Malignancy Risk and Predictors in Dermatomyositis and Polymyositis: A Large Population-Based Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population and Design
2.3. Study Variables
- Solid malignancies: Central nervous system (CNS), oropharyngeal, laryngeal, thyroid, lung, breast, uterine, ovarian, cervical, genital, kidney, bladder, prostate, esophageal, gastric, colorectal, liver, biliary, pancreatic, sarcoma, melanoma, and unknown primary.
- Hematologic malignancies: Acute leukemia, chronic leukemia, Hodgkin’s lymphoma, non-Hodgkin’s lymphoma, multiple myeloma and myelodysplastic syndrome.
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Overall Cancer Rates and Timing Relative to PM/DM Diagnosis
3.3. Site-Specific Malignancies
3.4. Risk Factors for Solid and Hematologic Malignancies in Patients with PM and DM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalakas, M.C.; Hohlfeld, R. Polymyositis and dermatomyositis. Lancet 2003, 362, 971–982. [Google Scholar] [CrossRef] [PubMed]
- Mammen, A.L. Dermatomyositis and polymyositis: Clinical presentation, autoantibodies, and pathogenesis. Ann. N. Y. Acad. Sci. 2010, 1184, 134–153. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, K.; Lundberg, I.E. Polymyositis and Dermatomyositis: Pathophysiology. Rheum. Dis. Clin. N. Am. 2011, 37, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.M.; Mastaglia, F.L. Cytokines in immune-mediated inflammatory myopathies: Cellular sources, multiple actions and therapeutic implications. Clin. Exp. Immunol. 2014, 178, 405–415. [Google Scholar] [CrossRef]
- De Paepe, B.; Creus, K.K.; De Bleecker, J.L. Role of cytokines and chemokines in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2009, 21, 610–616. [Google Scholar] [CrossRef]
- Rayavarapu, S.; Coley, W.; Kinder, T.B.; Nagaraju, K. Idiopathic inflammatory myopathies: Pathogenic mechanisms of muscle weakness. Skelet Muscle 2013, 3, 13. [Google Scholar] [CrossRef]
- Findlay, A.R.; Goyal, N.A.; Mozaffar, T. An overview of polymyositis and dermatomyositis. Muscle Nerve 2015, 51, 638–656. [Google Scholar] [CrossRef]
- Chhibber, S.; Amato, A.A. Clinical Evaluation and Management of Inflammatory Myopathies. Semin. Neurol. 2015, 35, 347–359. [Google Scholar] [CrossRef]
- Sigurgeirsson, B.; Lindelöf, B.; Edhag, O.; Allander, E. Risk of Cancer in Patients with Dermatomyositis or Polymyositis. N. Engl. J. Med. 1992, 326, 363–367. [Google Scholar] [CrossRef]
- Oldroyd, A.G.S.; Allard, A.B.; Callen, J.P.; Chinoy, H.; Chung, L.; Fiorentino, D.; George, M.D.; Gordon, P.; Kolstad, K.; Kurtzman, D.J.B.; et al. A systematic review and meta-analysis to inform cancer screening guidelines in idiopathic inflammatory myopathies. Rheumatology 2021, 60, 2615–2628. [Google Scholar] [CrossRef]
- Callen, J.P.; Hyla, J.F.; Bole, G.G.; Kay, D.R. The relationship of dermatomyositis and polymyositis to internal malignancy. Arch. Dermatol. 1980, 116, 295–298. [Google Scholar] [CrossRef] [PubMed]
- András, C.; Ponyi, A.; Constantin, T.; Csiki, Z.; Szekanecz, E.; Szodoray, P.; Dankó, K. Dermatomyositis and polymyositis associated with malignancy: A 21-year retrospective study. J. Rheumatol. 2008, 35, 438–444. [Google Scholar] [PubMed]
- Buchbinder, R.; Forbes, A.; Hall, S.; Dennett, X.; Giles, G. Incidence of Malignant Disease in Biopsy-Proven Inflammatory Myopathy: A Population-Based Cohort Study. Ann. Intern. Med. 2001, 134, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Limaye, V.; Luke, C.; Tucker, G.; Hill, C.; Lester, S.; Blumbergs, P.; Roberts-Thomson, P. The incidence and associations of malignancy in a large cohort of patients with biopsy-determined idiopathic inflammatory myositis. Rheumatol. Int. 2013, 33, 965–971. [Google Scholar] [CrossRef]
- Qiang, J.K.; Kim, W.B.; Baibergenova, A.; Alhusayen, R. Risk of malignancy in dermatomyositis and polymyositis: A systematic review and meta-analysis. J. Cutan. Med. Surg. 2017, 21, 131–136. [Google Scholar] [CrossRef]
- Allameen, N.A.; Ramos-Lisbona, A.I.; Wedderburn, L.R.; Lundberg, I.E.; Isenberg, D.A. An update on autoantibodies in the idiopathic inflammatory myopathies. Nat. Rev. Rheumatol. 2025, 21, 46–62. [Google Scholar] [CrossRef]
- Stuhlmüller, B.; Schneider, U.; González-González, J.B.; Feist, E. Disease specific autoantibodies in idiopathic inflammatory myopathies. Front. Neurol. 2019, 10, 438. [Google Scholar] [CrossRef]
- Marie, I.; Guillevin, L.; Menard, J.-F.; Hatron, P.; Cherin, P.; Amoura, Z.; Cacoub, P.; Bachelez, H.; Buzyn, A.; Le Roux, G.; et al. Hematological malignancy associated with polymyositis and dermatomyositis. Autoimmun. Rev. 2012, 11, 615–620. [Google Scholar] [CrossRef]
- Fang, Y.F.; Wu, Y.J.J.; Kuo, C.F.; Luo, S.F.; Yu, K.H. Malignancy in dermatomyositis and polymyositis: Analysis of 192 patients. Clin. Rheumatol. 2016, 35, 1977–1984. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, F.; Qin, B.; Yan, L.; Renqian, Z. Polymyositis/dermatomyositis and malignancy risk: A metaanalysis study. J. Rheumatol. 2015, 42, 282–291. [Google Scholar] [CrossRef]
- Patt, Y.S.; Ben-Shabat, N.; Fisher, L.; Amital, H.; Watad, A.; Sharif, K. The Prevalence of Dementia among Dermatomyositis and Polymyositis Patients: A Retrospective Cohort Study. Isr. Med. Assoc. J. 2023, 25, 479–484. [Google Scholar]
- Patt, Y.S.; Sharif, K.; David, P.; Hen, O.; Gendelman, O.; Elizur, Y.; Ahmaro, B.; Weinstein, O.; Watad, A.; Amital, H.; et al. Elevated Mortality Risk in the First Year Post-Diagnosis of Sarcoidosis: A Comprehensive Population-Based Cohort Study. Medicina 2024, 60, 1787. [Google Scholar] [CrossRef]
- Chow, W.H.; Gridley, G.; Mellemkjær, L.; McLaughlin, J.K.; Olsen, J.H.; Fraumeni, J.F. Cancer risk following polymyositis and dermatomyositis: A nationwide cohort study in Denmark. Cancer Causes Control 1995, 6, 9–13. [Google Scholar] [CrossRef]
- Antiochos, B.B.; Brown, L.A.; Li, Z.; Tosteson, T.D.; Wortmann, R.L.; Rigby, W.F.C. Malignancy is associated with dermatomyositis but not polymyositis in Northern New England, USA. J. Rheumatol. 2009, 36, 2704–2710. [Google Scholar] [CrossRef] [PubMed]
- Oldroyd, A.G.S.; Callen, J.P.; Chinoy, H.; Chung, L.; Fiorentino, D.; Gordon, P.; Machado, P.M.; McHugh, N.; Selva-O’callaghan, A.; Schmidt, J.; et al. International Guideline for Idiopathic Inflammatory Myopathy-Associated Cancer Screening: An International Myositis Assessment and Clinical Studies Group (IMACS) initiative. Nat. Rev. Rheumatol. 2023, 19, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.L.; Zhang, Y.; Sigurgeirsson, B.; Pukkala, E.; Mellemkjaer, L.; Airio, A.; Evans, S.R.; Felson, D.T. Frequency of specific cancer types in dermatomyositis and polymyositis: A population-based study. Lancet 2001, 357, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Chen, Y.; Lin, M.; Wu, C.; Liu, P.; Chen, T.; Chen, Y.; Jih, J.; Chen, C.; Lee, D.; et al. Malignancies associated with dermatomyositis and polymyositis in Taiwan: A nationwide population-based study. Br. J. Dermatol. 2009, 161, 854–860. [Google Scholar] [CrossRef]
- Zahr, Z.A.; Baer, A.N. Malignancy in myositis. Curr. Rheumatol. Rep. 2011, 13, 208–215. [Google Scholar] [CrossRef]
- Abraham, Z.; Rosner, I.; Rozenbaum, M.; Goldenberg, K.; Weller, B. Dermatomyositis and nasopharyngeal carcinoma. J. Dermatol. 1998, 25, 539–543. [Google Scholar] [CrossRef]
- Maoz, C.R.; Langevitz, P.; Livneh, A.; Blumstein, Z.; Sadeh, M.; Gur, H.; Bark, I.; Ehrenfeld, M. High incidence of malignancies in patients with dermatomyositis and polymyositis: An 11-year analysis. Semin. Arthritis Rheum. 1998, 27, 319–324. [Google Scholar] [CrossRef]
- Szekanecz, É.; András, C.; Sándor, Z.; Antal-Szalmás, P.; Szántó, J.; Tamási, L.; Kiss, E.; Szekanecz, Z. Malignancies and soluble tumor antigens in rheumatic diseases. Autoimmun. Rev. 2006, 6, 42–47. [Google Scholar] [CrossRef]
- Marzęcka, M.; Niemczyk, A.; Rudnicka, L. Autoantibody Markers of Increased Risk of Malignancy in Patients with Dermatomyositis. Clin. Rev. Allergy Immunol. 2022, 63, 289–296. [Google Scholar] [CrossRef]
- HeHengstman, G.J.; Vree Egberts, W.T.; Seelig, H.P.; Lundberg, I.E.; Moutsopoulos, H.M.; Doria, A.; Mosca, M.; Vencovsky, J.; van Venrooij, W.J.; van Engelen, B.G. Clinical characteristics of patients with myositis and autoantibodies to different fragments of the Mi-2β antigen. Ann. Rheum. Dis. 2006, 65, 242–245. [Google Scholar] [CrossRef]
- Yang, H.; Peng, Q.; Yin, L.; Li, S.; Shi, J.; Zhang, Y.; Lu, X.; Shu, X.; Zhang, S.; Wang, G. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopathic inflammatory myopathies: A large longitudinal cohort study. Arthritis Res. Ther. 2017, 19, 259. [Google Scholar] [CrossRef] [PubMed]
- Izuka, S.; Komai, T.; Shoda, H.; Fujio, K. Long-term risks of malignancy in myositis-specific antibody-positive idiopathic inflammatory myopathy. Rheumatol. Int. 2023, 43, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Betteridge, Z.; Tansley, S.; Shaddick, G.; Chinoy, H.; Cooper, R.; New, R.; Lilleker, J.; Vencovsky, J.; Chazarain, L.; Danko, K.; et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J. Autoimmun. 2019, 101, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Adam, A.C.; Grohé, C.; Stier, S.; Gattenlöhner, S.; Balta, Z.; Büttner, R.; Gütgemann, I. Hodgkin’s lymphoma in a patient with Jo-1 syndrome. Virchows Arch. 2007, 451, 101–104. [Google Scholar] [CrossRef]
- Hoesly, P.M.; Sluzevich, J.C.; Jambusaria-Pahlajani, A.; Lesser, E.R.; Heckman, M.G.; Abril, A. Association of antinuclear antibody status with clinical features and malignancy risk in adult-onset dermatomyositis. J. Am. Acad. Dermatol. 2019, 80, 1364–1370. [Google Scholar] [CrossRef]
- Solans-Laque, R.; Perez-Bocanegra, C.; Salud-Salvia, A.; Fonollosa-Pla, V.; Rodrigo, M.J.; Armadans, L.; Simeon-Aznar, C.P.; Vilardell-Tarres, M. Clinical significance of antinuclear antibodies in malignant diseases: Association with rheumatic and connective tissue paraneoplastic syndromes. Lupus 2004, 13, 159–164. [Google Scholar] [CrossRef]
- Heegaard, N.H.H.; West-Nørager, M.; Tanassi, J.T.; Houen, G.; Nedergaard, L.; Høgdall, C.; Høgdall, E. Circulating antinuclear antibodies in patients with pelvic masses are associated with malignancy and decreased survival. PLoS ONE 2012, 7, e30997. [Google Scholar] [CrossRef]
- Hernández-Molina, G.; Leal-Alegre, G.; Michel-Peregrina, M. The meaning of anti-Ro and anti-La antibodies in primary Sjögren’s syndrome. Autoimmun. Rev. 2011, 10, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Böckle, B.; Stanarevic, G.; Ratzinger, G.; Sepp, N. Analysis of 303 Ro/SS-A antibody-positive patients: Is this antibody a possible marker for malignancy? Br. J. Dermatol. 2012, 167, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Woods, A.; Gutierrez-Alamillo, L.; Laffoon, M.; Wigley, F.M.; Hummers, L.K.; Rosen, A.; Zeger, S.; Domsic, R.T.; Casciola-Rosen, L.; et al. Distinct Scleroderma Autoantibody Profiles Stratify Patients for Cancer Risk at Scleroderma Onset and During the Disease Course. Arthritis Rheumatol. 2024, 76, 68–77. [Google Scholar] [CrossRef]
- Frost, E.; Hofmann, J.N.; Huang, W.-Y.; Parks, C.G.; Frazer-Abel, A.A.; Deane, K.D.; Berndt, S.I. Antinuclear Antibodies Are Associated with an Increased Risk of Diffuse Large B-Cell Lymphoma. Cancers 2023, 15, 5231. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Tayar, J.H.; Fa’AK, F.; Sharma, G.; Lopez-Olivo, M.A.; Yousif, A.; Shagroni, T.; Al-Hawamdeh, S.; Rojas-Hernandez, C.M.; Suarez-Almazor, M.E. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 2020, 4, 1746–1755. [Google Scholar] [CrossRef]
- Islam, M.A. Antiphospholipid antibodies and antiphospholipid syndrome in cancer: Uninvited guests in troubled times. Semin. Cancer Biol. 2020, 64, 108–113. [Google Scholar] [CrossRef]
- Pessach, I.; Kyriakou, E.; Kalampokas, E.; Kalampokas, T.; Bitsani, A.; Kotsianidis, I. Antiphospholipid syndrome in cardiovascular disease and cancer. Eur. J. Haematol. 2023, 111, 834–843. [Google Scholar] [CrossRef]
- Kansuttiviwat, C.; Niprapan, P.; Tantiworawit, A.; Norasetthada, L.; Rattarittamrong, E.; Rattanathammethee, T.; Hantrakool, S.; Piriyakhuntorn, P.; Punnachet, T.; Hantrakun, N.; et al. Impact of antiphospholipid antibodies on thrombotic events in ambulatory cancer patients. PLoS ONE 2023, 18, e0279450. [Google Scholar] [CrossRef]
- Gris, J.-C.; Mousty, É.; Bouvier, S.; Ripart, S.; Cochery-Nouvellon, É.; Fabbro-Peray, P.; Broner, J.; Letouzey, V.; Pérez-Martin, A. Increased incidence of cancer in the follow-up of obstetric antiphospholipid syndrome within the NOH-APS cohort. Haematologica 2020, 105, 490–497. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Nguyen, A.V.; Wu, X.-X.; Loh, M.; Vu, M.; Zou, Y.; Liu, Q.; Guo, P.; Wang, Y.; Montgomery, L.L.; et al. Antiphospholipid antibodies promote tissue factor-dependent angiogenic switch and tumor progression. Am. J. Pathol. 2014, 184, 3359–3375. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, I.E.; Tjärnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; de Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 2017, 691, 2271–2282. [Google Scholar] [CrossRef] [PubMed]
- Iwagami, M.; Shinozaki, T. Introduction to Matching in Case-Control and Cohort Studies. Ann. Clin. Epidemiol. 2022, 4, 33–40. [Google Scholar] [CrossRef]
| Characteristics | Polymyositis (n = 528) | Controls (n = 2560) | p | Dermatomyositis (n = 1557) | Controls (n = 7633) | p |
|---|---|---|---|---|---|---|
| Demographics | ||||||
| Age at diagnosis | ||||||
| Mean ± SD | 51.2 ± 18 | 50.9 ± 18 | 0.689 | 36.7 ± 22 | 36.4 ± 22 | 0.649 |
| Median (IQR) | 52.7 (38–65) | 52.3 (38–65) | 0.811 | 35.6 (17–56) | 35.2 (16–56) | 0.817 |
| Female sex, n (%) | 333 (63.1) | 1614 (63.0) | 0.993 | 896 (57.5) | 4393 (57.6) | 0.996 |
| Socioeconomic status, n (%) | 0.955 | 0.985 | ||||
| Low | 139 (26.3) | 660 (25.8) | 400 (25.7) | 1956 (25.6) | ||
| Intermediate | 321 (60.8) | 1574 (61.5) | 931 (59.8) | 4556 (59.7) | ||
| High | 68 (12.9) | 326 (12.7) | 226 (14.5) | 1121 (14.7) | ||
| Ethnicity, n (%) | 0.926 | 0.853 | ||||
| Arab | 117 (22.2) | 572 (22.3) | 329 (21.1) | 1629 (21.3) | ||
| Jewish | 411 (77.8) | 1988 (77.7) | 1228 (78.9) | 6004 (78.7) | ||
| Comorbidities | ||||||
| Body-mass-index (kg/m2), mean ± SD | 28.1 ± 6 | 27.8 ± 6 | 0.553 | 26.2 ± 6 | 26.6 ± 9 | 0.050 |
| Smoking ever, n (%) | 187 (35.4) | 838 (32.7) | 0.233 | 429 (27.6) | 2241 (29.4) | 0.152 |
| Cancer diagnosis, n (%) | 85 (16.1) | 304 (11.9) | 0.009 | 159 (10.2) | 535 (7.0) | <0.001 |
| Cancer prior to index date n (%) | 42 (8.0) | 166 (6.5) | 0.216 | 72 (4.6) | 304 (4.0) | 0.261 |
| Age at cancer diagnosis, mean ± SD | 53.3 ± 19 | 57.7 ± 14 | 0.160 | 52.8 ± 16 | 52.7 ± 18 | 0.946 |
| Cancer post index date, n (%) | 46 (8.7) | 153 (6.0) | 0.025 | 91 (5.8) | 252 (3.3) | <0.001 |
| Age at cancer, mean ± SD | 57.9 ± 16 | 65.9 ± 14 | 0.004 | 55.6 ± 16 | 60.4 ± 14 | 0.011 |
| Cancer Site a | PM/DM, n (%) | Controls, n (%) | HRage-and-sex | 95% CI | p | |
|---|---|---|---|---|---|---|
| PM | All Cancers d | 46 (8.7) | 153 (6.0) | 1.50 | 1.06–2.11 | 0.020 |
| Solid Cancers b | 76 (14.4) | 286 (11.2) | 1.50 | 1.05–2.14 | 0.025 | |
| Hematologic Cancers c | 4 (0.8) | 13 (0.5) | 1.63 | 0.53–5.07 | 0.395 | |
| CNS | 2 (0.4) | 2 (0.1) | 2.25 | 0.20–24.88 | 0.508 | |
| Thyroid | 3 (0.6) | 8 (0.3) | 1.40 | 0.29–6.72 | 0.677 | |
| Breast | 10 (1.9) | 35 (1.4) | 1.58 | 0.77–3.24 | 0.208 | |
| Colorectal | 5 (0.9) | 20 (0.8) | 0.96 | 0.33–2.83 | 0.946 | |
| Kidney | 3 (0.6) | 4 (0.2) | 3.28 | 0.55–19.68 | 0.194 | |
| Bladder | 2 (0.4) | 10 (0.4) | 1.22 | 0.26–5.76 | 0.800 | |
| Prostate | 6 (1.1) | 14 (0.5) | 2.42 | 0.91–6.46 | 0.077 | |
| Uterus | 4 (0.8) | 7 (0.3) | 1.21 | 0.13–10.82 | 0.865 | |
| Melanoma | 4 (0.8) | 23 (0.9) | 0.43 | 0.05–3.31 | 0.416 | |
| Lung | 1(0.2) | 6 (0.2) | 1.04 | 0.18–5.70 | 0.96 | |
| Non-Hodgkin’s Lymphoma | 3 (0.6) | 7 (0.3) | 2.09 | 0.54–8.08 | 0.286 | |
| DM | All Cancers d | 91 (5.8) | 252 (3.3) | 1.89 | 1.47–2.41 | <0.001 |
| Solid Cancers b | 78 (5.0) | 231 (3.0) | 1.73 | 1.33–2.25 | <0.001 | |
| Hematologic Cancers c | 13 (0.8) | 24 (0.3) | 3.26 | 1.62–6.55 | <0.001 | |
| Oropharyngeal | 2 (0.1) | 3 (0.0) | 4.99 | 0.70–35.45 | 0.108 | |
| Larynx | 2 (0.1) | 2 (0.0) | 10.16 | 0.92–112.04 | 0.058 | |
| Thyroid | 2 (0.1) | 8 (0.1) | 0.63 | 0.80–5.06 | 0.666 | |
| Breast | 17 (1.1) | 49 (0.6) | 1.86 | 1.07–3.25 | 0.028 | |
| Colorectal | 7 (0.4) | 30 (0.4) | 0.86 | 0.33–2.22 | 0.757 | |
| Bladder | 2 (0.1) | 17 (0.2) | 0.58 | 0.13–2.50 | 0.464 | |
| Prostate | 4 (0.3) | 21 (0.3) | 1.05 | 0.35–3.09 | 0.935 | |
| Uterus | 4 (0.3) | 13 (0.2) | 1.84 | 0.59–5.79 | 0.295 | |
| Sarcoma | 2 (0.1) | 5 (0.1) | 2.49 | 0.46–13.59 | 0.292 | |
| Melanoma | 3 (0.2) | 17 (0.2) | 0.99 | 0.29–3.43 | 0.990 | |
| Lung | 0 | 4 (0.1) | 0.26 | 0.02–2.84 | 0.267 | |
| Acute Leukemia | 2 (0.1) | 1 (0.0) | 9.97 | 0.90–109.92 | 0.307 | |
| Chronic Leukemia | 6 (0.4) | 7 (0.1) | 5.02 | 1.62–15.56 | 0.005 | |
| Hodgkin’s Lymphoma | 2 (0.1) | 1 (0.0) | 9.89 | 0.90–109.09 | 0.061 | |
| Non-Hodgkin’s Lymphoma | 5 (0.3) | 14 (0.2) | 2.28 | 0.79–6.58 | 0.125 |
| Solid Cancers (n = 121) a | Hematologic Cancers (n = 17) b | |||||
|---|---|---|---|---|---|---|
| % c With Solid Cancer | ORage-sex (95%CI) | p | % With Hematologic Cancer | ORage-sex (95%CI) | p | |
| Demographics | ||||||
| Age at diagnosis, (5 years increment) | 51.6 ± 16 | 1.14 (1.09–1.89) | <0.001 | 52.2 ± 16 | 1.14 (1.01–1.28) | 0.032 |
| Obesity | 5.7% | 0.70 (0.45–1.11) | 0.130 | 0.4% | 0.37 (0.08–1.64) | 0.191 |
| Female sex | 6.8% | 1.45 (0.97–2.17) | 0.068 | 0.7% | 0.54 (0.21–1.42) | 0.213 |
| Arab ethnicity | 4.0% | 0.85 (0.50–1.44) | 0.540 | 0.2% | 0.29 (0.04–2.25) | 0.237 |
| Low socioeconomic status | 4.3% | 0.82 (0.51–1.32) | 0.413 | 0.6% | 0.73 (0.21–2.61) | 0.630 |
| Inflammation/Necrosis Markers | ||||||
| CPK (50 U/L increment) | 1562 ± 3693 | 1.00 (0.99–1.00) | 0.437 | 1547 ± 2868 | 1.00 (0.99–1.01) | 0.887 |
| CRP (5 mg/L increment) | 15.3 ± 38 | 1.01 (0.99–1.04) | 0.315 | 15.2 ± 20 | 1.01 (0.95–1.07) | 0.751 |
| Autoantibodies | ||||||
| Myositis Specific | ||||||
| Anti-Jo1 | 8.2% | 1.40 (0.96–2.06) | 0.083 | 1.7% | 4.31 (1.45–12.80) | 0.009 |
| Anti-Mi2 | 11.8% | 2.09 (1.22–3.58) | 0.007 | 2.6% | 3.83 (1.22–12.03) | 0.021 |
| Anti-Nuclear | ||||||
| Any | 8.1% | 2.37 (1.44–3.91) | <0.001 | 1.2% | 2.87 (0.77–10.76) | 0.117 |
| Anti-RNP/Sm | 9.0% | 1.70 (1.16–2.50) | 0.007 | 1.4% | 2.61 (0.95–7.18) | 0.063 |
| Anti-Ro/La | 9.0% | 1.79 (1.22–2.64) | 0.003 | 1.5% | 3.02 (1.06–8.57) | 0.038 |
| Anti-Scl-70 | 8.2% | 1.60 (1.29–1.99) | <0.001 | 1.5% | 2.70 (0.99–7.39) | 0.053 |
| Anti-DNA | 8.6% | 1.97 (1.31–2.99) | <0.001 | 1.5% | 5.31 (1.44–19.55) | 0.012 |
| Anti-Phospholipid | ||||||
| Any | 10.9% | 2.28 (1.55–3.35) | <0.001 | 1.2% | 1.70 (0.61–4.75) | 0.312 |
| Anti-B2GP | 10.8% | 2.03 (1.35–3.05) | <0.001 | 1.1% | 1.44 (0.46–4.53) | 0.536 |
| Anti-cardiolipin | 11.0% | 2.29 (1.55–3.37) | <0.001 | 1.3% | 1.90 (0.68–5.30) | 0.221 |
| LAC | 12.2% | 2.29 (1.46–3.59) | <0.001 | 1.3% | 1.71 (0.48–6.11) | 0.410 |
| Double positive | 10.0% | 2.02 (1.20–3.40) | 0.008 | 1.4% | 1.90 (0.51–6.98) | 0.335 |
| Triple positive | 12.4% | 2.70 (1.60–4.56) | <0.001 | 1.1% | 1.70 (0.36–7.98) | 0.504 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patt, Y.S.; Ben-Shabat, N.; David, P.; Patt, C.; Sharif, K.; Elizur, Y.; Cohen, I.; Cohen, A.D.; Amital, H.; Watad, A.; et al. Malignancy Risk and Predictors in Dermatomyositis and Polymyositis: A Large Population-Based Study. Medicina 2025, 61, 1932. https://doi.org/10.3390/medicina61111932
Patt YS, Ben-Shabat N, David P, Patt C, Sharif K, Elizur Y, Cohen I, Cohen AD, Amital H, Watad A, et al. Malignancy Risk and Predictors in Dermatomyositis and Polymyositis: A Large Population-Based Study. Medicina. 2025; 61(11):1932. https://doi.org/10.3390/medicina61111932
Chicago/Turabian StylePatt, Yonatan Shneor, Niv Ben-Shabat, Paula David, Chen Patt, Kassem Sharif, Yoav Elizur, Ido Cohen, Arnon D. Cohen, Howard Amital, Abdulla Watad, and et al. 2025. "Malignancy Risk and Predictors in Dermatomyositis and Polymyositis: A Large Population-Based Study" Medicina 61, no. 11: 1932. https://doi.org/10.3390/medicina61111932
APA StylePatt, Y. S., Ben-Shabat, N., David, P., Patt, C., Sharif, K., Elizur, Y., Cohen, I., Cohen, A. D., Amital, H., Watad, A., & Gendelman, O. (2025). Malignancy Risk and Predictors in Dermatomyositis and Polymyositis: A Large Population-Based Study. Medicina, 61(11), 1932. https://doi.org/10.3390/medicina61111932

