Immunopathogenesis and Therapeutic Implications in Basal Cell Carcinoma: Current Concepts and Future Directions
Abstract
1. Introduction
2. Epidemiology, Clinical Features, Histopathology, Risk Factors, and Diagnosis of BCC
3. Roles of Human Papillomavirus and Human Immunodeficiency Virus, as Well as Pre-Existing Immune Suppression
3.1. Human Papillomavirus
3.2. Human Immunodeficiency Virus
3.3. Pre-Existing Non-Infectious Disease-Associated Immune Suppression
4. Driver Mutations/Mechanisms in BCC
4.1. Hedgehog Signaling Pathway
4.2. Tp53 Gene Mutations
4.3. The Hippo/YAP Signaling Pathway
4.4. Other Mechanisms Driving the Pathogenesis of BCC
| Driver of BCC Pathogenesis | Protein Involved | Mechanism | References | 
|---|---|---|---|
| PTCH1 | PTCH1 receptor | No inhibition of SMO leading to hyperactivation of the HHSP. | [30,39] | 
| SMO | G-coupled SMO receptor | ‘Gain of function’ despite PTCH1 inhibitor function leading to hyperactivation of HHSP. | [30,39] | 
| SMO | G-coupled SMO receptor | Inhibits accumulation of the tumor suppressor protein (p53), leading to loss of cellular senescence and apoptosis. | [30,39] | 
| SUFU | SUFU homolog | Activation and nuclear translocation of glioma- associated (GLI) transcription factor 1 leading to cell growth and survival. | [30,34] | 
| Tp53 | p53 | Loss of tumor suppressor function leading to promotion of proliferation, angiogenesis, and metastasis. | [41,42] | 
| LATS1/2 and MST1/2 | Tumor suppressor kinases | Dephosphorylation results in translocation of YAP/TAZ to the nucleus, where it associates with TEAD, leading to tumor proliferation and survival. | [45] | 
| TERT | Telomerase | Maintains telomere length and genomic stability through increased expression of telomerase, allowing cells to continuously divide, avoiding senescence or apoptosis. | [52] | 
| DPH3 and OXNAD1 | DPH3 and OXNAD1 proteins | Prevent the binding of E26 transformation-specific transcription factors leading to proliferation and differentiation of cells. | [51,53] | 
| MYCN | Transcription factor | Downstream effector in the Sonic HHSP. | [54] | 
| MiRNAs | Non-coding RNA molecules | Interact with target genes and alter cellular pathways. | [58] | 
5. Immune Landscape of Basal Cell Carcinoma
The Tumor Mutational Burden
6. Mechanisms of Immune Evasion/Exclusion
6.1. Interference with the Presentation of Tumor Antigens/Neoantigens to Cytotoxic T-Cells
6.2. Inactivation of Natural Killer Cells by BCC-Derived Soluble CD200
6.3. Tregs as Mediators of Immune Evasion in BCC
6.4. Co-Inhibitory Immune Checkpoint Proteins as Therapeutic Targets in BCC
7. Role of Radiation Therapy and Topical Therapies in Basal Cell Carcinoma
- Size and site of the BCC
- Lymph node involvement
- Perineural invasion
- Margin status in the adjuvant setting.
8. Treatment of Patients with Locally Advanced Unresectable or Metastatic BCC
8.1. Hedgehog Signaling Pathway Inhibitors
8.2. Immune Checkpoint Inhibition with PD-1-Targeted Monoclonal Antibodies
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, M.C.; Lee, E.; Hibler, B.P.; Barker, C.A.; Mori, S.; Cordova, M.; Nehal, K.S.; Rossi, A.M. Basal cell: Pathophysiology; clinical and histological subtypes; and disease associations. J. Am. Acad. Dermatol. 2019, 80, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Peris, K.; Fargnoli, M.C.; Kaufmann, R.; Arenberger, P.; Bastholt, L.; Seguin, N.B.; Bataille, V.; Brochez, L.; Del Marmol, V.; Dummer, R.; et al. European consensus-based interdisciplinary guideline for diagnosis and treatment of basal cell carcinoma-update 2023. Eur. J. Cancer 2023, 192, 113254. [Google Scholar] [CrossRef] [PubMed]
- Basset-Seguin, N.; Herms, F. Update in the management of basal cell carcinoma. Acta Derm. Venereol. 2020, 100, adv00140. [Google Scholar] [CrossRef] [PubMed]
- Reiter, O.; Mimouni, I.; Dusza, S.; Halpern, A.C.; Leshem, Y.A.; Marghoob, A.A. Dermoscopic features of basal cell carcinoma and its subtypes: A systematic review. J. Am. Acad. Dermatol. 2021, 85, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Sadeghi, M. Human papilloma virus infection in basal cell carcinoma of the skin: A systematic review and meta-analysis study. Pol. J. Pathol. 2017, 68, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Venanzi Rullo, E.; Maimone, M.G.; Fiorica, F.; Ceccarelli, M.; Guarneri, C.; Berretta, M.; Nunnari, G. Non-melanoma skin cancer in people living with HIV: From epidemiology to clinical management. Front. Oncol. 2021, 11, 689789. [Google Scholar] [CrossRef] [PubMed]
- Mijušković, Ž.P. Etiology and pathogenesis of basal cell carcinoma. Serb. J. Dermatol. Venerol. 2013, 5, 113–124. [Google Scholar] [CrossRef]
- Mokhtari, M.; Mesbah, A.; Rajabi, P.; Rajabi, M.A.; Chehrei, A.; Mougouei, K. Determination of the relationship between Basal cell carcinoma and human papilloma virus, based on immunohistochemistry staining method. Indian J. Dermatol. 2009, 54, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Nahidi, Y.; Meibodi, N.T.; Meshkat, Z.; Esmaili, H.; Jahanfakhr, S. No evidence of human papilloma virus infection in basal cell carcinoma. Indian J. Dermatol. 2015, 60, 356–359. [Google Scholar] [CrossRef]
- Faraji, N.; Vahidnezhad, H.; Eslami, N.; Zeinali, T.; Shenagari, M.; Shanehbandi, D.; Barfejani, A.H. Role of non-coding RNAs in human-papillomavirus-associated cutaneous neoplasms. Arch Virol. 2025, 170, 170. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.J.; Leyden, W.; Warton, E.M.; Quesenberry, C.P., Jr.; Engels, E.A.; Asgari, M.M. HIV infection status, immunodeficiency, and the incidence of non-melanoma skin cancer. J. Natl. Cancer Inst. 2013, 105, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Burgi, A.; Brodine, S.; Wegner, S.; Milazzo, M.; Wallace, M.R.; Spooner, K.; Blazes, D.L.; Agan, B.K.; Armstrong, A.; Fraser, S.; et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. Cancer 2005, 104, 1505–1511. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H.; Ahlström, M.G.; Gerstoft, J.; Pedersen, G.; Mohey, R.; Pedersen, C.; Kronborg, G.; Larsen, C.S.; Kvinesdal, B.; Gniadecki, R.; et al. Risk of skin cancer in patients with HIV: A Danish nationwide cohort study. J. Am. Acad. Dermatol. 2018, 79, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Crum-Cianflone, N.; Hullsiek, K.H.; Satter, E.; Marconi, V.; Weintrob, A.; Ganesan, A.; Barthel, R.V.; Fraser, S.; Agan, B.K. Cutaneous malignancies among HIV-infected persons. Arch. Intern. Med. 2009, 169, 1130–1138. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.M.; Ray, G.T.; Quesenberry, C.P., Jr.; Katz, K.A.; Silverberg, M.J. Association of multiple primary skin cancers with human immunodeficiency virus infection, CD4 count, and viral load. JAMA Dermatol. 2017, 153, 892–896. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Townes, T.; Na’ara, S. Current advances and challenges in the management of cutaneous squamous cell carcinoma in immunosuppressed patients. Cancers 2024, 16, 3118. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, R.; Albazzali, A. An insight of basal cell carcinoma risk factors. Int. J. Inn. Res. Med. Sci. 2024, 9, 244–249. [Google Scholar] [CrossRef]
- Reinau, D.; Surber, C.; Jick, S.S.; Meier, C.R. Epidemiology of basal cell carcinoma in the United Kingdom: Incidence, lifestyle factors, and comorbidities. Br. J. Cancer 2014, 111, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Bordea, C.; Wojnarowska, F.; Millard, P.R.; Doll, H.; Welsh, K.; Morris, P.J. Skin cancers in renal-transplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004, 77, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Li, Z.Z.; Zhong, N.N.; Cao, L.M.; Liu, B.; Bu, L.L. Charting new frontiers: Co-inhibitory immune checkpoint proteins in therapeutics, biomarkers, and drug delivery systems in cancer care. Transl. Oncol. 2023, 38, 101794. [Google Scholar] [CrossRef]
- Kanitakis, J.; Alhaj-Ibrahim, L.; Euvrard, S.; Claudy, A. Basal cell carcinomas developing in solid organ transplant recipients: Clinicopathologic study of 176 cases. Arch. Dermatol. 2003, 139, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Mertz, K.D.; Proske, D.; Kettelhack, N.; Kegel, C.; Keusch, G.; Schwarz, A.; Ambühl, P.M.; Pfaltz, M.; Kempf, W. Basal cell carcinoma in a series of renal transplant recipients: Epidemiology and clinicopathologic features. Int. J. Dermatol. 2010, 49, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Marshall, N.A.; Duncan, L.; Culligan, D.J.; Barker, R.N.; Vickers, M.A. Local and systemic induction of CD4+CD25+ regulatory T-cell population by non-Hodgkin lymphoma. Blood 2008, 111, 5359–5370. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gustafson, M.P.; Bulur, P.A.; Gastineau, D.A.; Witzig, T.E.; Dietz, A.B. Immunosuppressive CD14+HLA-DR(low)/- monocytes in B-cell non-Hodgkin lymphoma. Blood 2011, 117, 872–881. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.D.; Shanafelt, T.D.; Khezri, F.; Sosa Seda, I.M.; Zubair, A.S.; Baum, C.L.; Arpey, C.J.; Cerhan, J.R.; Call, T.G.; Roenigk, R.K.; et al. Increased incidence and recurrence rates of nonmelanoma skin cancer in patients with non-Hodgkin lymphoma: A Rochester Epidemiology Project population-based study in Minnesota. J. Am. Acad. Dermatol. 2015, 72, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Mehrany, K.; Weenig, R.H.; Pittelkow, M.R.; Roenigk, R.K.; Otley, C.C. High recurrence rates of Basal cell carcinoma after mohs surgery in patients with chronic lymphocytic leukemia. Arch. Dermatol. 2004, 140, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Hjalgrim, H.; Frisch, M.; Storm, H.H.; Glimelius, B.; Pedersen, J.B.; Melbye, M. Non-melanoma skin cancer may be a marker of poor prognosis in patients with non-Hodgkin’s lymphoma. Int. J. Cancer 2000, 85, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Agnew, K.L.; Ruchlemer, R.; Catovsky, D.; Matutes, E.; Bunker, C.B. Cutaneous findings in chronic lymphocytic leukaemia. Br. J. Dermatol. 2004, 150, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Athar, M.; Walsh, S.B.; Kopelovich, L.; Elmets, C.A. Pathogenesis of nonmelanoma skin cancers in organ transplant recipients. Arch. Biochem. Biophys. 2011, 508, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, X.; Parmentier, L.; King, B.; Bezrukov, F.; Kaya, G.; Zoete, V.; Seplyarskiy, V.B.; Sharpe, H.J.; McKee, T.; Letourneau, A.; et al. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat. Genet. 2016, 48, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Nawrocka, P.M.; Galka-Marciniak, P.; Urbanek-Trzeciak, M.O.; M-Thirusenthilarasan, I.; Szostak, N.; Philips, A.; Susok, L.; Sand, M.; Kozlowski, P. Profile of basal cell carcinoma mutations and copy number alterations—Focus on gene-associated noncoding variants. Front. Oncol. 2021, 11, 752579. [Google Scholar] [CrossRef] [PubMed]
- Le, H.; Kleinerman, R.; Lerman, O.Z.; Brown, D.; Galiano, R.; Gurtner, G.C.; Warren, S.M.; Levine, J.P.; Saadeh, P.B. Hedgehog signaling is essential for normal wound healing. Wound Repair Regen. 2008, 16, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Michaud, E.J.; Yoder, B.K. The primary cilium in cell signaling and cancer. Cancer Res. 2006, 66, 6463–6467. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, T. Hedgehog pathway, cell cycle, and primary cilium. Cell Death Discov. 2025, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, A.; Chaudhary, S.C.; Rana, M.; Elmets, C.A.; Athar, M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol. Carcinog. 2017, 56, 2543–2557. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, D.R.; Reiter, J.F. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J. Clin. Investig. 2019, 129, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Wu, Z.; Wang, J.; Luo, G.; Lin, H.; Fan, Y.; Zhou, C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct. Target. Ther. 2023, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.J.; Jia, M.; Luo, S.Y.; Li, F.Z.; Fang, S. Expression of hedgehog signaling pathway proteins in basal cell carcinoma: Clinicopathologic Study. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2353–2361. [Google Scholar] [CrossRef] [PubMed]
- Trieu, K.G.; Tsai, S.Y.; Eberl, M.; Ju, V.; Ford, N.C.; Doane, O.J.; Peterson, J.K.; Veniaminova, N.A.; Grachtchouk, M.; Harms, P.W.; et al. Basal cell carcinomas acquire secondary mutations to overcome dormancy and progress from microscopic to macroscopic disease. Cell Rep. 2022, 39, 110779. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guo, M.; Wei, H.; Chen, Y. Targeting p53 pathways: Mechanisms, structures, and advances in therapy. Signal Transduct. Target. Ther. 2023, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.A.; Vousden, K.H. p53 mutations in cancer. Nat. Cell Biol. 2013, 15, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Porumb-Andrese, E.; Scutariu, M.M.; Luchian, I.; Schreiner, T.G.; Mârţu, I.; Porumb, V.; Popa, C.G.; Sandu, D.; Ursu, R.G. Molecular profile of skin cancer. Appl. Sci. 2021, 11, 9142. [Google Scholar] [CrossRef]
- Dika, E.; Scarfì, F.; Ferracin, M.; Broseghini, E.; Marcelli, E.; Bortolani, B.; Campione, E.; Riefolo, M.; Ricci, C.; Lambertini, M. Basal cell carcinoma: A comprehensive review. Int. J. Mol. Sci. 2020, 21, 5572. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Hu, Y.; Lan, T.; Guan, K.L.; Luo, T.; Luo, M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct. Target. Ther. 2022, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Ajongbolo, A.O.; Langhans, S.A. YAP/TAZ-associated cell signaling-at the crossroads of cancer and neurodevelopmental disorders. Front. Cell Dev. Biol. 2025, 13, 1522705. [Google Scholar] [CrossRef] [PubMed]
- Debaugnies, M.; Sánchez-Danés, A.; Rorive, S.; Raphaël, M.; Liagre, M.; Parent, M.A.; Brisebarre, A.; Salmon, I.; Blanpain, C. YAP and TAZ are essential for basal and squamous cell carcinoma initiation. EMBO Rep. 2018, 19, e45809. [Google Scholar] [CrossRef] [PubMed]
- Howard, A.; Bojko, J.; Flynn, B.; Bowen, S.; Jungwirth, U.; Walko, G. Targeting the Hippo/YAP/TAZ signalling pathway: Novel opportunities for therapeutic interventions into skin cancers. Exp. Dermatol. 2022, 31, 1477–1499. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Qureshi, A.A.; Prescott, J.; Guo, Q.; Ye, L.; Hunter, D.J.; De Vivo, I. A prospective study of telomere length and the risk of skin cancer. J. Investig. Dermatol. 2009, 129, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Andreikos, D.A.; Spandidos, D.A. Telomere length and skin cancer risk: A systematic review and meta-analysis of melanoma, basal cell carcinoma and squamous cell carcinoma. Oncol. Lett. 2025, 30, 395. [Google Scholar] [CrossRef] [PubMed]
- Griewank, K.G.; Murali, R.; Schilling, B.; Schimming, T.; Möller, I.; Moll, I.; Schwamborn, M.; Sucker, A.; Zimmer, L.; Schadendorf, D.; et al. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma. PLoS ONE 2013, 8, e80354. [Google Scholar] [CrossRef] [PubMed]
- Denisova, E.; Heidenreich, B.; Nagore, E.; Rachakonda, P.S.; Hosen, I.; Akrap, I.; Traves, V.; García-Casado, Z.; López-Guerrero, J.A.; Requena, C.; et al. Frequent DPH3 promoter mutations in skin cancers. Oncotarget 2015, 6, 35922–35930. [Google Scholar] [CrossRef] [PubMed]
- Stevers, N.O.; Kim, S.; Yuan, J.B.; Barger, C.J.; Hong, C.; Lenzo, O.; McKinney, A.M.; Wu, S.H.; Lee, Y.J.; Kwok, D.W.; et al. The immortality mechanism of TERT promoter mutant cancers is self-reinforcing and reversible. Mol. Cell 2025, 85, 2337–2354.e9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, Z.; Sun, M.; Huang, W.; Xia, L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188872. [Google Scholar] [CrossRef] [PubMed]
- Freier, K.; Flechtenmacher, C.; Devens, F.; Hartschuh, W.; Hofele, C.; Lichter, P.; Joos, S. Recurrent NMYC copy number gain and high protein expression in basal cell carcinoma. Oncol. Rep. 2006, 15, 1141–1145. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pérez, M.V.; Henley, A.B.; Arsenian-Henriksson, M. The MYCN protein in health and disease. Genes 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, Y.Y.; Kim, V.N. The biogenesis and regulation of animal microRNAs. Nat. Rev. Mol. Cell Biol. 2025, 26, 276–296. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.P.; Zhan, S.; Zhu, Q.A.; Chen, Z.J.; Feng, X.; Chen, J.Y.; Zhang, Q.L.; Zhao, J.; Meng, L. Genome-wide expression difference of microRNAs in basal cell carcinoma. J. Immunol. Res. 2021, 2021, 7223500. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Wang, H.; Yao, X.; Zhang, D.; Xie, Y.; Cui, R.; Zhang, X. Circulating microRNAs in cancer: Potential and challenge. Front. Genet. 2019, 10, 626. [Google Scholar] [CrossRef] [PubMed]
- Durante, G.; Broseghini, E.; Comito, F.; Naddeo, M.; Milani, M.; Salamon, I.; Campione, E.; Dika, E.; Ferracin, M. Circulating microRNA biomarkers in melanoma and non-melanoma skin cancer. Expert Rev. Mol. Diagn. 2022, 22, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Nataren, N.; Yamada, M.; Prow, T. Molecular skin cancer diagnosis: Promise and limitations. J. Mol. Diagn. 2023, 25, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 2022, 38, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Abedimanesh, S.; Safaralizadeh, R.; Jahanafrooz, Z.; Najafi, S.; Amini, M.; Nazarloo, S.S.; Bahojb Mahdavi, S.Z.; Baradaran, B.; Jebelli, A.; Mokhtarzadeh, A.A. Interaction of noncoding RNAs with hippo signaling pathway in cancer cells and cancer stem cells. Noncoding RNA Res. 2024, 9, 1292–1307. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Wang, J.; Mancianti, M.L.; Epstein, E.H., Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/−) mice. Cancer Cell 2011, 19, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Colmont, C.S.; Benketah, A.; Reed, S.H.; Hawk, N.V.; Telford, W.G.; Ohyama, M.; Udey, M.C.; Yee, C.L.; Vogel, J.C.; Patel, G.K. CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proc. Natl. Acad. Sci. USA 2013, 110, 1434–1439. [Google Scholar] [CrossRef] [PubMed]
- Oka, T.; Smith, S.S.; Oliver-Garcia, V.S.; Lee, T.; Son, H.G.; Mortaja, M.; Azin, M.; Garza-Mayers, A.C.; Huang, J.T.; Nazarian, R.M.; et al. Epigenomic regulation of stemness contributes to the low immunogenicity of the most mutated human cancer. Cell Rep. 2025, 44, 115561. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kato, S.; Cohen, P.R.; Boichard, A.; Frampton, G.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Genomic landscape of advanced basal cell carcinoma: Implications for precision treatment with targeted and immune therapies. Oncoimmunology 2017, 7, e1404217. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.R.; Parl, F.F.; Dupont, W.D. Mutation burden independently predicts survival in the pan-cancer atlas. JCO Precis. Oncol. 2023, 7, e2200571. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, X.; Chen, S.; Wang, J.; Fan, X.; Fu, S.; Yang, L. The predictive efficacy of tumor mutation burden in immunotherapy across multiple cancer types: A meta-analysis and bioinformatics analysis. Transl. Oncol. 2022, 20, 101375. [Google Scholar] [CrossRef] [PubMed]
- Omland, S.H.; Nielsen, P.S.; Gjerdrum, L.M.; Gniadecki, R. Immunosuppressive environment in basal cell carcinoma: The role of regulatory T cells. Acta Derm. Venereol. 2016, 96, 917–921. [Google Scholar] [CrossRef] [PubMed]
- Whitley, M.J.; Suwanpradid, J.; Lai, C.; Jiang, S.W.; Cook, J.L.; Zelac, D.E.; Rudolph, R.; Corcoran, D.L.; Degan, S.; Spasojevic, I.; et al. ENTPD1 (CD39) expression inhibits UVR-induced DNA damage repair through purinergic signaling and is associated with metastasis in human cutaneous squamous cell carcinoma. J. Investig. Dermatol. 2021, 141, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.A.; Kagen, C.N.; Carpenter, R.J.; Goltz, R.W. HLA and beta 2-microglobulin expression in basal and squamous cell carcinomas of the skin. Int. J. Dermatol. 1985, 24, 660–663. [Google Scholar] [CrossRef] [PubMed]
- Walter, A.; Barysch, M.J.; Behnke, S.; Dziunycz, P.; Schmid, B.; Ritter, E.; Gnjatic, S.; Kristiansen, G.; Moch, H.; Knuth, A.; et al. Cancer-testis antigens and immunosurveillance in human cutaneous squamous cell and basal cell carcinomas. Clin. Cancer Res. 2010, 16, 3562–3570. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, B.T.; Farrar, W.L. Cancer stem cells, CD200 and immunoevasion. Trends Immunol. 2008, 29, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Morgan, H.J.; Rees, E.; Lanfredini, S.; Powell, K.A.; Gore, J.; Gibbs, A.; Lovatt, C.; Davies, G.E.; Olivero, C.; Shorning, B.Y.; et al. CD200 ectodomain shedding into the tumor microenvironment leads to NK cell dysfunction and apoptosis. J. Clin. Investig. 2022, 132, e150750. [Google Scholar] [CrossRef] [PubMed]
- Kaporis, H.G.; Guttman-Yassky, E.; Lowes, M.A.; Haider, A.S.; Fuentes-Duculan, J.; Darabi, K.; Whynot-Ertelt, J.; Khatcherian, A.; Cardinale, I.; Novitskaya, I.; et al. Human basal cell carcinoma is associated with Foxp3+ T cells in a Th2 dominant microenvironment. J. Investig. Dermatol. 2007, 127, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Baratelli, F.; Lee, J.M.; Hazra, S.; Lin, Y.; Walser, T.C.; Schaue, D.; Pak, P.S.; Elashoff, D.; Reckamp, K.; Zhang, L.; et al. PGE2 contributes to TGF-beta induced T regulatory cell function in human non-small cell lung cancer. Am. J. Transl. Res. 2010, 2, 356–367. [Google Scholar] [PubMed]
- Guo, J.; Xue, Z.; Wang, L. Transcriptional regulation of the immune checkpoints PD-1 and CTLA-4. Cell. Mol. Immunol. 2022, 19, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Abbineni, C.; Talluri, K.C.; Dhudashiya, A.A.; Aravind, A.B.; Kumar, N.R.; Ramya, R.; Balasubramanyam, D.; Obanna, P.; Madhaiyan, R.; et al. A novel CCR4 antagonist induces potent anti-tumor response through inhibition of Treg migration into the tumor microenvironment [abstract]. Cancer Res. 2024, 84 (Suppl. S6), 6537. [Google Scholar] [CrossRef]
- NIH National Library of Medicine–Clinical Trial NCT04669808. Open Label, Dose Escalation Study for the Safety and Efficacy of STP705 in Adult Patients With Basal Cell Carcinoma. Last Update: 18 March 2024. Available online: https://clinicaltrials.gov/study/NCT04669808 (accessed on 18 June 2025).
- Kgokolo, M.C.M.; Malinga, N.Z.; Steel, H.C.; Meyer, P.W.A.; Smit, T.; Anderson, R.; Rapoport, B.L. Transforming growth factor-β1 and soluble co-inhibitory immune checkpoints as putative drivers of immune suppression in patients with basal cell carcinoma. Transl. Oncol. 2024, 42, 101867. [Google Scholar] [CrossRef] [PubMed]
- Macha, M.A.; Batra, S.K.; Ganti, A.K. Profile of vismodegib and its potential in the treatment of advanced basal cell carcinoma. Cancer Manag. Res. 2013, 5, 197–203. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology:Basal Cell Skin Cancer, Version 2.2025. Available online: https://www.nccn.org.guidelines.duidelines-detail (accessed on 25 July 2025).
- Likhacheva, A.; Awan, M.; Barker, C.A.; Bhatnagar, A.; Bradfield, L.; Brady, M.S.; Buzurovic, I.; Geiger, J.L.; Parvathaneni, U.; Zaky, S.; et al. Definitive and postoperative radiation therapy for basal and squamous cell cancers of the skin: Executive summary of an American Society for Radiation Oncology Clinical Practice Guideline. Pract. Radiat. Oncol. 2020, 10, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Natelauri, E.; Jghamadze, A. Radiation therapy for basal cell skin cancer. In Skin Cancer—Past, Present and Future; Cazzato, G., Ingravallo, G., Eds.; IntechOpen: London, OH, USA, 2025; Volume 12, p. 75. [Google Scholar] [CrossRef]
- Szeimies, R.M.; Morton, C.A.; Sidoroff, A.; Braathen, L.R. Photodynamic therapy for non-melanoma skin cancer. Acta Derm. Venereol. 2005, 85, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.H.E.; Mosterd, K.; Arits, A.H.M.M.; Roozeboom, M.H.; Sommer, A.; Essers, B.A.B.; van Pelt, H.P.A.; Quaedvlieg, P.J.F.; Steijlen, P.M.; Nelemans, P.J.; et al. Five-year results of a randomized controlled trial comparing effectiveness of photodynamic therapy, topical imiquimod, and topical 5-fluorouracil in patients with superficial basal cell carcinoma. J. Investig. Dermatol. 2018, 138, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.S.; Bar, A. Basal cell carcinoma. Dermatol. Clin. 2023, 41, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Cebolla-Verdugo, M.; Llamas-Segura, C.; Velasco-Amador, J.P.; Almazán-Fernández, F.M.; Ruiz-Villaverde, R. Understanding and managing locally advanced basal cell carcinoma: Insights into pathogenesis, therapeutic strategies, and the role of hedgehog pathway inhibitors. Ital. J. Dermatol. Venerol. 2024, 159, 530–542. [Google Scholar] [CrossRef] [PubMed]
- Doheny, D.; Manore, S.G.; Wong, G.L.; Lo, H.W. Hedgehog signaling and truncated GLI1 in cancer. Cells 2020, 9, 2114. [Google Scholar] [CrossRef] [PubMed]
- Paradisi, A.; Mannino, M.; Brunetti, F.; Bocchino, E.; Di Stefani, A.; Peris, K. Advanced basal cell carcinoma: A narrative review on current systemic treatments and the neoadjuvant approach. J. Pers. Med. 2025, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, H.; Lu, Q. Immunotherapy for locally advanced and metastatic basal cell carcinoma: A narrative review. Transl. Cancer Res. 2024, 13, 6565–6575. [Google Scholar] [CrossRef] [PubMed]
- Imyanitov, E.N.; Preobrazhenskaya, E.V.; Mitiushkina, N.V. Overview on biomarkers for immune oncology drugs. Explor. Target. Antitumor Ther. 2025, 6, 1002298. [Google Scholar] [CrossRef] [PubMed]
- Bapna, M.; Ruiz, E. Cemiplimab in the treatment of metastatic basal cell carcinoma. Future Oncol. 2025, 21, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Stratigos, A.J.; Sekulic, A.; Peris, K.; Bechter, O.; Prey, S.; Kaatz, M.; Lewis, K.D.; Basset-Seguin, N.; Chang, A.L.S.; Dalle, S.; et al. Cemiplimab in locally advanced basal cell carcinoma after hedgehog inhibitor therapy: An open-label, multi-centre, single-arm, phase 2 trial. Lancet Oncol. 2021, 22, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Ellison, D.M.; Weight, R.; Homsi, J.; Rabinowits, G.; Ruiz, E.S.; Strasswimmer, J.; Simmons, J.; Panella, T.; Quek, R.G.; et al. CASE (CemiplimAb-rwlc Survivorship and Epidemiology): A study in advanced basal cell carcinoma. Future Oncol. 2025, 21, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Hughes, B.G.M.; Guminski, A.; Bowyer, S.; Migden, M.R.; Schmults, C.D.; Khushalani, N.I.; Chang, A.L.S.; Grob, J.J.; Lewis, K.D.; Ansstas, G.; et al. A phase 2 open-label study of cemiplimab in patients with advanced cutaneous squamous cell carcinoma (EMPOWER-CSCC-1): Final long-term analysis of groups 1, 2, and 3, and primary analysis of fixed-dose treatment group 6. J. Am. Acad Dermatol. 2025, 92, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Silk, A.W.; Barker, C.A.; Bhatia, S.; Bollin, K.B.; Chandra, S.; Eroglu, Z.; Gastman, B.R.; Kendra, K.L.; Kluger, H.; Lipson, E.J.; et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of nonmelanoma skin cancer. J. Immunother. Cancer 2022, 10, e004434. [Google Scholar] [CrossRef] [PubMed]
- Rapoport, B.L.; Anderson, R.; Cooksley, T.; Johnson, D.B. MASCC 2020 recommendations for the management of immune-related adverse events of patients undergoing treatment with immune checkpoint inhibitors. Support. Care Cancer 2020, 28, 6107–6110. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Armbruster, H.; Pardo, G.; Archambeau, B.; Kim, N.H.; Jeter, J.; Wu, R.; Kendra, K.; Contreras, C.M.; Spaccarelli, N.; et al. Hedgehog pathway inhibitors for locally advanced and metastatic basal cell carcinoma: A real-world single-center retrospective review. PLoS ONE 2024, 19, e0297531. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Lear, J.T.; Guminski, A.; Leow, L.J.; Squittieri, N.; Migden, M. Efficacy of sonidegib in histologic subtypes of advanced basal cell carcinoma: Results from the final analysis of the randomized phase 2 Basal Cell Carcinoma Outcomes with LDE225 Treatment (BOLT) trial at 42 months. J. Am. Acad. Dermatol. 2021, 84, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Kim, J.; Spaunhurst, K.; Montoya, J.; Khodosh, R.; Chandra, K.; Fu, T.; Gilliam, A.; Molgo, M.; Beachy, P.A.; et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol. 2014, 32, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, L.; Vasilovici, A.F.; Halmágyi, S.R.; Trufin, I.I.; Apostu, A.P.; Prisecaru, M.; Șenilă, S.C. Immunotherapy in basal cell carcinoma. J. Clin. Med. 2024, 13, 5730. [Google Scholar] [CrossRef] [PubMed]
- Véron, M.; Chevret, S.; Grob, J.J.; Beylot-Barry, M.; Saiag, P.; Fléchon, A.; You, B.; Maubec, E.; Jouary, T.; Toulemonde, E.; et al. Safety and efficacy of nivolumab, an anti-PD1 immunotherapy, in patients with advanced basal cell carcinoma, after failure or intolerance to sonic Hedgehog inhibitors: UNICANCER AcSé NIVOLUMAB trial. Eur. J. Cancer 2022, 177, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.L.S.; Tran, D.C.; Cannon, J.G.D.; Li, S.; Jeng, M.; Patel, R.; Van der Bokke, L.; Pague, A.; Brotherton, R.; Rieger, K.E.; et al. Pembrolizumab for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. J. Am. Acad Dermatol. 2019, 80, 564–566. [Google Scholar] [CrossRef] [PubMed]
- Senhwa Biosciences Announces Positive Clinical Data from Phase 1/Expansion Trial of Silmitasertib (CX-4945) in the Treatment of Basal Cell Carcinoma. News release. Senhwa Biosciences. 2025. Available online: https://www.senhwabio.com/en/news/20250402 (accessed on 19 August 2025).
- Kunstfeld, R.; Nguyen, V.A. New therapeutic developments for basal cell carcinoma. J. Dtsch. Dermatol. Ges. 2023, 21, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Fu, Y.; Cui, Z.; Abidin, Z.; Yuan, J.; Zhang, X.; Li, R.; Zhao, C. Relatlimab: A novel drug targeting immune checkpoint LAG-3 in melanoma therapy. Front. Pharmacol. 2024, 14, 1349081. [Google Scholar] [CrossRef]
- Stein, J.E.; Brothers, P.; Applebaum, K.; Gaskin, A.; Wang, H.; Taube, J.M.; Lipson, E.J. A phase 2 study of nivolumab (NIVO) alone or plus ipilimumab (IPI) for patients with locally advanced unresectable (laBCC) or metastatic basal cell carcinoma (mBCC). Meeting Abstract: 2019 ASCO Annual Meeting I, 26 May 2019.. J. Clin. Oncol. 2019, 37, 9595. [Google Scholar] [CrossRef]

| Mechanisms | Mediators/Targets | Potential Therapies | References | 
|---|---|---|---|
| Failure of presentation of tumor antigens/neoantigens. | Foxc1-mediated histone deacetylation of MHC-1 gene promoter regions. | Inhibition of histone deacetylase by agents such as entinostat. | [66,73,74] | 
| Inactivation of NK cell-mediated anti-tumor activity. | MMP-mediated release of sCD200 from tumor cells, which via interaction with CD200Rs promotes decreased release of IFN-γ and induction of apoptosis. | Seemingly none yet available, but mAb targeting of sCD200 is a possibility. | [75,76] | 
| Accumulation of Tregs in the peritumoral region. | Infiltration of Tregs mediated by the tumor-derived chemokine, CCL22, as well as by exposure of conventional CD4+ T-cells to tumor-derived TGF-β1 and PGE2. | Targeting of TGF-β1 and cyclooxygenase 2 with STP705, as well as possible future targeting of the CCL22 receptor, CCR4, on Tregs with small molecule receptor antagonists. | [77,78,80,81] | 
| Tumor-driven increased expression of co-inhibitory immune checkpoint proteins and release of their bioactive, soluble variants. | CTLA-4, LAG-3, PD-1, PD-L1, TIM-3. | mAb targeting of both the cell-associated and soluble variants of these co-inhibitory immune checkpoint proteins. | [82] | 
| Therapeutic Agent | Target | Mechanism of Action | References | 
| Vismodegib | HHSP | Competitive inhibitor of SMO. | [101,102] | 
| Sonidegib | HHSP | Selective antagonist of the SMO receptor. | [102,103] | 
| Itraconazole/ Posoconazole | HHSP | Prevents translocation of SMO to the cilium. | [104] | 
| Cemiplimab | PD-1 receptors | Inhibits the binding of PD-1 to PD-L1, thereby enhancing anti-tumor T-cell responses. | [96,105] | 
| Nivolumab | PD-1 receptors | Inhibits the binding of PD-1 to PD-L1, thereby enhancing anti-tumor T-cell responses. | [105,106] | 
| Pembrolizumab | PD-1 receptors | Inhibits the binding of PD-1 to PD-L1, thereby enhancing anti-tumor T-cell responses. | [105,107] | 
| Agents being assessed in clinical trials | |||
| Silmitasertib | HHSP | Inhibits casein kinase at the terminal end of HP signaling. | [108] | 
| Relatlimab | LAG-3 inhibitor | Inhibits the binding of LAG-3 to its ligands, thereby enhancing anti-tumor T-cell responses. | [109,110] | 
| Ipilimumab | CTLA-4 inhibitor | Inhibits the binding of CTLA-4 to CD80/CD86, thereby enhancing anti-tumor T-cell responses. | [109,111] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steel, H.C.; Rossouw, T.M.; Anderson, R.; Anderson, L.; van Tonder, D.; Smit, T.; Rapoport, B.L. Immunopathogenesis and Therapeutic Implications in Basal Cell Carcinoma: Current Concepts and Future Directions. Medicina 2025, 61, 1914. https://doi.org/10.3390/medicina61111914
Steel HC, Rossouw TM, Anderson R, Anderson L, van Tonder D, Smit T, Rapoport BL. Immunopathogenesis and Therapeutic Implications in Basal Cell Carcinoma: Current Concepts and Future Directions. Medicina. 2025; 61(11):1914. https://doi.org/10.3390/medicina61111914
Chicago/Turabian StyleSteel, Helen C., Theresa M. Rossouw, Ronald Anderson, Lindsay Anderson, Daniel van Tonder, Teresa Smit, and Bernardo Leon Rapoport. 2025. "Immunopathogenesis and Therapeutic Implications in Basal Cell Carcinoma: Current Concepts and Future Directions" Medicina 61, no. 11: 1914. https://doi.org/10.3390/medicina61111914
APA StyleSteel, H. C., Rossouw, T. M., Anderson, R., Anderson, L., van Tonder, D., Smit, T., & Rapoport, B. L. (2025). Immunopathogenesis and Therapeutic Implications in Basal Cell Carcinoma: Current Concepts and Future Directions. Medicina, 61(11), 1914. https://doi.org/10.3390/medicina61111914
 
        


 
       