Trial. PLoS ONE 2025, 20, e0321932. [Google Scholar] [CrossRef]
| Participant | Age (Years) | Time Since Injury (Years) | Height (cm) | Weight (kg) | BMI (kg/m2) | Sex | Neurological Level |
|---|---|---|---|---|---|---|---|
| 1 | 31 | 5 | 172 | 63 | 21.30 | M | T11–A |
| 2 | 51 | 5 | 167 | 75.7 | 27.14 | F | L2–C |
| 3 | 42 | 5 | 173 | 63 | 21.05 | M | C6–B |
| 4 | 45 | 5 | 153 | 59.9 | 25.59 | F | T9–D |
| 5 | 52 | 3 | 167 | 61.5 | 22.05 | F | T6–A |
| 6 | 31 | 4 | 165 | 66.6 | 24.46 | F | L3–D |
| 7 | 54 | 7 | 170 | 75 | 25.95 | M | T6–C |
| 8 | 46 | 3 | 175 | 71 | 23.18 | M | T3–A |
| 9 | 29 | 6 | 190 | 62 | 17.17 | M | T12–C |
| 10 | 25 | 7 | 169 | 74 | 25.91 | M | T6–A |
| 11 | 29 | 4 | 175 | 70 | 22.86 | M | T6–A |
| Total (n = 11) | Women (n = 4) | Men (n = 7) | p | Mean Difference | Effect Size | ||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | ||||
| Height (m) | 1.71 | 0.09 | 1.63 | 0.07 | 1.75 | 0.07 | 0.010 | −0.080 | 10.00 |
| Body fat (%) | 22.3 | 10.80 | 34.4 | 3.60 | 15.5 | 5.93 | 0.010 | 196.259 | −10.00 |
| Triceps SF (mm) | 16.7 | 6.48 | 23.1 | 2.25 | 13.0 | 4.90 | 0.011 | 89.151 | −10.00 |
| Median | IQR | Median | IQR | Median | IQR | ||||
| Weight (kg) | 63.0 | 10.30 | 64.0 | 7.77 | 63.0 | 9.50 | 0.776 | −0.913 | 0.142 |
| Total (n = 11) | Women (n = 4) | Men (n = 7) | p | Mean Difference | Effect Size | ||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | ||||
| Energy intake (kcal) | 1963 | 309 | 1991 | 248 | 1947 | 358 | 0.788 | 516.000 | −0.1429 |
| Protein intake (g/day) | 93.8 | 20.0 | 97.5 | 21.7 | 91.6 | 20.4 | 1.000 | 0.9750 | 0.0000 |
| CH intake (g/day) | 189.0 | 42.2 | 188.0 | 27.5 | 189.0 | 50.9 | 0.927 | 78.125 | −0.0714 |
| Lipid intake (g/day) | 91.0 | 14.8 | 93.1 | 21.6 | 89.9 | 11.3 | 0.788 | 60.000 | −0.1429 |
| Total (n = 11) | Women (n = 4) | Men (n = 7) | p | Mean Difference | Effect Size | ||||
|---|---|---|---|---|---|---|---|---|---|
| Mean | SD | Mean | SD | Mean | SD | ||||
| Metabolic profile | |||||||||
| Total, cholesterol (mg/dL) | 173.0 | 29.8 | 192.0 | 17.7 | 162.0 | 30.8 | 0.230 | 297.500 | −0.5000 |
| Triglycerides (mg/dL) | 76.7 | 15.4 | 82.5 | 17.0 | 73.5 | 14.7 | 0.527 | 93.000 | −0.2857 |
| Renal function | |||||||||
| Urea (mg/dL) | 34.5 | 10.6 | 37.5 | 14.4 | 32.9 | 8.7 | 0.705 | 21.933 | −0.1786 |
| Creatinine (mg/dL) | 0.62 | 0.11 | 0.61 | 0.15 | 0.62 | 0.09 | 0.788 | 0.040 | −0.1429 |
| Acid Uric (mg/dL) | 4.74 | 1.44 | 4.45 | 1.32 | 4.90 | 1.58 | 0.412 | −0.600 | 0.3571 |
| Electrolytes and minerals | |||||||||
| Sodium (mmol/L) | 141.0 | 2.32 | 141.0 | 3.00 | 141.0 | 2.11 | 1.000 | 0.400 | 0.0000 |
| Potassium (mmol/L) | 4.01 | 0.33 | 3.95 | 0.32 | 4.04 | 0.36 | 0.648 | −0.115 | 0.2143 |
| Chloride (mmol/L) | 102 | 2.27 | 102 | 3.19 | 102 | 1.87 | 0.504 | −0.500 | 0.2857 |
| Calcium (mg/dL) | 9.23 | 0.39 | 9.22 | 0.46 | 9.23 | 0.38 | 1.000 | 0.083 | −0.0357 |
| Albumin-corrected calcium (mg/dL) | 9.18 | 0.19 | 9.20 | 0.18 | 9.17 | 0.21 | 0.847 | 4.19 × 10−5 | −0.1071 |
| Phosphorus (mg/dL) | 4.05 | 0.29 | 3.85 | 0.19 | 4.17 | 0.29 | 0.103 | −0.319 | 0.6429 |
| Protein status | |||||||||
| Total, proteins (g/dL) | 6.54 | 0.61 | 6.36 | 0.41 | 6.64 | 0.70 | 0.315 | −0.330 | 0.4286 |
| Albumin (g/dL) | 4.15 | 0.28 | 4.05 | 0.37 | 4.21 | 0.23 | 0.563 | −0.099 | 0.2500 |
| Liver function and enzymes | |||||||||
| ALT (U/L) | 26.8 | 13.2 | 25.5 | 20.4 | 27.6 | 9.1 | 0.507 | −93.000 | 0.2857 |
| GGT (U/L) | 10.9 | 3.00 | 11.3 | 4.35 | 10.7 | 2.32 | 0.527 | 19.000 | −0.2857 |
| Bilirubin (mg/dL) | 0.69 | 0.39 | 0.41 | 0.17 | 0.84 | 0.40 | 0.107 | −0.399 | 0.6429 |
| Alkaline phosphatase (U/L) | 74.0 | 19.10 | 57.3 | 9.64 | 83.6 | 16.30 | 0.029 | −269.756 | 0.8571 |
| LDH (U/L) | 346 | 80.0 | 303 | 53.6 | 371 | 85.3 | 0.164 | −505.000 | 0.5714 |
| Median | IQR | Median | IQR | Median | IQR | ||||
| Glucose (mg/dL) | 84 | 5.5 | 83 | 2.0 | 85 | 6.5 | 0.505 | −19.999 | 0.2857 |
| AST (U/L) | 22.1 | 12.1 | 17.5 | 8.5 | 22.3 | 9.5 | 0.218 | −42.000 | 0.5000 |
| Energy (kcal) | Protein | CHO | Lipid | Body Fat (%) | Triceps SF | Cholesterol | Triglycerides | Glucose | |
|---|---|---|---|---|---|---|---|---|---|
| Protein | 0.66 * (0.027) | — | — | — | — | — | — | — | — |
| CHO | 0.80 ** (0.003) | 0.22 (0.518) | — | — | — | — | — | — | — |
| Lipid | 0.81 ** (0.002) | 0.70 * (0.016) | 0.36 (0.278) | — | — | — | — | — | — |
| Body fat (%) | 0.14 (0.684) | 0.44 (0.177) | −0.07 (0.847) | 0.22 (0.524) | — | — | — | — | — |
| Triceps SF | 0.00 (0.997) | 0.32 (0.340) | −0.09 (0.800) | 0.03 (0.931) | 0.78 * (0.004) | — | — | — | — |
| Cholesterol | 0.10 (0.770) | 0.39 (0.241) | −0.10 (0.774) | 0.18 (0.591) | 0.60 (0.052) | 0.54 (0.084) | — | — | — |
| Triglycerides | −0.58 (0.059) | −0.63 * (0.038) | −0.35 (0.294) | −0.52 (0.104) | 0.32 (0.332) | 0.32 (0.332) | 0.10 (0.767) | — | — |
| Glucose | 0.43 (0.189) | 0.34 (0.302) | 0.41 (0.207) | 0.20 (0.520) | −0.09 (0.796) | 0.56 (0.046) | 0.61 * (0.046) | 0.20 (0.553) | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Olcina, M.; Camblor-Navarro, Á.; Cuestas-Calero, B.J.; Nadal-Nicolás, Y.; Leyva-Vela, B.; Vicente-Martínez, M.; Rodríguez-López, I.; Yáñez-Sepúlveda, R.; Cortés-Roco, G.; Martínez-Rodríguez, A.; et al. Nutritional Status, Body Composition and Cardiometabolic Profile in Individuals with Tetraplegia: A Pilot Cross-Sectional Study. Medicina 2025, 61, 2182. https://doi.org/10.3390/medicina61122182
Martínez-Olcina M, Camblor-Navarro Á, Cuestas-Calero BJ, Nadal-Nicolás Y, Leyva-Vela B, Vicente-Martínez M, Rodríguez-López I, Yáñez-Sepúlveda R, Cortés-Roco G, Martínez-Rodríguez A, et al. Nutritional Status, Body Composition and Cardiometabolic Profile in Individuals with Tetraplegia: A Pilot Cross-Sectional Study. Medicina. 2025; 61(12):2182. https://doi.org/10.3390/medicina61122182
Chicago/Turabian StyleMartínez-Olcina, María, Ángel Camblor-Navarro, Bernardo José Cuestas-Calero, Yolanda Nadal-Nicolás, Belén Leyva-Vela, Manuel Vicente-Martínez, Izan Rodríguez-López, Rodrigo Yáñez-Sepúlveda, Guillermo Cortés-Roco, Alejandro Martínez-Rodríguez, and et al. 2025. "Nutritional Status, Body Composition and Cardiometabolic Profile in Individuals with Tetraplegia: A Pilot Cross-Sectional Study" Medicina 61, no. 12: 2182. https://doi.org/10.3390/medicina61122182
APA StyleMartínez-Olcina, M., Camblor-Navarro, Á., Cuestas-Calero, B. J., Nadal-Nicolás, Y., Leyva-Vela, B., Vicente-Martínez, M., Rodríguez-López, I., Yáñez-Sepúlveda, R., Cortés-Roco, G., Martínez-Rodríguez, A., & Manzanares, A. (2025). Nutritional Status, Body Composition and Cardiometabolic Profile in Individuals with Tetraplegia: A Pilot Cross-Sectional Study. Medicina, 61(12), 2182. https://doi.org/10.3390/medicina61122182

