Comparison of Optical Biometric Parameters Between Phakic and Pseudophakic Eyes: A Retrospective Clinical Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Huang, D.; Guo, R.; Ji, J. Pathological Changes of the Anterior Lens Capsule. J. Ophthalmol. 2021, 2021, 9951032. [Google Scholar] [CrossRef]
- Shiels, A.; Hejtmancik, J.F. Biology of Inherited Cataracts and Opportunities for Treatment. Annu. Rev. Vis. Sci. 2019, 5, 123–149. [Google Scholar] [CrossRef]
- Naderi, K.; Gormley, J.; O’Brart, D. Cataract surgery and dry eye disease: A review. Eur. J. Ophthalmol. 2020, 30, 840–855. [Google Scholar] [CrossRef]
- Pereira, J.M.M.; Neves, A.; Alfaiate, P.; Santos, M.; Aragão, H.; Sousa, J.C. Lenstar® LS 900 vs Pentacam®-AXL: Comparative study of ocular biometric measurements and intraocular lens power calculation. Eur. J. Ophthalmol. 2018, 28, 645–651. [Google Scholar] [CrossRef]
- Low, O.; Reflectometry, C.; Domain, S. Optik Düşük Koherens Reflektometri ve Spektral Optik Koherens Tomografi ile Merkezi Retina Kalınlığı Ölçümlerinin Karşılaştırılması Optical Low Coherence Reflectometry and Spectral Domain. J. Retin.-Vitr. 2015, 23, 336–340. [Google Scholar]
- Hernández-López, I.; Estradé-Fernández, S.; Cárdenas-Díaz, T.; Batista-Leyva, A.J. Biometry, Refractive Errors, and the Results of Cataract Surgery: A Large Sample Study. J. Ophthalmol. 2021, 2021, 9918763. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.; Inferrera, L.; De Giacinto, C.; D’aloisio, R.; Beccastrini, A.; Vinciguerra, A.L.; Perrotta, A.A.; Toro, M.D.; Zweifel, S.; Tognetto, D. Changes in Anterior Segment Morphology and Intraocular Pressure after Cataract Surgery in Non-glaucomatous Eyes. Veränderungen in der Morphologie des vorderen Segments und des Augeninnendrucks nach Kataraktoperation bei nicht glaukomatösen Augen. Klin. Monatsblatter Augenheilkd. 2023, 240, 449–455. [Google Scholar] [CrossRef]
- Wlaź, A.; Kustra, A.; Aung, T.; Żarnowski, T. Evaluation of changes of anterior segment parameters in patients with pseudoexfoliation syndrome after cataract surgery using anterior segment optical coherence tomography. Sci. Rep. 2024, 14, 8279. [Google Scholar] [CrossRef]
- Pakuliene, G.; Kuzmiene, L.; Siesky, B.; Harris, A.; Januleviciene, I. Changes in ocular morphology after cataract surgery in open angle glaucoma patients. Sci. Rep. 2021, 11, 12203. [Google Scholar] [CrossRef]
- Xirou, V.; Xirou, T.; Siganos, C.; Ntonti, P.; Georgakopoulos, C.; Stavrakas, P.; E Makri, O.; Kanakis, M.; Tsapardoni, F.; Fragkoulis, I.; et al. Impact of Cataract Surgery on IOP and Ocular Structures in Normotensive Patients and Primary and Exfoliation Open-Angle Glaucoma Patients. Clin. Ophthalmol. 2023, 17, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Bilak, S.; Simsek, A.; Capkin, M.; Guler, M.; Bilgin, B. Biometric and intraocular pressure change after cataract surgery. Optom. Vis. Sci. 2015, 92, 464–470. [Google Scholar] [CrossRef]
- Chen, S.; Gao, R.; McAlinden, C.; Ye, J.; Wang, Y.; Chen, M.; Huang, J.; Sun, Y.; Yu, A.-Y. Comparison of Anterior Ocular Biometric Measurements Using Swept-Source and Time-Domain Optical Coherence Tomography. J. Ophthalmol. 2020, 2020, 9739878. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, M.; Li, Z.L.; Chang, P.J.; Zhao, Y.E. Assessment of anterior chamber angle changes after phacoemulsification with swept-source OCT. Int. J. Ophthalmol. 2021, 14, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.S.; Ong, K. Changes in refraction after cataract phacoemulsification surgery. Int. Ophthalmol. 2023, 43, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Yang, Y.; Yan, H.; Zhang, J. Anterior chamber depth—A predictor of refractive outcomes after age-related cataract surgery. BMC Ophthalmol. 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T. Calculation of intraocular lens power: A review. Acta Ophthalmol. Scand. 2007, 85, 472–485. [Google Scholar] [CrossRef]
- Chui, J.N.O.K. Improving the prediction of effective lens position for intraocular lens power calculations. Asian J. Ophthalmol. 2020, 17, 233–242. [Google Scholar] [CrossRef]
- Fallah Tafti, M.R.; Abdollah Beiki, H.; Mohammadi, S.F.; Latifi, G.; Ashrafi, E.F.T.Z. Anterior Chamber Depth Change Following Cataract Surgery in Pseudoexfoliation Syndrome; a Preliminary Study. J. Ophthalmic Vis. Res. 2017, 12, 165–169. [Google Scholar]
- Wong, R.; Ong, K. Influence of anterior chamber depth on postoperative refractive outcome in Chinese eyes. Asian J. Ophthalmol. 2018, 16, 79–85. [Google Scholar] [CrossRef]
- Zhang, J.W.Y. Agreement analysis of Lenstar with other four techniques of biometry before cataract surgery. Int. Ophthalmol. 2022, 42, 3541–3546. [Google Scholar] [CrossRef]
- Cruysberg, L.P.; Doors, M.; Verbakel, F.; Berendschot, T.T.; De Brabander, J.; Nuijts, R.M. Evaluation of the Lenstar LS 900 non-contact biometer. Br. J. Ophthalmol. 2010, 94, 106–110. [Google Scholar] [CrossRef]
- Chang, S.W.; Yu, C.Y.; Chen, D.P. Comparison of intraocular lens power calculation by the IOLMaster in phakic and eyes with hydrophobic acrylic lenses. Ophthalmology 2009, 116, 1336–1342. [Google Scholar] [CrossRef]
- De Bernardo, M.; Salerno, G.; Cornetta, P.; Rosa, N. Axial Length Shortening After Cataract Surgery: New Approach to Solve the Question. Transl. Vis. Sci. Technol. 2018, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Freudiger, H.; Artaria, L.; Niesel, P. Influence of intraocular lenses on ultrasound axial length measurement: In vitro and in vivo studies. Am. Intra-Ocul. Implant Soc. J. 1984, 10, 29–34. [Google Scholar] [CrossRef]
- Olsen, T.; Thorwest, M. Calibration of axial length measurements with the Zeiss IOLMaster. J. Cataract. Refract. Surg. 2005, 31, 1345–1350. [Google Scholar] [CrossRef]
- Gaurisankar, Z.S.; van Rijn, G.A.; Lima, J.E.E.; Ilgenfritz, A.P.; Cheng, Y.; Haasnoot, G.W.; Luyten, G.P.; Beenakker, J.M. Correlations between ocular biometrics and refractive error: A systematic review and meta-analysis. Acta Ophthalmol. 2019, 97, 735–743. [Google Scholar] [CrossRef]
- Sedaghat, M.R.; Azimi, A.; Arasteh, P.; Tehranian, N.; Bamdad, S. The Relationship between Anterior Chamber Depth, Axial Length and Intraocular Lens Power among Candidates for Cataract Surgery. Electron. Physician 2016, 8, 3127–3131. [Google Scholar] [CrossRef] [PubMed]
- Jivrajka, R.; Shammas, M.C.; Boenzi, T.; Swearingen, M.; Shammas, H.J. Variability of axial length, anterior chamber depth, and lens thickness in the cataractous eye. J. Cataract. Refract. Surg. 2008, 34, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Hosny, M.; Alio, J.L.; Claramonte, P.; Attia, W.H.; Perez-Santonja, J.J. Relationship between anterior chamber depth, refractive state, corneal diameter, and axial length. J. Refract. Surg. 2000, 16, 336–340. [Google Scholar] [CrossRef]
- Fernández-Vigo, J.I.; Fernández-Vigo, J.Á.; Macarro-Merino, A.; Fernández-Pérez, C.; Martínez-de-la-Casa, J.M.; García-Feijoó, J. Determinants of anterior chamber depth in a large Caucasian population and agreement between intra-ocular lens Master and Pentacam measurements of this variable. Acta Ophthalmol. 2016, 94, e150–e155. [Google Scholar] [CrossRef]
- Doganay, S.; Bozgul Firat, P.; Emre, S.; Yologlu, S. Evaluation of anterior segment parameter changes using the Pentacam after uneventful phacoemulsification. Acta Ophthalmol. 2010, 88, 601–606. [Google Scholar] [CrossRef]
- de Freitas Valbon, B.; Ventura, M.P.; da Silva, R.S.; Canedo, A.L.; Velarde, G.C.; Ambrósio, R., Jr. Central corneal thickness and biomechanical changes after clear corneal phacoemulsification. J. Refract. Surg. 2012, 28, 215–219. [Google Scholar] [CrossRef]
- Popov, I.; Waczulikova, I.; Stefanickova, J.; Valaskova, J.; Tomcikova, D.; Shiwani, H.A.; Delev, D.; Rodrigo, L.; Saxena, S.; Kruzliak, P.; et al. Analysis of biometric parameters of 2340 eyes measured with optical biometer Lenstar LS900 in a Caucasian population. Eur. J. Ophthalmol. 2022, 32, 213–220. [Google Scholar] [CrossRef]
- Ying, J.; Wang, Q.; Belin, M.W.; Wan, T.; Lin, S.; Feng, Y.; Gao, R.; Huang, J. Corneal elevation in a large number of myopic Chinese patients. Contact Lens Anterior Eye 2016, 39, 185–190. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Liu, Y.Q.; Chen, Z.G. Changes in corneal curvature and astigmatism in senile cataract patients after phacoemulsification. Front. Med. 2024, 11, 1481285. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Zhang, Y.; Li, T.; Wang, J.; Du, Z. Analysis of potential impact factors of corneal biomechanics in myopia. BMC Ophthalmol. 2023, 23, 143. [Google Scholar] [CrossRef] [PubMed]
- Marinescu, M.; Dascalescu, D.; Constantin, M.; Coviltir, V.; Burcel, M.; Darabus, D.; Ciuluvica, R.; Stanila, D.; Voinea, L.; Potop, V. Corneal biomechanical properties in myopic and emmetropic children. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 3580–3589. [Google Scholar] [CrossRef] [PubMed]
- Richter, G.M.; Wang, M.; Jiang, X.; Wu, S.; Wang, D.; Torres, M.; Choudhury, F.; Varma, R. Ocular Determinants of Refractive Error and Its Age- and Sex-Related Variations in the Chinese American Eye Study. JAMA Ophthalmol. 2017, 135, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, T.B.; Hoffer, K.J.; Ribeiro, F.; Ribeiro, P.; O’Neill, J.G. Ocular biometric measurements in cataract surgery candidates in Portugal. PLoS ONE 2017, 12, e0184837. [Google Scholar] [CrossRef]
- Batur, M.; Yıldız, V.; Batur, M.; Seven, E.; Tekin, S. Evaluation of Anatomical Measurements of the Bulbus Oculi by Optical Biometry in the Eastern Region of Türkiye. Medicina 2025, 61, 692. [Google Scholar] [CrossRef]
- Galgauskas, S.; Juodkaite, G.; Tutkuvienė, J. Age-related changes in central corneal thickness in normal eyes among the adult Lithuanian population. Clin. Interv. Aging 2014, 9, 1145–1151. [Google Scholar] [CrossRef]
- Tananuvat, N.; Khumchoo, N. Corneal thickness and endothelial morphology in Normal Thai eyes. BMC Ophthalmol. 2020, 20, 167. [Google Scholar] [CrossRef]
- Abdellah, M.M.; Ammar, H.G.; Anbar, M.; Mostafa, E.M.; Farouk, M.M.; Sayed, K.; Alsmman, A.H.; Elghobaier, M.G. Corneal Endothelial Cell Density and Morphology in Healthy Egyptian Eyes. J. Ophthalmol. 2019, 2019, 6370241. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, H.; Khabazkhoob, M.; Miraftab, M.; Emamian, M.H.; Shariati, M.; Abdolahinia, T.; Fotouhi, A. The distribution of axial length, anterior chamber depth, lens thickness, and vitreous chamber depth in an adult population of Shahroud, Iran. BMC Ophthalmol. 2012, 12, 50. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.J.; Broadway, D.C.; Hayat, S.; Luben, R.; Dalzell, N.; Bingham, S.; Wareham, N.J.; Khaw, K.-T. Refractive error, axial length and anterior chamber depth of the eye in British adults: The EPIC-Norfolk Eye Study. Br. J. Ophthalmol. 2010, 94, 827–830. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.J.; Ní Dhubhghaill, S. Age-related axial length changes in adults: A review. Ophthalmic Physiol. Opt. 2020, 40, 710–717. [Google Scholar] [CrossRef]
- Kolačko, Š.; Predović, J.; Kokot, A.; Bosnar, D.; Brzović-Šarić, V.; Šarić, B.; Balog, S.; Milanovic, K.; Ivastinovic, D. Do Gender, Age, Body Mass and Height Influence Eye Biometrical Properties in Young Adults? A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 11719. [Google Scholar] [CrossRef]
- Richdale, K.; Bullimore, M.A.; Sinnott, L.T.; Zadnik, K. The Effect of Age, Accommodation, and Refractive Error on the Adult Human Eye. Optom. Vis. Sci. 2016, 93, 3–11. [Google Scholar] [CrossRef]
| Measurements | n | Phakic Eyes Mean ± SD | Pseudophakic Eyes Mean ± SD | Mean Difference (95% CI) | p-Value a |
|---|---|---|---|---|---|
| AL (mm) | 1173 | 23.48 ± 1.31 | 23.32 ± 1.45 | −0.16 [−0.21; −0.11] | <0.001 * |
| CCT (µm) | 1186 | 517.82 ± 38.37 | 522.46 ± 45.88 | 4.64 [2.88; 6.41] | <0.001 * |
| AD (mm) | 1186 | 2.68 ± 0.43 | 4.17 ± 0.79 | 1.49 [1.44; 1.54] | <0.001 * |
| WTW (mm) | 1156 | 11.81 ± 0.60 | 11.76 ± 0.62 | −0.05 [−0.08; −0.02] | 0.004 ** |
| ACD (mm) | 1186 | 3.20 ± 0.43 | 4.69 ± 0.79 | 1.50 [1.45; 1.54] | <0.001 * |
| K1 (D) | 1128 | 43.35 ± 1.80 | 43.08 ± 2.00 | −0.27 [−0.35; −0.19] | <0.001 * |
| K2 (D) | 1128 | 44.44 ± 1.97 | 44.38 ± 2.18 | −0.06 [−0.15; 0.04] | 0.230 |
| AST (D) | 1128 | 1.09 ± 1.04 | 1.30 ± 1.14 | 0.21 [0.13; 0.29] | <0.001 * |
| Phakic Eyes | Pseudophakic Eyes | Difference | ||||
|---|---|---|---|---|---|---|
| Measurements | Gender | n | Mean ± SD | Mean ± SD | Mean [95% CI] | p-Value a |
| AL (mm) | Female | 503 | 23.31 ± 1.60 | 23.08 ± 1.64 | −0.23 [−0.31; −0.15] | <0.001 * |
| Male | 670 | 23.60 ± 1.03 | 23.50 ± 1.26 | −0.11 [−0.17; −0.05] | 0.001 ** | |
| p-value b | <0.001 * | <0.001 * | ||||
| CCT (μm) | Female | 509 | 517.64 ± 37.27 | 520.98 ± 43.38 | 3.34 [0.69; 6.00] | 0.014 *** |
| Male | 677 | 517.95 ± 39.20 | 523.57 ± 47.68 | 5.62 [3.26; 7.98] | <0.001 * | |
| p-value b | 0.888 | 0.335 | ||||
| AD (mm) | Female | 509 | 2.58 ± 0.42 | 4.11 ± 0.80 | 1.53 [1.46; 1.60] | <0.001 * |
| Male | 677 | 2.75 ± 0.42 | 4.22 ± 0.78 | 1.47 [1.40; 1.53] | <0.001 * | |
| p-value b | <0.001 * | 0.018 *** | ||||
| WTW (mm) | Female | 495 | 11.73 ± 0.55 | 11.67 ± 0.61 | −0.05 [−0.10; 0.00] | 0.041 *** |
| Male | 661 | 11.87 ± 0.62 | 11.83 ± 0.63 | −0.05 [−0.09; 0.00] | 0.039 *** | |
| p-value b | <0.001 * | <0.001 * | ||||
| ACD (mm) | Female | 509 | 3.10 ± 0.42 | 4.63 ± 0.80 | 1.53 [1.46; 1.60] | <0.001 * |
| Male | 677 | 3.27 ± 0.42 | 4.74 ± 0.78 | 1.47 [1.41; 1.53] | <0.001 * | |
| p-value b | <0.001 * | 0.015 *** | ||||
| K1 (D) | Female | 479 | 43.89 ± 1.85 | 43.63 ± 2.13 | −0.27 [−0.40; −0.13] | <0.001 * |
| Male | 649 | 42.95 ± 1.65 | 42.68 ± 1.80 | −0.27 [−0.37; −0.17] | <0.001 * | |
| p-value b | <0.001 * | <0.001 * | ||||
| K2 (D) | Female | 479 | 44.96 ± 2.08 | 44.87 ± 2.39 | −0.09 [−0.26; 0.07] | 0.270 |
| Male | 649 | 44.05 ± 1.79 | 44.02 ± 1.94 | −0.03 [−0.14; 0.08] | 0.571 | |
| p-value b | <0.001 * | <0.001 * | ||||
| AST (D) | Female | 479 | 1.07 ± 1.07 | 1.24 ± 1.06 | 0.17 [0.06; 0.28] | 0.002 ** |
| Male | 649 | 1.10 ± 1.03 | 1.34 ± 1.20 | 0.24 [0.13; 0.35] | <0.001 * | |
| p-value b | 0.598 | 0.149 |
| Age | ||||
|---|---|---|---|---|
| Phakic Eyes | Pseudophakic Eyes | |||
| Measurements | r | p | r | p |
| AL | −0.071 | 0.015 ** | −0.126 | <0.001 * |
| CCT | −0.179 | <0.001 * | −0.173 | <0.001 * |
| AD | −0.310 | <0.001 * | 0.225 | <0.001 * |
| WTW | −0.219 | <0.001 * | −0.208 | <0.001 * |
| ACD | −0.325 | <0.001 * | 0.216 | <0.001 * |
| K1 | 0.069 | 0.018 ** | 0.043 | 0.148 |
| K2 | 0.041 | 0.158 | −0.025 | 0.391 |
| AST | −0.041 | 0.160 | −0.124 | <0.001 * |
| Phakic Eyes | |||||||
| AL | CCT | AD | WTW | ACD | K1 | K2 | |
| AL | N/A | ||||||
| CCT | −0.034 | ||||||
| AD | 0.316 * | −0.025 | |||||
| WTW | 0.234 * | 0.033 | 0.340 * | ||||
| ACD | 0.312 * | 0.065 ** | 0.996 * | 0.343 * | |||
| K1 | −0.411 * | −0.096 * | −0.092 * | −0.317 * | −0.100 * | ||
| K2 | −0.331 * | −0.090 * | −0.056 | −0.339 * | −0.063 ** | 0.850 * | |
| AST | 0.085 * | −0.004 | 0.054 | −0.091 * | 0.053 | −0.125 * | 0.416 * |
| Pseudophakic Eyes | |||||||
| AL | CCT | AD | WTW | ACD | K1 | K2 | |
| AL | N/A | ||||||
| CCT | −0.046 | ||||||
| AD | 0.087 * | −0.117 * | |||||
| WTW | 0.151 * | 0.014 | 0.088 * | ||||
| ACD | 0.084 * | −0.060 ** | 0.998 * | 0.090 * | |||
| K1 | −0.287 * | −0.146 * | 0.120 * | −0.253 * | 0.112 * | ||
| K2 | −0.229 * | −0.132 * | 0.053 | −0.264 * | 0.045 | 0.855 * | |
| AST | 0.065 ** | 0.004 | −0.110 * | −0.061 ** | −0.111 * | −0.120 * | 0.413 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subaşı, M.; Yıldız, V.; Batur, M. Comparison of Optical Biometric Parameters Between Phakic and Pseudophakic Eyes: A Retrospective Clinical Study. Medicina 2025, 61, 2155. https://doi.org/10.3390/medicina61122155
Subaşı M, Yıldız V, Batur M. Comparison of Optical Biometric Parameters Between Phakic and Pseudophakic Eyes: A Retrospective Clinical Study. Medicina. 2025; 61(12):2155. https://doi.org/10.3390/medicina61122155
Chicago/Turabian StyleSubaşı, Merve, Veysi Yıldız, and Muhammed Batur. 2025. "Comparison of Optical Biometric Parameters Between Phakic and Pseudophakic Eyes: A Retrospective Clinical Study" Medicina 61, no. 12: 2155. https://doi.org/10.3390/medicina61122155
APA StyleSubaşı, M., Yıldız, V., & Batur, M. (2025). Comparison of Optical Biometric Parameters Between Phakic and Pseudophakic Eyes: A Retrospective Clinical Study. Medicina, 61(12), 2155. https://doi.org/10.3390/medicina61122155

