Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran
Abstract
1. Introduction
2. Materials and Methods
Allocation Concealment and Blinding
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CFQ | Chalder Fatigue Questionnaire |
| CONSORT | Consolidated Standards of Reporting Trials |
| ELISA | Enzyme-linked immunosorbent assay |
| HIV | Human immunodeficiency virus |
| Ig | Immunoglobulin |
| IL-3 | Interleukin-3 |
| IQR | Interquartile range |
| ISRCTN | International Standard Randomised Controlled Trial Number |
| PBMC | Peripheral blood mononuclear cell |
| PCR | Polymerase chain reaction |
| PLEASE | Persistent Lyme Empiric Antibiotic Study Europe |
| SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
References
- Margos, G.; Hepner, S.; Fingerle, V. Characteristics of Borrelia burgdorferi sensu lato. In Lyme Borreliosis; Hunfeld, K.-P., Gray, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–29. [Google Scholar] [CrossRef]
- Stanek, G.; Strle, F. The History, Epidemiology, Clinical Manifestations and Treatment of Lyme Borreliosis. In Lyme Borreliosis; Hunfeld, K.-P., Gray, J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 77–105. [Google Scholar] [CrossRef]
- Berende, A.; ter Hofstede, H.J.; Donders, A.R.; van Middendorp, H.; Kessels, R.P.; Adang, E.M.; Vos, F.J.; Evers, A.W.; Kullberg, B.J. Persistent Lyme Empiric Antibiotic Study Europe (PLEASE)—Design of a randomized controlled trial of prolonged antibiotic treatment in patients with persistent symptoms attributed to Lyme borreliosis. BMC Infect. Dis. 2014, 14, 543. [Google Scholar] [CrossRef] [PubMed]
- Huismans, B.-D.; Klemann, W.; Heyl, S. Prolonged Antibiotic Therapy in PCR Confirmed Persistent Lyme Disease; Anchor Academic Publishing: Hamburg, Germany, 2015. [Google Scholar]
- Horne, M.; Woolley, I.; Lau, J.S.Y. The Use of Long-term Antibiotics for Suppression of Bacterial Infections. Clin. Infect. Dis. 2024, 79, 848–854. [Google Scholar] [CrossRef]
- Farber, D.L.; Netea, M.G.; Radbruch, A.; Rajewsky, K.; Zinkernagel, R.M. Immunological memory: Lessons from the past and a look to the future. Nat. Rev. Immunol. 2016, 16, 124–128. [Google Scholar] [CrossRef]
- Netea, M.G.; Schlitzer, A.; Placek, K.; Joosten, L.A.B.; Schultze, J.L. Innate and Adaptive Immune Memory: An Evolutionary Continuum in the Host’s Response to Pathogens. Cell Host Microbe 2019, 25, 13–26. [Google Scholar] [CrossRef]
- Ghoneum, M. Anti-HIV activity in vitro of MGN-3, an activated arabinoxylane from rice bran. Biochem. Biophys. Res. Commun. 1998, 243, 25–29. [Google Scholar] [CrossRef]
- Ooi, S.L.; Micalos, P.S.; Pak, S.C. Modified rice bran arabinoxylan as a nutraceutical in health and disease-A scoping review with bibliometric analysis. PLoS ONE 2023, 18, e0290314. [Google Scholar] [CrossRef]
- Ooi, S.L.; Pak, S.C.; Micalos, P.S.; Schupfer, E.; Lockley, C.; Park, M.H.; Hwang, S.J. The Health-Promoting Properties and Clinical Applications of Rice Bran Arabinoxylan Modified with Shiitake Mushroom Enzyme-A Narrative Review. Molecules 2021, 26, 2539. [Google Scholar] [CrossRef]
- Ooi, S.L.; Micalos, P.S.; Pak, S.C. Modified Rice Bran Arabinoxylan by Lentinus edodes Mycelial Enzyme as an Immunoceutical for Health and Aging–A Comprehensive Literature Review. Molecules 2023, 28, 6313. [Google Scholar] [CrossRef]
- Puri, B.K.; Catuogno-Cal, C.; Verduci, I. Modulation of Glutamatergic Burst Activity by Hydrolysed Arabinoxylan Rice Bran: A Multielectrode Array Study in Human-Induced Pluripotent Stem Cell-Derived Neurones and Astrocytes. Cureus 2025, 17, e77694. [Google Scholar] [CrossRef] [PubMed]
- Cholujova, D.; Jakubikova, J.; Sedlak, J. BioBran-augmented maturation of human monocyte-derived dendritic cells. Neoplasma 2009, 56, 89–95. [Google Scholar] [CrossRef]
- Ghoneum, M.; Agrawal, S. Activation of human monocyte-derived dendritic cells in vitro by the biological response modifier arabinoxylan rice bran (MGN-3/Biobran). Int. J. Immunopathol. Pharmacol. 2011, 24, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Ghoneum, M.; Agrawal, S. Mgn-3/biobran enhances generation of cytotoxic CD8+ T cells via upregulation of dec-205 expression on dendritic cells. Int. J. Immunopathol. Pharmacol. 2014, 27, 523–530. [Google Scholar] [CrossRef]
- Ghoneum, M.; Abdulmalek, S.; Fadel, H.H. Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Nutrients 2023, 15, 453. [Google Scholar] [CrossRef]
- Agrawal, S.; Agrawal, A.; Ghoneum, M. Biobran/MGN-3, an Arabinoxylan Rice Bran, Exerts Anti-COVID-19 Effects and Boosts Immunity in Human Subjects. Nutrients 2024, 16, 881. [Google Scholar] [CrossRef]
- Tazawa, K.; Ichihashi, K.; Fujii, T.; Omura, K.; Anazawa, M.; Maeda, H. The orally administration of the Hydrolysis Rice Bran prevents a common cold syndrome for the elderly people based on immunomodulatory function. J. Tradit. Med. 2003, 20, 132–141. [Google Scholar]
- Elsaid, A.F.; Agrawal, S.; Agrawal, A.; Ghoneum, M. Dietary Supplementation with Biobran/MGN-3 Increases Innate Resistance and Reduces the Incidence of Influenza-like Illnesses in Elderly Subjects: A Randomized, Double-Blind, Placebo-Controlled Pilot Clinical Trial. Nutrients 2021, 13, 4133. [Google Scholar] [CrossRef]
- Punt, J.; Stranford, S.A.; Jones, P.P.; Owen, J.A. Kuby Immunology, 8th ed.; W.H. Freeman/Macmillan Learning: New York, NY, USA, 2019. [Google Scholar]
- Jones, D.G. The eosinophil. J. Comp. Pathol. 1993, 108, 317–335. [Google Scholar] [CrossRef]
- Merrill, L.; Stewart Merrill, T.E.; Barger, A.M.; Benson, T.J. Avian Health across the Landscape: Nestling Immunity Covaries with Changing Landcover. Integr. Comp. Biol. 2019, 59, 1150–1164. [Google Scholar] [CrossRef] [PubMed]
- Denzel, A.; Maus, U.A.; Rodriguez Gomez, M.; Moll, C.; Niedermeier, M.; Winter, C.; Maus, R.; Hollingshead, S.; Briles, D.E.; Kunz-Schughart, L.A.; et al. Basophils enhance immunological memory responses. Nat. Immunol. 2008, 9, 733–742. [Google Scholar] [CrossRef]
- Bischof, A.; Brumshagen, C.; Ding, N.; Kirchhof, G.; Briles, D.E.; Gessner, J.E.; Welte, T.; Mack, M.; Maus, U.A. Basophil expansion protects against invasive pneumococcal disease in mice. J. Infect. Dis. 2014, 210, 14–24. [Google Scholar] [CrossRef]
- Arock, M.; Schneider, E.; Boissan, M.; Tricottet, V.; Dy, M. Differentiation of human basophils: An overview of recent advances and pending questions. J. Leukoc. Biol. 2002, 71, 557–564. [Google Scholar] [CrossRef]
- Ohta, T.; Yoshikawa, S.; Tabakawa, Y.; Yamaji, K.; Ishiwata, K.; Shitara, H.; Taya, C.; Oh-Hora, M.; Kawano, Y.; Miyake, K.; et al. Skin CD4(+) Memory T Cells Play an Essential Role in Acquired Anti-Tick Immunity through Interleukin-3-Mediated Basophil Recruitment to Tick-Feeding Sites. Front. Immunol. 2017, 8, 1348. [Google Scholar] [CrossRef]
- Allen, J.R. Tick resistance: Basophils in skin reactions of resistant guinea pigs. Int. J. Parasitol. 1973, 3, 195–200. [Google Scholar] [CrossRef]
- Brown, S.J.; Askenase, P.W. Cutaneous basophil responses and immune resistance of guinea pigs to ticks: Passive transfer with peritoneal exudate cells or serum. J. Immunol. 1981, 127, 2163–2167. [Google Scholar] [CrossRef]
- Hopewell, S.; Chan, A.W.; Collins, G.S.; Hrobjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomised trials. BMJ 2025, 389, e081123. [Google Scholar] [CrossRef] [PubMed]
- Chalder, T.; Berelowitz, G.; Pawlikowska, T.; Watts, L.; Wessely, S.; Wright, D.; Wallace, E.P. Development of a fatigue scale. J. Psychosom. Res. 1993, 37, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Krupp, L.B.; LaRocca, N.G.; Muir-Nash, J.; Steinberg, A.D. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 1989, 46, 1121–1123. [Google Scholar] [CrossRef]
- Sletten, D.M.; Suarez, G.A.; Low, P.A.; Mandrekar, J.; Singer, W. COMPASS 31: A refined and abbreviated Composite Autonomic Symptom Score. Mayo Clin. Proc. 2012, 87, 1196–1201. [Google Scholar] [CrossRef]
- Coyne, K.; Revicki, D.; Hunt, T.; Corey, R.; Stewart, W.; Bentkover, J.; Kurth, H.; Abrams, P. Psychometric validation of an overactive bladder symptom and health-related quality of life questionnaire: The OAB-q. Qual. Life Res. 2002, 11, 563–574. [Google Scholar] [CrossRef]
- Newman, C.W.; Jacobson, G.P.; Spitzer, J.B. Development of the Tinnitus Handicap Inventory. Arch. Otolaryngol. Head Neck Surg. 1996, 122, 143–148. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- JASP Team. JASP, 0.19.3; University of Amsterdam: Amsterdam, The Netherlands, 2025.
- Fife, D. Flexplot: Graphically-based data analysis. Psychol. Methods 2022, 27, 477–496. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 2nd ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Chirumbolo, S. State-of-the-art review about basophil research in immunology and allergy: Is the time right to treat these cells with the respect they deserve? Blood Transfus. 2012, 10, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Knol, E.F.; Olszewski, M. Basophils and mast cells: Underdog in immune regulation? Immunol. Lett. 2011, 138, 28–31. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Streatfield, C.; Falcone, F.H. Basophils as critical orchestrators of Th2-type immune responses. Expert Rev. Clin. Immunol. 2009, 5, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Sokol, C.L.; Medzhitov, R. Role of basophils in the initiation of Th2 responses. Curr. Opin. Immunol. 2010, 22, 73–77. [Google Scholar] [CrossRef]
- Kim, S.; Shen, T.; Min, B. Basophils can directly present or cross-present antigen to CD8 lymphocytes and alter CD8 T cell differentiation into IL-10-producing phenotypes. J. Immunol. 2009, 183, 3033–3039. [Google Scholar] [CrossRef]
- Bai, N.A.; Richardson, C.S. Posttreatment Lyme disease syndrome and myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and comparison of pathogenesis. Chronic Dis. Transl. Med. 2023, 9, 183–190. [Google Scholar] [CrossRef]
- Guezennec, C.Y.; Abdelmalki, A.; Serrurier, B.; Merino, D.; Bigard, X.; Berthelot, M.; Pierard, C.; Peres, M. Effects of prolonged exercise on brain ammonia and amino acids. Int. J. Sports Med. 1998, 19, 323–327. [Google Scholar] [CrossRef]
- Salama, H.; Medhat, E.; Shaheen, M.; Zekri, A.N.; Darwish, T.; Ghoneum, M. Arabinoxylan rice bran (Biobran) suppresses the viremia level in patients with chronic HCV infection: A randomized trial. Int. J. Immunopathol. Pharmacol. 2016, 29, 647–653. [Google Scholar] [CrossRef]
- Kim, J.M.; Hong, S.G.; Song, B.S.; Sohn, H.J.; Baik, H.; Sung, M.K. Efficacy of Cereal-based oral nutrition supplement on nutritional status, inflammatory cytokine secretion and quality of life in cancer patients under cancer therapy. J. Cancer Prev. 2020, 25, 55–63. [Google Scholar] [CrossRef]



| Estimate | Standard Error | t | p | |
|---|---|---|---|---|
| Change in CFQ | 0.000111 | 0.000036 | 3.103 | 0.011 |
| Group (placebo) | −0.001560 | 0.000580 | −2.688 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puri, B.K.; Lee, G.S.; Tuckey, G.; Wyness, L.; Corley, R.; Monaghan, L.; Arminen, S.J. Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran. Medicina 2025, 61, 2156. https://doi.org/10.3390/medicina61122156
Puri BK, Lee GS, Tuckey G, Wyness L, Corley R, Monaghan L, Arminen SJ. Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran. Medicina. 2025; 61(12):2156. https://doi.org/10.3390/medicina61122156
Chicago/Turabian StylePuri, Basant K., Gary S. Lee, Georgia Tuckey, Lisa Wyness, Reine Corley, Lucy Monaghan, and Sari J. Arminen. 2025. "Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran" Medicina 61, no. 12: 2156. https://doi.org/10.3390/medicina61122156
APA StylePuri, B. K., Lee, G. S., Tuckey, G., Wyness, L., Corley, R., Monaghan, L., & Arminen, S. J. (2025). Basophilic Response in Patients with Persistent Symptoms Attributed to Lyme Borreliosis Treated with Hydrolysed Arabinoxylan Rice Bran. Medicina, 61(12), 2156. https://doi.org/10.3390/medicina61122156

