The PitNET Puzzle: From Zero to Linking Molecular Behavior with Neurosurgical Aspects
Abstract
1. A Brief Overview
1.1. Epidemiological Aspects
1.2. The Controversies of Nomenclature
1.3. How to Diagnose a PitNET?
1.4. Therapeutic Management
2. From Genes to Neurosurgical Margins
2.1. Lactotrophinomas
2.2. Gonadotropinomas
2.3. Somatotropinomas
2.4. Corticotropinomas
2.5. Thyrotropinomas
2.6. Null Cell Adenomas
2.7. Plurihormonal Adenomas (PAs)
2.8. Postsurgical Clinical Implications and Decision-Making
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef]
- Ezzat, S.; Asa, S.L.; Couldwell, W.T.; Barr, C.E.; Dodge, W.E.; Vance, M.L.; McCutcheon, I.E. The prevalence of pituitary adenomas: A systematic review. Cancer 2004, 101, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.F.; Rixhon, M.; Adam, C.; Dempegioti, A.; Tichomirowa, M.A.; Beckers, A. High prevalence of pituitary adenomas: A cross-sectional study in the province of Liege, Belgium. J. Clin. Endocrinol. Metab. 2006, 91, 4769–4775. [Google Scholar] [CrossRef] [PubMed]
- Tjörnstrand, A.; Gunnarsson, K.; Evert, M.; Holmberg, E.; Ragnarsson, O.; Rosén, T.; Filipsson Nyström, H. The incidence rate of pituitary adenomas in western Sweden for the period 2001–2011. Eur. J. Endocrinol. 2014, 171, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Miki, Y. Imaging of pituitary tumors: An update with the 5th WHO Classifications-part 1. Pituitary neuroendocrine tumor (PitNET)/pituitary adenoma. Jpn. J. Radiol. 2023, 41, 789–806. [Google Scholar] [CrossRef]
- Liu, X.; Wang, R.; Li, M.; Chen, G. Pituitary adenoma or pituitary neuroendocrine tumor: A narrative review of controversy and perspective. Transl. Cancer Res. 2021, 10, 1916–1920. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Perry, A.; Osamura, R.Y. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2022, 33, 6–26. [Google Scholar] [CrossRef]
- Ho, K.K.Y.; Fleseriu, M.; Wass, J.; van der Lely, A.; Barkan, A.; Giustina, A.; Casanueva, F.F.; Heaney, A.P.; Biermasz, N.; Strasburger, C.; et al. A tale of pituitary adenomas: To NET or not to NET: Pituitary Society position statement. Pituitary 2019, 22, 569–573. [Google Scholar] [CrossRef]
- Ho, K.K.Y.; Fleseriu, M.; Wass, J.; van der Lely, A.; Barkan, A.; Giustina, A.; Casanueva, F.F.; Heaney, A.P.; Biermasz, N.; Strasburger, C.; et al. The tale in evolution: Clarity, consistency and consultation, not contradiction and confusion. Pituitary 2020, 23, 476–477. [Google Scholar] [CrossRef]
- Lee, C.H. Pituitary Neuroendocrine Tumor: Is It Benign or Malignant? Brain Tumor Res. Treat. 2023, 11, 173–176. [Google Scholar] [CrossRef]
- Villa, C.; Vasiljevic, A.; Jaffrain-Rea, M.L.; Ansorge, O.; Asioli, S.; Barresi, V.; Chinezu, L.; Gardiman, M.P.; Lania, A.; Lapshina, A.M.; et al. A standardised diagnostic approach to pituitary neuroendocrine tumours (PitNETs): A European Pituitary Pathology Group (EPPG) proposal. Virchows Arch. 2019, 475, 687–692. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O.; Ezzat, S. Genomics and Epigenomics of Pituitary Tumors: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA 2017, 317, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Bergsneider, M.; Mirsadraei, L.; Yong, W.H.; Salamon, N.; Linetsky, M.; Wang, M.B.; McArthur, D.L.; Heaney, A.P. The pituitary stalk effect: Is it a passing phenomenon? J. Neurooncol. 2014, 117, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Aflorei, E.D.; Korbonits, M. Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol. 2014, 117, 379–394. [Google Scholar] [CrossRef]
- Amano, T.; Masumoto, T.; Akutsu, H.; Sakamoto, N.; Hoshiai, S.; Mori, K.; Nakajima, T. The utility of dynamic MRI in differentiating the hormone-producing ability of pituitary adenomas. Jpn. J. Radiol. 2021, 39, 741–748. [Google Scholar] [CrossRef]
- Yiping, L.; Hui, L.; Kun, Z.; Daoying, G.; Bo, Y. Diffusion-weighted imaging of the sellar region: A comparison study of BLADE and single-shot echo planar imaging sequences. Eur. J. Radiol. 2014, 83, 1239–1244. [Google Scholar] [CrossRef]
- Sakai, N.; Koizumi, S.; Yamashita, S.; Takehara, Y.; Sakahara, H.; Baba, S.; Oki, Y.; Hiramatsu, H.; Namba, H. Arterial spin-labeled perfusion imaging reflects vascular density in nonfunctioning pituitary macroadenomas. AJNR Am. J. Neuroradiol. 2013, 34, 2139–2143. [Google Scholar] [CrossRef]
- Sakai, N.; Yamashita, S.; Takehara, Y.; Sakahara, H.; Baba, S.; Oki, Y.; Takahashi, G.; Koizumi, S.; Sameshima, T.; Namba, H. Evaluation of the antiangiogenic effects of octreotide on growth hormone-producing pituitary adenoma using arterial spin-labeling perfusion imaging. Magn. Reson. Med. Sci. 2015, 14, 73–76. [Google Scholar] [CrossRef]
- Hughes, J.D.; Fattahi, N.; Van Gompel, J.; Arani, A.; Ehman, R.; Huston, J., 3rd. Magnetic resonance elastography detects tumoral consistency in pituitary macroadenomas. Pituitary 2016, 19, 286–292. [Google Scholar] [CrossRef]
- Cohen-Cohen, S.; Helal, A.; Yin, Z.; Ball, M.K.; Ehman, R.L.; Van Gompel, J.J.; Huston, J. Predicting pituitary adenoma consistency with preoperative magnetic resonance elastography. J. Neurosurg. 2022, 136, 1356–1363. [Google Scholar] [CrossRef]
- Graffeo, C.S.; Yagnik, K.J.; Carlstrom, L.P.; Lakomkin, N.; Bancos, I.; Davidge-Pitts, C.; Erickson, D.; Choby, G.; Pollock, B.E.; Chamberlain, A.M.; et al. Pituitary Adenoma Incidence, Management Trends, and Long-term Outcomes: A 30-Year Population-Based Analysis. Mayo Clin. Proc. 2022, 97, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Freda, P.U.; Beckers, A.M.; Katznelson, L.; Molitch, M.E.; Montori, V.M.; Post, K.D.; Vance, M.L. Pituitary incidentaloma: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Ezzat, S. Epigenetic control in pituitary tumors. Endocr. J. 2008, 55, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Pease, M.; Ling, C.; Mack, W.J.; Wang, K.; Zada, G. The role of epigenetic modification in tumorigenesis and progression of pituitary adenomas: A systematic review of the literature. PLoS ONE 2013, 8, e82619. [Google Scholar] [CrossRef]
- Ma, H.S.; Wang, E.L.; Xu, W.F.; Yamada, S.; Yoshimoto, K.; Qian, Z.R.; Shi, L.; Liu, L.L.; Li, X.H. Overexpression of DNA (Cytosine-5)-Methyltransferase 1 (DNMT1) And DNA (Cytosine-5)-Methyltransferase 3A (DNMT3A) Is Associated with Aggressive Behavior and Hypermethylation of Tumor Suppressor Genes in Human Pituitary Adenomas. Med. Sci. Monit. 2018, 24, 4841–4850. [Google Scholar] [CrossRef]
- Herrgott, G.A.; Asmaro, K.P.; Wells, M.; Sabedot, T.S.; Malta, T.M.; Mosella, M.S.; Nelson, K.; Scarpace, L.; Barnholtz-Sloan, J.S.; Sloan, A.E.; et al. Detection of tumor-specific DNA methylation markers in the blood of patients with pituitary neuroendocrine tumors. Neuro-Oncology 2022, 24, 1126–1139. [Google Scholar] [CrossRef]
- Revill, K.; Dudley, K.J.; Clayton, R.N.; McNicol, A.M.; Farrell, W.E. Loss of neuronatin expression is associated with promoter hypermethylation in pituitary adenoma. Endocr.-Relat. Cancer 2009, 16, 537–548. [Google Scholar] [CrossRef]
- Usui, H.; Morii, K.; Tanaka, R.; Tamura, T.; Washiyama, K.; Ichikawa, T.; Kumanishi, T. cDNA cloning and mRNA expression analysis of the human neuronatin. J. Mol. Neurosci. 1997, 9, 55–60. [Google Scholar] [CrossRef]
- Lachkhem, A.; Yahi, A.; Kablia, S.O.; Derriche, A.; Staifi, A.; Derradji, H. Null cell adenoma: Case report. In Proceedings of the 25th European Congress of Endocrinology, Istanbul, Turkey, 13–16 May 2023. [Google Scholar]
- Peng, J.; Yuan, L.; Kang, P.; Jin, S.; Ma, S.; Zhou, W.; Jia, G.; Zhang, C.; Jia, W. Comprehensive transcriptomic analysis identifies three distinct subtypes of pituitary adenomas: Insights into tumor behavior, prognosis, and stem cell characteristics. J. Transl. Med. 2024, 22, 892. [Google Scholar] [CrossRef]
- Scheithauer, B.W.; Horvath, E.; Kovacs, K.; Laws, E.R., Jr.; Randall, R.V.; Ryan, N. Plurihormonal pituitary adenomas. Semin. Diagn. Pathol. 1986, 3, 69–82. [Google Scholar]
- Chanson, P.; Maiter, D. The epidemiology, diagnosis and treatment of Prolactinomas: The old and the new. Best Pract. Res. Clin. Endocrinol. Metab. 2019, 33, 101290. [Google Scholar] [CrossRef]
- Yatavelli, R.K.R.; Bhusal, K. Prolactinoma. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025. [Google Scholar]
- Shimon, I. Giant Prolactinomas. Neuroendocrinology 2019, 109, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, J.; Delgrange, E.; Wierinckx, A.; Vasiljevic, A.; Jouanneau, E.; Burman, P.; Raverot, G. Clinical, Pathological, and Molecular Factors of Aggressiveness in Lactotroph Tumours. Neuroendocrinology 2019, 109, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Tataranu, L.G. A Brief Overview of Molecular Biology in Pituitary Adenomas with a Focus on Aggressive Lesions. Int. J. Mol. Sci. 2025, 26, 3717. [Google Scholar] [CrossRef] [PubMed]
- Marques, N.V.; Kasuki, L.; Coelho, M.C.; Lima, C.H.A.; Wildemberg, L.E.; Gadelha, M.R. Frequency of familial pituitary adenoma syndromes among patients with functioning pituitary adenomas in a reference outpatient clinic. J. Endocrinol. Investig. 2017, 40, 1381–1387. [Google Scholar] [CrossRef]
- Georgitsi, M.; De Menis, E.; Cannavò, S.; Mäkinen, M.J.; Tuppurainen, K.; Pauletto, P.; Curtò, L.; Weil, R.J.; Paschke, R.; Zielinski, G.; et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin. Endocrinol. 2008, 69, 621–627. [Google Scholar] [CrossRef]
- Tichomirowa, M.A.; Barlier, A.; Daly, A.F.; Jaffrain-Rea, M.L.; Ronchi, C.; Yaneva, M.; Urban, J.D.; Petrossians, P.; Elenkova, A.; Tabarin, A.; et al. High prevalence of AIP gene mutations following focused screening in young patients with sporadic pituitary macroadenomas. Eur. J. Endocrinol. 2011, 165, 509–515. [Google Scholar] [CrossRef]
- Iacovazzo, D.; Hernández-Ramírez, L.C.; Korbonits, M. Sporadic pituitary adenomas: The role of germline mutations and recommendations for genetic screening. Expert. Rev. Endocrinol. Metab. 2017, 12, 143–153. [Google Scholar] [CrossRef]
- Syro, L.V.; Scheithauer, B.W.; Kovacs, K.; Toledo, R.A.; Londoño, F.J.; Ortiz, L.D.; Rotondo, F.; Horvath, E.; Uribe, H. Pituitary tumors in patients with MEN1 syndrome. Clinics 2012, 67 (Suppl. S1), 43–48. [Google Scholar] [CrossRef]
- Cuny, T.; Pertuit, M.; Sahnoun-Fathallah, M.; Daly, A.; Occhi, G.; Odou, M.F.; Tabarin, A.; Nunes, M.L.; Delemer, B.; Rohmer, V.; et al. Genetic analysis in young patients with sporadic pituitary macroadenomas: Besides AIP don’t forget MEN1 genetic analysis. Eur. J. Endocrinol. 2013, 168, 533–541. [Google Scholar] [CrossRef]
- Delgrange, E.; Raverot, G.; Bex, M.; Burman, P.; Decoudier, B.; Devuyst, F.; Feldt-Rasmussen, U.; Andersen, M.; Maiter, D. Giant prolactinomas in women. Eur. J. Endocrinol. 2014, 170, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Shimon, I.; Sosa, E.; Mendoza, V.; Greenman, Y.; Tirosh, A.; Espinosa, E.; Popovic, V.; Glezer, A.; Bronstein, M.D.; Mercado, M. Giant prolactinomas larger than 60 mm in size: A cohort of massive and aggressive prolactin-secreting pituitary adenomas. Pituitary 2016, 19, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Brue, T.; Pellegrini, I.; Priou, A.; Morange, I.; Jaquet, P. Prolactinomas and resistance to dopamine agonists. Horm. Res. 1992, 38, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Vroonen, L.; Jaffrain-Rea, M.L.; Petrossians, P.; Tamagno, G.; Chanson, P.; Vilar, L.; Borson-Chazot, F.; Naves, L.A.; Brue, T.; Gatta, B.; et al. Prolactinomas resistant to standard doses of cabergoline: A multicenter study of 92 patients. Eur. J. Endocrinol. 2012, 167, 651–662. [Google Scholar] [CrossRef]
- Delgrange, E.; Sassolas, G.; Perrin, G.; Jan, M.; Trouillas, J. Clinical and histological correlations in prolactinomas, with special reference to bromocriptine resistance. Acta Neurochir. 2005, 147, 751–757, discussion 757–758. [Google Scholar] [CrossRef]
- Zhang, X.; Horwitz, G.A.; Prezant, T.R.; Valentini, A.; Nakashima, M.; Bronstein, M.D.; Melmed, S. Structure, Expression, and Function of Human Pituitary Tumor-Transforming Gene (PTTG). Mol. Endocrinol. 1999, 13, 156–166. [Google Scholar] [CrossRef]
- Zhang, X.; Horwitz, G.A.; Heaney, A.P.; Nakashima, M.; Prezant, T.R.; Bronstein, M.D.; Melmed, S. Pituitary tumor transforming gene (PTTG) expression in pituitary adenomas. J. Clin. Endocrinol. Metab. 1999, 84, 761–767. [Google Scholar] [CrossRef]
- O’Leary, K.A.; Rugowski, D.E.; Sullivan, R.; Schuler, L.A. Prolactin cooperates with loss of p53 to promote claudin-low mammary carcinomas. Oncogene 2014, 33, 3075–3082. [Google Scholar] [CrossRef]
- Bates, A.S.; Farrell, W.E.; Bicknell, E.J.; McNicol, A.M.; Talbot, A.J.; Broome, J.C.; Perrett, C.W.; Thakker, R.V.; Clayton, R.N. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J. Clin. Endocrinol. Metab. 1997, 82, 818–824. [Google Scholar] [CrossRef]
- Wierinckx, A.; Roche, M.; Raverot, G.; Legras-Lachuer, C.; Croze, S.; Nazaret, N.; Rey, C.; Auger, C.; Jouanneau, E.; Chanson, P.; et al. Integrated genomic profiling identifies loss of chromosome 11p impacting transcriptomic activity in aggressive pituitary PRL tumors. Brain Pathol. 2011, 21, 533–543. [Google Scholar] [CrossRef]
- Qian, Z.R.; Li, C.C.; Yamasaki, H.; Mizusawa, N.; Yoshimoto, K.; Yamada, S.; Tashiro, T.; Horiguchi, H.; Wakatsuki, S.; Hirokawa, M.; et al. Role of E-cadherin, alpha-, beta-, and gamma-catenins, and p120 (cell adhesion molecules) in prolactinoma behavior. Mod. Pathol. 2002, 15, 1357–1365. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, H.; Kawamoto, K.; Mizoue, T.; Uozumi, T.; Arita, K.; Kurisu, K. Matrix metalloproteinase-9 secretion by human pituitary adenomas detected by cell immunoblot analysis. Acta Neurochir. 1996, 138, 1442–1448. [Google Scholar] [CrossRef] [PubMed]
- Turner, H.E.; Nagy, Z.; Esiri, M.M.; Harris, A.L.; Wass, J.A. Role of matrix metalloproteinase 9 in pituitary tumor behavior. J. Clin. Endocrinol. Metab. 2000, 85, 2931–2935. [Google Scholar] [CrossRef] [PubMed]
- Knappe, U.J.; Hagel, C.; Lisboa, B.W.; Wilczak, W.; Lüdecke, D.K.; Saeger, W. Expression of serine proteases and metalloproteinases in human pituitary adenomas and anterior pituitary lobe tissue. Acta Neuropathol. 2003, 106, 471–478. [Google Scholar] [CrossRef]
- Raverot, G.; Wierinckx, A.; Dantony, E.; Auger, C.; Chapas, G.; Villeneuve, L.; Brue, T.; Figarella-Branger, D.; Roy, P.; Jouanneau, E.; et al. Prognostic factors in prolactin pituitary tumors: Clinical, histological, and molecular data from a series of 94 patients with a long postoperative follow-up. J. Clin. Endocrinol. Metab. 2010, 95, 1708–1716. [Google Scholar] [CrossRef]
- Zhao, Y.; Lian, W.; Xing, B.; Feng, M.; Ma, W.B. Functioning gonadotroph adenoma. Chin. Med. J. 2019, 132, 1003–1004. [Google Scholar] [CrossRef]
- Ntali, G.; Capatina, C. Updating the Landscape for Functioning Gonadotroph Tumors. Medicina 2022, 58, 1071. [Google Scholar] [CrossRef]
- Mete, O.; Lopes, M.B. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocr. Pathol. 2017, 28, 228–243. [Google Scholar] [CrossRef]
- Newey, P.J.; Nesbit, M.A.; Rimmer, A.J.; Head, R.A.; Gorvin, C.M.; Attar, M.; Gregory, L.; Wass, J.A.H.; Buck, D.; Karavitaki, N.; et al. Whole-Exome Sequencing Studies of Nonfunctioning Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2013, 98, E796–E800. [Google Scholar] [CrossRef]
- Falch, C.M.; Sundaram, A.Y.M.; Øystese, K.A.; Normann, K.R.; Lekva, T.; Silamikelis, I.; Eieland, A.K.; Andersen, M.; Bollerslev, J.; Olarescu, N.C. Gene expression profiling of fast- and slow-growing non-functioning gonadotroph pituitary adenomas. Eur. J. Endocrinol. 2018, 178, 295–307. [Google Scholar] [CrossRef]
- Faltermeier, C.M.; Magill, S.T.; Blevins, L.S., Jr.; Aghi, M.K. Molecular Biology of Pituitary Adenomas. Neurosurg. Clin. N. Am. 2019, 30, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Hussein, Z.; Grieve, J.; Dorward, N.; Miszkiel, K.; Kosmin, M.; Fersht, N.; Bouloux, P.M.; Jaunmuktane, Z.; Baldeweg, S.E.; Marcus, H.J. Non-functioning pituitary macroadenoma following surgery: Long-term outcomes and development of an optimal follow-up strategy. Front. Surg. 2023, 10, 1129387. [Google Scholar] [CrossRef] [PubMed]
- Dubois, S.; Guyétant, S.; Menei, P.; Rodien, P.; Illouz, F.; Vielle, B.; Rohmer, V. Relevance of Ki-67 and prognostic factors for recurrence/progression of gonadotropic adenomas after first surgery. Eur. J. Endocrinol. 2007, 157, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Cote, D.J.; Smith, T.R.; Sandler, C.N.; Gupta, T.; Bale, T.A.; Bi, W.L.; Dunn, I.F.; De Girolami, U.; Woodmansee, W.W.; Kaiser, U.B.; et al. Functional Gonadotroph Adenomas: Case Series and Report of Literature. Neurosurgery 2016, 79, 823–831. [Google Scholar] [CrossRef]
- Batista, R.L.; Trarbach, E.B.; Marques, M.D.; Cescato, V.A.; da Silva, G.O.; Herkenhoff, C.G.B.; Cunha-Neto, M.B.; Musolino, N.R. Nonfunctioning Pituitary Adenoma Recurrence and Its Relationship with Sex, Size, and Hormonal Immunohistochemical Profile. World Neurosurg. 2018, 120, e241–e246. [Google Scholar] [CrossRef]
- Ogedegbe, O.J.; Cheema, A.Y.; Khan, M.A.; Junaid, S.Z.S.; Erebo, J.K.; Ayirebi-Acquah, E.; Okpara, J.; Bofah, D.; Okon, J.G.; Munir, M.; et al. A Comprehensive Review of Four Clinical Practice Guidelines of Acromegaly. Cureus 2022, 14, e28722. [Google Scholar] [CrossRef]
- Mete, O.; Cintosun, A.; Pressman, I.; Asa, S.L. Epidemiology and biomarker profile of pituitary adenohypophysial tumors. Mod. Pathol. 2018, 31, 900–909. [Google Scholar] [CrossRef]
- Asa, S.L.; Ezzat, S. An Update on Pituitary Neuroendocrine Tumors Leading to Acromegaly and Gigantism. J. Clin. Med. 2021, 10, 2254. [Google Scholar] [CrossRef]
- Asa, S.L.; Mete, O. Cytokeratin profiles in pituitary neuroendocrine tumors. Hum. Pathol. 2021, 107, 87–95. [Google Scholar] [CrossRef]
- Kiseljak-Vassiliades, K.; Carlson, N.E.; Borges, M.T.; Kleinschmidt-DeMasters, B.K.; Lillehei, K.O.; Kerr, J.M.; Wierman, M.E. Growth hormone tumor histological subtypes predict response to surgical and medical therapy. Endocrine 2015, 49, 231–241. [Google Scholar] [CrossRef]
- Heng, L.; Liu, X.; Jia, D.; Guo, W.; Zhang, S.; Gao, G.; Gong, L.; Qu, Y. Preoperative prediction of granulation pattern subtypes in GH-secreting pituitary adenomas. Clin. Endocrinol. 2021, 95, 134–142. [Google Scholar] [CrossRef]
- Yan, J.L.; Chen, M.Y.; Chen, Y.L.; Chuang, C.C.; Hsu, P.W.; Wei, K.C.; Chang, C.N. Surgical Outcome and Evaluation of Strategies in the Management of Growth Hormone-Secreting Pituitary Adenomas After Initial Transsphenoidal Pituitary Adenectomy Failure. Front. Endocrinol. 2022, 13, 756855. [Google Scholar] [CrossRef]
- Swanson, A.A.; Erickson, D.; Donegan, D.M.; Jenkins, S.M.; Van Gompel, J.J.; Atkinson, J.L.D.; Erickson, B.J.; Giannini, C. Clinical, biological, radiological, and pathological comparison of sparsely and densely granulated somatotroph adenomas: A single center experience from a cohort of 131 patients with acromegaly. Pituitary 2021, 24, 192–206. [Google Scholar] [CrossRef]
- Bakhtiar, Y.; Hirano, H.; Arita, K.; Yunoue, S.; Fujio, S.; Tominaga, A.; Sakoguchi, T.; Sugiyama, K.; Kurisu, K.; Yasufuku-Takano, J.; et al. Relationship between cytokeratin staining patterns and clinico-pathological features in somatotropinomae. Eur. J. Endocrinol. 2010, 163, 531–539. [Google Scholar] [CrossRef]
- Hazer, D.B.; Işık, S.; Berker, D.; Güler, S.; Gürlek, A.; Yücel, T.; Berker, M. Treatment of acromegaly by endoscopic transsphenoidal surgery: Surgical experience in 214 cases and cure rates according to current consensus criteria. J. Neurosurg. 2013, 119, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- Guignat, L.; Assie, G.; Bertagna, X.; Bertherat, J. Corticotroph adenoma. Presse Med. 2009, 38, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jahangiri, A.; Wagner, J.R.; Pekmezci, M.; Hiniker, A.; Chang, E.F.; Kunwar, S.; Blevins, L.; Aghi, M.K. A comprehensive long-term retrospective analysis of silent corticotrophic adenomas vs hormone-negative adenomas. Neurosurgery 2013, 73, 8–17, discussion 17–18. [Google Scholar] [CrossRef] [PubMed]
- Laws, E.R.; Penn, D.L.; Repetti, C.S. Advances and controversies in the classification and grading of pituitary tumors. J. Endocrinol. Investig. 2019, 42, 129–135. [Google Scholar] [CrossRef]
- Nasi-Kordhishti, I.; Hladik, M.; Kandilaris, K.; Behling, F.; Honegger, J.; Schittenhelm, J. Transcription factor-based classification of pituitary adenomas/PitNETs: A comparative analysis and clinical implications across WHO 2004, 2017 and 2022 in 921 cases. Acta Neuropathol. Commun. 2025, 13, 135. [Google Scholar] [CrossRef]
- Hayashi, K.; Inoshita, N.; Kawaguchi, K.; Ibrahim Ardisasmita, A.; Suzuki, H.; Fukuhara, N.; Okada, M.; Nishioka, H.; Takeuchi, Y.; Komada, M.; et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur. J. Endocrinol. 2016, 174, 213–226. [Google Scholar] [CrossRef]
- Losa, M.; Mortini, P.; Pagnano, A.; Detomas, M.; Cassarino, M.F.; Pecori Giraldi, F. Clinical characteristics and surgical outcome in USP8-mutated human adrenocorticotropic hormone-secreting pituitary adenomas. Endocrine 2019, 63, 240–246. [Google Scholar] [CrossRef]
- Nerubenko, E.; Ryazanov, P.; Kuritsyna, N.; Paltsev, A.; Ivanova, O.; Grineva, E.; Kostareva, A.; Dmitrieva, R.; Tsoy, U. Cushing’s Disease Manifestation in USP8-Mutated Corticotropinoma May Be Mediated by Interactions Between WNT Signaling and SST Trafficking. Int. J. Mol. Sci. 2024, 25, 12886. [Google Scholar] [CrossRef]
- Sbiera, S.; Perez-Rivas, L.G.; Taranets, L.; Weigand, I.; Flitsch, J.; Graf, E.; Monoranu, C.-M.; Saeger, W.; Hagel, C.; Honegger, J.; et al. Driver mutations in USP8 wild-type Cushing’s disease. Neuro-Oncology 2019, 21, 1273–1283. [Google Scholar] [CrossRef]
- Kober, P.; Rusetska, N.; Mossakowska, B.J.; Maksymowicz, M.; Pękul, M.; Zieliński, G.; Styk, A.; Kunicki, J.; Działach, Ł.; Witek, P.; et al. The expression of glucocorticoid and mineralocorticoid receptors in pituitary tumors causing Cushing’s disease and silent corticotroph tumors. Front. Endocrinol. 2023, 14, 1124646. [Google Scholar] [CrossRef] [PubMed]
- Perez-Rivas, L.G.; Simon, J.; Albani, A.; Tang, S.; Roeber, S.; Assié, G.; Deutschbein, T.; Fassnacht, M.; Gadelha, M.R.; Hermus, A.R.; et al. TP53 mutations in functional corticotroph tumors are linked to invasion and worse clinical outcome. Acta Neuropathol. Commun. 2022, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Uzilov, A.V.; Taik, P.; Cheesman, K.C.; Javanmard, P.; Ying, K.; Roehnelt, A.; Wang, H.; Fink, M.Y.; Lau, C.Y.; Moe, A.S.; et al. USP8 and TP53 Drivers are Associated with CNV in a Corticotroph Adenoma Cohort Enriched for Aggressive Tumors. J. Clin. Endocrinol. Metab. 2020, 106, 826–842. [Google Scholar] [CrossRef] [PubMed]
- Pękul, M.; Szczepaniak, M.; Kober, P.; Rusetska, N.; Mossakowska, B.J.; Baluszek, S.; Kowalik, A.; Maksymowicz, M.; Zieliński, G.; Kunicki, J.; et al. Relevance of mutations in protein deubiquitinases genes and TP53 in corticotroph pituitary tumors. Front. Endocrinol. 2024, 15, 1302667. [Google Scholar] [CrossRef]
- Casar-Borota, O.; Boldt, H.B.; Engström, B.E.; Andersen, M.S.; Baussart, B.; Bengtsson, D.; Berinder, K.; Ekman, B.; Feldt-Rasmussen, U.; Höybye, C.; et al. Corticotroph Aggressive Pituitary Tumors and Carcinomas Frequently Harbor ATRX Mutations. J. Clin. Endocrinol. Metab. 2020, 106, e1183–e1194. [Google Scholar] [CrossRef]
- Lasolle, H.; Vasiljevic, A.; Jouanneau, E.; Ilie, M.D.; Raverot, G. Aggressive corticotroph tumors and carcinomas. J. Neuroendocrinol. 2022, 34, e13169. [Google Scholar] [CrossRef]
- Dai, C.; Feng, M.; Lu, L.; Sun, B.; Fan, Y.; Bao, X.; Yao, Y.; Deng, K.; Wang, R.; Kang, J. Transsphenoidal Surgery of Corticotroph Adenomas With Cavernous Sinus Invasion: Results in a Series of 86 Consecutive Patients. Front. Oncol. 2022, 12, 810234. [Google Scholar] [CrossRef]
- Sanno, N.; Teramoto, A.; Osamura, R.Y. Thyrotropin-secreting pituitary adenomas. Clinical and biological heterogeneity and current treatment. J. Neurooncol. 2001, 54, 179–186. [Google Scholar] [CrossRef]
- Beck-Peccoz, P.; Lania, A.; Beckers, A.; Chatterjee, K.; Wemeau, J.L. 2013 European thyroid association guidelines for the diagnosis and treatment of thyrotropin-secreting pituitary tumors. Eur. Thyroid. J. 2013, 2, 76–82. [Google Scholar] [CrossRef]
- Spada, A.; Vallar, L.; Faglia, G. G protein oncogenes in pituitary tumors. Trends Endocrinol. Metab. 1992, 3, 355–360. [Google Scholar] [CrossRef]
- Sumi, T.; Stefaneanu, L.; Kovacs, K.; Asa, S.L.; Rindi, G. Immunohistochemical study of p53 protein in human and animal pituitary tumors. Endocr. Pathol. 1993, 4, 95–99. [Google Scholar] [CrossRef]
- Dong, Q.; Brucker-Davis, F.; Weintraub, B.D.; Smallridge, R.C.; Carr, F.E.; Battey, J.; Spiegel, A.M.; Shenker, A. Screening of candidate oncogenes in human thyrotroph tumors: Absence of activating mutations of the G alpha q, G alpha 11, G alpha s, or thyrotropin-releasing hormone receptor genes. J. Clin. Endocrinol. Metab. 1996, 81, 1134–1140. [Google Scholar] [CrossRef]
- Asteria, C.; Anagni, M.; Persani, L.; Beck-Peccoz, P. Loss of heterozygosity of the MEN1 gene in a large series of TSH-secreting pituitary adenomas. J. Endocrinol. Investig. 2001, 24, 796–801. [Google Scholar] [CrossRef]
- Teramoto, A.; Sanno, N.; Tahara, S.; Osamura, Y.R. Pathological study of thyrotropin-secreting pituitary adenoma: Plurihormonality and medical treatment. Acta Neuropathol. 2004, 108, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Usui, T.; Izawa, S.; Sano, T.; Tagami, T.; Nagata, D.; Shimatsu, A.; Takahashi, J.A.; Naruse, M. Clinical and Molecular Features of a TSH-Secreting Pituitary Microadenoma. Pituitary 2005, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Căpraru, O.M.; Gaillard, C.; Vasiljevic, A.; Lasolle, H.; Borson-Chazot, F.; Raverot, V.; Jouanneau, E.; Trouillas, J.; Raverot, G. Diagnosis, pathology, and management of TSH-secreting pituitary tumors. A single-center retrospective study of 20 patients from 1981 to 2014. Ann. Endocrinol. 2019, 80, 216–224. [Google Scholar] [CrossRef]
- Yamada, S.; Fukuhara, N.; Horiguchi, K.; Yamaguchi-Okada, M.; Nishioka, H.; Takeshita, A.; Takeuchi, Y.; Ito, J.; Inoshita, N. Clinicopathological characteristics and therapeutic outcomes in thyrotropin-secreting pituitary adenomas: A single-center study of 90 cases. J. Neurosurg. 2014, 121, 1462–1473. [Google Scholar] [CrossRef]
- Luo, P.; Zhang, L.; Yang, L.; An, Z.; Tan, H. Progress in the Pathogenesis, Diagnosis, and Treatment of TSH-Secreting Pituitary Neuroendocrine Tumor. Front. Endocrinol. 2020, 11, 580264. [Google Scholar] [CrossRef]
- Lee, J.C.; Pekmezci, M.; Lavezo, J.L.; Vogel, H.; Katznelson, L.; Fraenkel, M.; Harsh, G.; Dulai, M.; Perry, A.; Tihan, T. Utility of Pit-1 Immunostaining in Distinguishing Pituitary Adenomas of Primitive Differentiation from Null Cell Adenomas. Endocr. Pathol. 2017, 28, 287–292. [Google Scholar] [CrossRef]
- Woo, C.S.; Ho, R.S.; Ho, G.; Lau, H.T.; Fong, C.H.; Chang, J.Y.; Leung, E.K.; Tang, L.C.; Ma, I.K.; Lee, A.C.; et al. A clinicopathological study of non-functioning pituitary neuroendocrine tumours using the World Health Organization 2022 classification. Front. Endocrinol. 2024, 15, 1368944. [Google Scholar] [CrossRef] [PubMed]
- Balogun, J.A.; Monsalves, E.; Juraschka, K.; Parvez, K.; Kucharczyk, W.; Mete, O.; Gentili, F.; Zadeh, G. Null cell adenomas of the pituitary gland: An institutional review of their clinical imaging and behavioral characteristics. Endocr. Pathol. 2015, 26, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Tomono, Y.; Nose, T. Expression of P27kip1 and Ki-67 in pituitary adenomas: An investigation of marker of adenoma invasiveness. Acta Neurochir. 1999, 141, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Wolfsberger, S.; Wunderer, J.; Zachenhofer, I.; Czech, T.; Böcher-Schwarz, H.G.; Hainfellner, J.; Knosp, E. Expression of cell proliferation markers in pituitary adenomas--correlation and clinical relevance of MIB-1 and anti-topoisomerase-IIalpha. Acta Neurochir. 2004, 146, 831–839. [Google Scholar] [CrossRef]
- Aydin, S.; Comunoglu, N.; Ahmedov, M.L.; Korkmaz, O.P.; Oz, B.; Kadioglu, P.; Gazioglu, N.; Tanriover, N. Clinicopathologic Characteristics and Surgical Treatment of Plurihormonal Pituitary Adenomas. World Neurosurg. 2019, 130, e765–e774. [Google Scholar] [CrossRef]
- Micko, A.; Rötzer, T.; Hoftberger, R.; Vila, G.; Oberndorfer, J.; Frischer, J.M.; Knosp, E.; Wolfsberger, S. Expression of additional transcription factors is of prognostic value for aggressive behavior of pituitary adenomas. J. Neurosurg. 2021, 134, 1139–1146. [Google Scholar] [CrossRef]
- Erickson, D.; Scheithauer, B.; Atkinson, J.; Horvath, E.; Kovacs, K.; Lloyd, R.V.; Young, W.F., Jr. Silent subtype 3 pituitary adenoma: A clinicopathologic analysis of the Mayo Clinic experience. Clin. Endocrinol. 2009, 71, 92–99. [Google Scholar] [CrossRef]
- Mete, O.; Gomez-Hernandez, K.; Kucharczyk, W.; Ridout, R.; Zadeh, G.; Gentili, F.; Ezzat, S.; Asa, S.L. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod. Pathol. 2016, 29, 131–142. [Google Scholar] [CrossRef]
- La Rosa, S. Diagnostic, Prognostic, and Predictive Role of Ki67 Proliferative Index in Neuroendocrine and Endocrine Neoplasms: Past, Present, and Future. Endocr. Pathol. 2023, 34, 79–97. [Google Scholar] [CrossRef]
- Voellger, B.; Zhang, Z.; Benzel, J.; Wang, J.; Lei, T.; Nimsky, C.; Bartsch, J.W. Targeting Aggressive Pituitary Adenomas at the Molecular Level-A Review. J. Clin. Med. 2021, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Bao, X.; Wang, R. Role of matrix Metalloproteinases in pituitary adenoma invasion. Chin. Neurosurg. J. 2018, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, K.; Kim, D.; Moon, J.H.; Kim, E.H.; Kim, S.H.; Ku, C.R.; Lee, E.J. Associations of GNAS Mutations with Surgical Outcomes in Patients with Growth Hormone-Secreting Pituitary Adenoma. Endocrinol. Metab. 2021, 36, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Yang, C.; Bao, X.; Wang, R. Genetic and Epigenetic Causes of Pituitary Adenomas. Front. Endocrinol. 2021, 11, 596554. [Google Scholar] [CrossRef]
- Beckers, A.; Aaltonen, L.A.; Daly, A.F.; Karhu, A. Familial Isolated Pituitary Adenomas (FIPA) and the Pituitary Adenoma Predisposition due to Mutations in the Aryl Hydrocarbon Receptor Interacting Protein (AIP) Gene. Endocr. Rev. 2013, 34, 239–277. [Google Scholar] [CrossRef]


| Transcription Factor | |
|---|---|
| Pituitary Cell Lineage | Associated Tumor Types |
| PIT1 | |
| Somatotrophs, Lactotrophs, Thyrotrophs | GH-, PRL-, TSH-secreting tumors |
| SF1 | |
| Gonadotrophs | Non-functioning PitNETs |
| TPIT | |
| Corticotrophs | ACTH-secreting tumors (e.g., Cushing’s disease) |
| Negative for all | |
| Null cell lineage (no lineage-specific factor) | Rare; often reclassified |
| Multiple (including PIT1, SF1, TPIT) | |
| Multiple pituitary lineages (e.g., somatotroph + corticotroph) | Plurihormonal tumors with more than one transcription factor (PAwUIC) |
| Biomolecular/Genetic Parameter | Associated Tumor Behavior/Marker | Neurosurgical Implication |
|---|---|---|
| Tumor size and prolactin level correlation | High PRL correlates with large tumor size; low PRL may suggest poor differentiation or stalk effect | Larger tumors are more complex to resect completely; low PRL in large tumors warrants differential diagnosis |
| Gender and age | Males and younger patients (<20) show more aggressive, larger tumors | Often present as macroadenomas with invasive features, requiring multimodal therapy |
| AIP/MEN1 mutations | Associated with familial PRLs, younger onset, high recurrence, and cabergoline resistance | Poor response to dopamine agonists → surgery more often needed; larger, more invasive tumors |
| Cabergoline resistance | Linked to AIP/MEN1 mutations; resistance associated with high Ki-67, invasiveness | Often necessitates transsphenoidal surgery due to failed medical therapy |
| High Ki-67 index | Proliferation marker; associated with larger size, dopamine agonists resistance, and aggressiveness | Predicts less favorable resection outcomes; requires long-term radiological monitoring |
| PTTG overexpression | Promotes invasiveness and tumorigenesis | May correlate with higher surgical complexity and increased recurrence risk |
| p53 inactivation/loss | Found in some aggressive LAs with high PRL expression | Potential marker for aggressive surgical course; limited practical use currently |
| Chromosomal deletions (LOH: 11q13, 13q12-14, 10q26) | Associated with invasiveness and poor prognosis | May reflect deeper infiltration and the probability of subtotal resection |
| 11p loss (genes: DGKZ, CD44, TSG101, etc.) | Linked to aggressive molecular phenotypes | Suggests poor tumor containment and risk of postoperative regrowth |
| Low E-cadherin/ beta-catenin expression | Impairs cell adhesion; correlates with invasiveness and high Ki-67 | Indicates a higher likelihood of extrasellar or cavernous sinus extension |
| Low TIMP-2 expression | TIMP-2 inhibits metalloproteinases; low expression promotes tissue invasion | Suggests infiltrative borders and is less favorable for complete resection |
| Proliferation genes (ADAMTS6, CRMP1, CCNB1, etc.) | Associated with recurrence and progression | Molecular profiling could identify patients at higher risk of incomplete resection or regrowth post-op |
| Biomolecular/Histological Feature | Neurosurgical Aspect/Behavior |
|---|---|
| SF-1, GATA3, ERα, β-FSH/LH expression | Defines the gonadotroph lineage; tumors tend to be macroadenomas, often invasive (cavernous/suprasellar), which lowers the chances of GTR. |
| Low somatic mutation burden | Indicates indolent cellular behavior; however, invasiveness is often anatomical rather than genetic, complicating complete resection. |
| EMT-related gene overexpression (e.g., MTDH) | Correlates with fast-growing (aggressive tumors), higher invasiveness, and risk of residual tumor post-surgery. |
| Ki-67 > 3% | Associated with higher recurrence/reintervention rates, especially when residual tumor remains. |
| Residual tumor/invasion (suprasellar/cavernous) | Lower rates of GTR and higher recurrence risk, regardless of low proliferative index. |
| Biomolecular Parameter | Histological Subtype/Marker | Neurosurgical Aspect | Clinical Implication |
|---|---|---|---|
| Granulation pattern | Densely granulated somatotroph adenoma (DGSA) | Smaller, well-defined tumors | Higher rate of gross total resection (GTR); lower recurrence risk |
| Sparsely granulated somatotroph adenoma (SGSA) | Larger, invasive, irregular margins, aggressive behavior | Lower resectability; subtotal resection is more likely | |
| Ki-67 index | Higher in SGSA | Correlates with invasiveness and early regrowth | Requires closer postoperative radiologic follow-up |
| Cytokeratin pattern | Dot-like pattern in SGSA | Associated with diffuse growth and suprasellar extension | May limit the endonasal approach; higher chance of incomplete resection |
| Hormonal profile | High GH and IGF-1 levels in SGSA | Correlates with tumor volume and surgical complexity | Suggests higher biological activity and tumor aggressiveness |
| Transcription factors (e.g., PIT1) | Common to both subtypes | Define lineage, not invasiveness directly | Help classify tumor subtype, but less predictive of surgical outcome |
| Mixed GH/PRL expression | Frequently in DGSA | No distinct surgical implications if not invasive | May affect postoperative hormonal management |
| Somatostatin receptor expression (SSTR2) | Higher in DGSA | Not a surgical parameter per se | Better response to SSA if surgery is incomplete |
| GNAS mutation prevalence | Lower in SGSAs and higher in DGSAs | Lower GNAS mutation prevalence suggests that medical treatment is not indicated (tumor resistance) and the surgical treatment is, ore indicated | Higher GNAS mutation prevalence in DGSAs suggests that tumor responds better to medical therapy |
| Biomolecular Feature | Neurosurgical Correlation | Notes |
|---|---|---|
| USP8 mutations | Associated with microadenomas, higher surgical remission, and less invasive behavior | More frequent in women; high expression of SST5/SST2 predicts better response to pasireotide |
| USP8 wild-type | Larger, more invasive, lower surgical cure rate, poorer response to medical therapy | Often carries TP53 mutations; requires more aggressive surgery |
| TP53 mutations | Highly invasive, lower complete resection rate, larger size, higher Knosp grade | It occurs only in USP8-WT tumors; it is associated with low 10-year survival (27%) |
| USP48 mutations | Correlated with smaller tumors, more frequent in females | Less aggressive subtype; clinical implications still under study |
| SST2 and SST5 expression | May predict response to somatostatin analogs and relate to tumor control post-surgery | Higher SST expression seen in USP8-mutant tumors |
| NR3C1 (glucocorticoid receptor) expression | Negatively correlated with tumor size and ACTH levels | Higher expression in dG-CAs and USP8-mutant tumors; possible surgical prognostic marker |
| NR3C2 (mineralocorticoid receptor) | Higher expression in post-op remission cases, especially in dG-CAs | Could aid post-surgical outcome predictions |
| GR (glucocorticoid receptor) | Higher in smaller tumors, associated with surgical success | Correlates with USP8 mutation and lower invasiveness |
| Histological subtype: densely granulated (dG) | Better prognosis, smaller tumors, and more remission post-surgery | Associated with higher NR3C1/NR3C2 expression |
| Histological subtype: sparsely granulated (sG) or Crooke cell | Often larger and more invasive, associated with worse surgical outcomes | More likely to be USP8-WT and resistant to therapy |
| Silent corticotroph PitNETs (SCAs) | Tend to be larger, more invasive, more recurrent, harder to detect early | Often not biochemically active; detected via imaging or mass effect |
| ATRX mutations | Linked to aggressiveness, resistance to therapy, and potential for metastasis | Found in up to 32% of aggressive CAs |
| Molecular/Histological Feature | Implication for Surgery or Neurosurgical Outcomes |
|---|---|
| Overexpression of PIT-1, plurihormonality (TSH + GH/PRL) | Large macroadenomas with more invasive behavior; lower GTR rates due to cavernous sinus or suprasellar extension |
| Low Ki-67 index (<3%) | Slow-growing at the cellular level, but size/invasiveness is often driven by differentiation, not by proliferation |
| Somatostatin receptor expression | SSTR2A is predominant in monohormonal cases, SSTR5 is predominant in plurihormonal cases; it helps in postoperative treatment planning when residual tumor remains |
| Biomolecular Feature/ Biomarker | Neurosurgical/Clinical Implications |
|---|---|
| Lack of hormones transcription factors | Defines true null cell subtype; associated with more aggressive behavior and lower disease-free survival |
| Cavernous sinus invasion | Predicts lower rates of gross total resection and a greater risk of residual tumor post-op |
| MIB-1 (Ki-67 index) > 3% | Higher proliferation, correlates with aggressive behavior and poorer progression-free survival |
| Negative P27 expression | Marker of increased risk of postoperative regrowth, potentially guiding follow-up strategies |
| True NcA rarity via epigenomics | Most “NCAs” may actually be misclassified gonadotroph or corticotroph tumors, complicating prior prognostic assumptions |
| Subtype/Biomolecular Profile | Transcription Factors | Tumor Size | Aggressiveness | Gross Total Resection (GTR) |
|---|---|---|---|---|
| Hormonal Function | Invasiveness | Neurosurgical/Management Notes | ||
| PIT1-positive PAs | PIT1 only | Mostly macroadenomas | Moderate to high | >77% |
| ~50% functioning | Present in many cases | Better resectability than PAwUIC | ||
| PAwUIC (PAs with more than one TF) | Multiple (incl. PIT1, SF1, TPIT) | Mostly macroadenomas | High (≈50% cases) | Lower than PIT1+ PAs |
| Mostly non-functioning (77%) | Higher % of invasiveness | Poorer surgical outcomes, early recurrence risk | ||
| TFGA-only gonadotropinomas | TFGA only | Larger tumor size | Moderate | Significantly higher than TFGA-plus |
| Often non-functioning | Less invasive | More favorable surgical outcome | ||
| TFGA-plus tumors | TFGA + another TF | Smaller than TFGA-only | Higher than TFGA-only | Lower GTR |
| Often non-functioning | More invasive | Shorter surveillance intervals, early reintervention needed | ||
| Plurihormonal PIT1+ adenomas | PIT1 with multiple hormone expression | Mostly macroadenomas | Very high (aggressive, recurrent) | Often incomplete due to invasiveness |
| Not always silent (some functioning) | Very invasive | Requires aggressive surgery + EBRT + close follow-up |
| Biomolecular/Genetic Marker | Subtype | Tumor Behavior | Neurosurgical Relevance |
|---|---|---|---|
| Ki-67 index | All PitNET subtypes | High Ki-67 (>3%) is associated with invasiveness, early regrowth, and poor prognosis | Predicts lower gross total resection (GTR), need for closer radiologic follow-up |
| PTTG (Pituitary Tumor Transforming Gene) | Lactotroph, others | Promotes proliferation, invasion, and tumorigenesis | Overexpression = higher surgical complexity, increased recurrence risk |
| p53 abnormalities | Lactotroph, corticotroph | Loss of function or mutations linked to aggressive phenotypes | A marker of poor surgical outcomes, higher recurrence, and limited current utility |
| E-cadherin/β-catenin | Lactotroph, somatotroph | Low expression = impaired adhesion, invasiveness | Predicts cavernous sinus invasion, subtotal resection probability |
| TIMP-2 (Tissue inhibitor of metalloproteinases) | Lactotroph | Low expression linked to invasive growth | Suggests infiltrative borders, reduced likelihood of complete resection |
| GNAS mutations | Somatotroph (DGSA) | Activating mutation → responsiveness to somatostatin analogs | DGSA: smaller tumors, higher GTR, better prognosis; SGSA: resistant, harder resection |
| Cytokeratin pattern (PP vs. DP) | Somatotroph | Dot pattern = larger, more invasive tumors | DP tumors often require reoperation; limits endonasal approach effectiveness |
| USP8 mutations | Corticotroph | Microadenomas, less invasive and have better remission | Predicts higher surgical cure rates, pasireotide sensitivity |
| TP53 mutations | Corticotroph (USP8-WT) | Large, invasive, high Knosp grade, poor survival | Lower GTR, higher recurrence → aggressive surgical strategy needed |
| ATRX mutations | Corticotroph (aggressive/rare) | Associated with therapy resistance, potential for metastasis | Predicts poor surgical prognosis, may justify early multimodal therapy |
| NR3C1/NR3C2 (glucocorticoid & mineralocorticoid receptor) | Corticotroph | Expression correlates with remission and smaller tumor size | Possible prognostic markers for surgical outcome |
| Plurihormonality (multiple TF expression) | PIT1+, PAwUIC | Larger, invasive macroadenomas | Associated with lower GTR, early recurrence → closer follow-up required |
| AIP/MEN1 germline mutations | Lactotroph (familial, pediatric) | Larger, more aggressive, cabergoline resistance | Often need surgery despite medical therapy; high recurrence risk |
| Marker/Concept | Tumor Subtype(s) | Findings/Biological Role | Practical Implications for Neurosurgeons | Postsurgical Decision-Making |
|---|---|---|---|---|
| Ki-67 index | All PitNETs | High Ki-67 (>3%) = proliferative activity, recurrence risk | Anticipate a higher risk of incomplete resection, and counsel the patient about the prognosis | Guides the intensity of follow-up MRI; may justify early radiotherapy if very high |
| PTTG (Pituitary Tumor Transforming Gene) | Lactotroph, others | Oncogenic role: promotes invasion | Anticipate increased risk of cavernous sinus invasion | Identifies patients at higher risk of recurrence → closer follow-up |
| p53 abnormalities | Lactotroph, corticotroph | Mutations/overexpression linked to aggressive tumors | Consider a higher recurrence probability after surgery | May justify adjuvant radiotherapy or inclusion in clinical trials |
| E-cadherin/β-catenin | Lactotroph, somatotroph | Loss of adhesion molecules = invasiveness | Anticipate cavernous sinus invasion, lower chance of GTR | Radiological follow-up for progression; adjuvant therapy in infiltrative cases |
| TIMP-2 | Lactotroph | Low levels → matrix degradation, invasiveness | Surgical difficulty, incomplete resection are more likely | Post-op recurrence monitoring; adjuvant therapies considered |
| GNAS mutation | Somatotroph | DGSA is more responsive to SSA, SGSA resistant | DGSA—easier to resect, better prognosis | SGSA may require multimodal therapy, closer follow-up |
| Cytokeratin pattern (PP vs. DP) | Somatotroph | DP = larger, invasive tumors | DP tumors—anticipate subtotal resection | Early consideration for radiotherapy/reoperation |
| USP8 mutation | Corticotroph | Smaller, less invasive microadenomas | Higher chance of surgical remission | Predicts sensitivity to pasireotide; better follow-up prognosis |
| TP53, ATRX mutations | Corticotroph | Associated with aggressive, therapy-resistant tumors | Anticipate subtotal resection, high recurrence | Justify adjuvant radiotherapy or medical therapy early |
| AIP/MEN1 germline mutations | Pediatric/ familial PitNETs | Large, aggressive, dopamine-resistant | Likely surgical indication despite medical therapy | Genetic counseling, close long-term follow-up |
| Invasiveness (definition) | All | Radiological/surgical extension into adjacent structures (e.g., cavernous sinus, sphenoid, suprasellar) | Predicts a lower chance of GTR | Determines need for repeat surgery or multimodal approach |
| Aggressiveness (definition) | All | Biological behavior: rapid growth, high Ki-67, recurrence, resistance to therapy | Alerts the surgeon about a higher recurrence risk | Guides adjuvant radiotherapy and personalized follow-up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, A.; Tataranu, L.G.; Cristutiu, B.-C.; Dricu, A.; Rizea, R.E. The PitNET Puzzle: From Zero to Linking Molecular Behavior with Neurosurgical Aspects. Medicina 2025, 61, 1973. https://doi.org/10.3390/medicina61111973
Kamel A, Tataranu LG, Cristutiu B-C, Dricu A, Rizea RE. The PitNET Puzzle: From Zero to Linking Molecular Behavior with Neurosurgical Aspects. Medicina. 2025; 61(11):1973. https://doi.org/10.3390/medicina61111973
Chicago/Turabian StyleKamel, Amira, Ligia Gabriela Tataranu, Bianca-Cristina Cristutiu, Anica Dricu, and Radu Eugen Rizea. 2025. "The PitNET Puzzle: From Zero to Linking Molecular Behavior with Neurosurgical Aspects" Medicina 61, no. 11: 1973. https://doi.org/10.3390/medicina61111973
APA StyleKamel, A., Tataranu, L. G., Cristutiu, B.-C., Dricu, A., & Rizea, R. E. (2025). The PitNET Puzzle: From Zero to Linking Molecular Behavior with Neurosurgical Aspects. Medicina, 61(11), 1973. https://doi.org/10.3390/medicina61111973

