Why and When ICD Leads Are Extracted: Does the ICD Lead Model Influence Lead Survival?
Abstract
1. Introduction
2. Background
3. Goal of the Study
4. Methods
4.1. Study Population
4.2. Definitions
4.3. Reasons for ICD Lead Extraction
- Mechanical lead damage (electric failure)—A sudden increase in impedance >1500 Ohm or high-voltage impedance > 100 Ohm; >300 nonphysiological short interventricular-intervals (“crackles”) or SVVI with inappropriate discharge [10].
- Non-damaged lead dysfunction—Lead failure without mechanical damage: an exit/entry block (a linear increase in impedance > 1500 Ohm, high-voltage impedance > 100 Ohm, a linear decrease in sensing, or increase in the pacing threshold to an inacceptable level level), tip dislodgement, or extracardiac pacing.
- Lead heart wall perforation (dry or wet)—acute/subacute-symptomatic perforation (epicardial fluid or lead dysfunction); late—usually dry perforation—lead dysfunction or TLE due to other reasons and echocardiographic symptoms of perforation despite acceptable pacing sensing parameters.
- Prophylactic ICD lead replacement—TLE for other reasons (another lead extracted) and an ICD lead over 7–8 years of age in a (usually young) patient with a long life prognosis or recalled leads. TLE due to another reason (another lead extracted) and recalled lead.
- Other indication—An abandoned ICD lead, threatening/potentially threatening lead (loops or LDTVD), MRI indication, cancer, pocket pain, cessation of indication for ICD/CRT, recapture of venous access (symptomatic occlusion, SVC syndrome, or ICD lead replacement/upgrading), or technical reasons (conflict in type of connector, strong connection ICD lead with another one with scar causing impossible separation, or accidental functioning ICD lead damage in the generator region during another CIED procedure).
- Local pocket infection, systemic infection (with or without pocket infection)—Such removals were considered according to the EHRA international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections [25].
4.4. Dataset and Statistical Methods
Creation of the Subgroups for the Analysis of Events and Patients
4.5. Statistics
4.6. Approval of the Bioethics Committee
5. Results
6. Discussion
7. Conclusions
- The median ICD lead survival is three years shorter than that of PM leads.
- ICD leads are most commonly removed due to infection, mechanical lead damage, or undamaged lead dysfunction (including perforation).
- Old models of thick leads (Sprint, Ventritex, and Kainox) lasted almost twice as long as thin leads from the transition period (Riata and Sprint Fidelis) and modern leads.
- Despite advances in the design of ICD leads, the lifetime of leads has not changed significantly, which indicates the role of factors other than the design of the lead.
Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CIED | cardiac implantable electronic device |
| CRT-D | cardiac resynchronization therapy implantable defibrillator |
| EHRA | European Heart Rhythm Association |
| HRS | Heart Rhythm Society |
| ICD | implantable cardioverter-defibrillator |
| TLE | transvenous lead extraction |
References
- Neuzner, J.; Hohnloser, S.H.; Kutyifa, V.; Glikson, M.; Dietze, T.; Mabo, P.; Vinolas, X.; Kautzner, J.; O’HAra, G.; Lawo, T.; et al. Effectiveness of single- vs dual-coil implantable defibrillator leads: An observational analysis from the SIMPLE study. J. Cardiovasc. Electrophysiol. 2019, 30, 1078–1085. [Google Scholar] [CrossRef]
- Ząbek, A.; Boczar, K.; Ulman, M.; Holcman, K.; Kostkiewicz, M.; Pfitzner, R.; Dębski, M.; Musiał, R.; Lelakowski, J.; Małecka, B. Mechanical extraction of implantable cardioverter-defibrillator leads with a dwell time of more than 10 years: Insights from a single high-volume centre. Europace 2023, 25, 1100–1109. [Google Scholar] [CrossRef]
- Zweiker, D.; El Sawaf, B.; D’Angelo, G.; Radinovic, A.; Marzi, A.; Limite, L.R.; Frontera, A.; Paglino, G.; Spartalis, M.; Zachariah, D.; et al. Step by Step through the Years-High vs. Low Energy Lead Extraction Using Ad-vanced Extraction Techniques. J. Clin. Med. 2022, 11, 4884. [Google Scholar] [CrossRef] [PubMed]
- Defaye, P.; Boveda, S.; Klug, D.; Beganton, F.; Piot, O.; Narayanan, K.; Périer, M.C.; Gras, D.; Fauchier, L.; Bordachar, P.; et al. Long-term follow-up of the Défibrillateur Automatique Implantable-Prévention Primaire registry. Europace 2017, 19, 1478–1484. [Google Scholar] [CrossRef]
- Kusumoto, F.M.; Schoenfeld, M.H.; Wilkoff, B.L.; Berul, C.I.; Birgersdotter-Green, U.M.; Carrillo, R.; Cha, Y.M.; Clancy, J.; Deharo, J.C.; Ellenbogen, K.A.; et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 2017, 14, e503–e551. [Google Scholar] [CrossRef]
- Bongiorni, M.G.; Burri, H.; Deharo, J.C.; Starck, C.; Kennergren, C.; Saghy, L.; Rao, A.; Tascini, C.; Lever, N.; Kutarski, A.; et al. 2018 EHRA expert consensus statement on lead extraction: Recommendations on definitions, endpoints, research trial design, and data collection requirements for clinical scientific studies and registries: Endorsed by APHRS/HRS/LAHRS. Europace 2018, 20, 1217. [Google Scholar] [CrossRef]
- Kreuz, J.; Balta, O.; Zimmer, S.; Fimmers, R.; Lickfett, L.; Mellert, F.; Nickenig, G.; Schwab, J.O. Detailed electrical analysis of lead failures in a small-scaled right ventricular defibrillator lead: Reality of Sprint Fidelis medical device recalls. Hellenic J. Cardiol. 2010, 51, 219–225. [Google Scholar]
- Bennett, M.T.; Ha, A.C.; Exner, D.V.; Tung, S.K.; Parkash, R.; Connors, S.; Coutu, B.; Crystal, E.; Champagne, J.; Philippon, F.; et al. The Canadian experience with Durata and Riata ST Optim defibrillator leads: A report from the Canadian Heart Rhythm Society Device Committee. Heart Rhythm 2013, 10, 1478–1481. [Google Scholar] [CrossRef]
- Fazal, I.A.; Shepherd, E.J.; Tynan, M.; Plummer, C.J.; McComb, J.M. Comparison of Sprint Fidelis and Riata defibrillator lead failure rates. Int. J. Cardiol. 2013, 168, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.M.; Sticherling, C.; Kraus, R.; Ammann, P.; Kühne, M.; Osswald, S.; Schaer, B. Very Late Follow-Up of a Passive Defibrillator Lead Under Recall: Do Failure Rates Increase during Long-Term Observation. Pacing Clin. Electrophysiol. 2015, 38, 306–310. [Google Scholar] [CrossRef]
- Aizawa, Y.; Negishi, M.; Kashimura, S.; Nakajima, K.; Kunitomi, A.; Katsumata, Y.; Nishiyama, T.; Kimura, T.; Nishiyama, N.; Fukumoto, K.; et al. Predictive factors of lead failure in patients implanted with cardiac devices. Int. J. Cardiol. 2015, 199, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Good, E.D.; Cakulev, I.; Orlov, M.V.; Hirsh, D.; Simeles, J.; Mohr, K.; Moll, P.; Bloom, H. Long-Term Evaluation of Biotronik Linox and Linoxsmart Implantable Cardioverter Defibrillator Leads. J. Cardiovasc. Electrophysiol. 2016, 27, 735–742. [Google Scholar] [CrossRef]
- Kristensen, A.E.; Larsen, J.M.; Nielsen, J.C.; Johansen, J.B.; Haarbo, J.; Petersen, H.H.; Riahi, S. Validation of defibrillator lead performance registry data: Insight from the Danish Pacemaker and ICD Register. Europace 2017, 19, 1187–1192. [Google Scholar] [CrossRef]
- O’COnnor, M.; Hooks, D.; Webber, M.; Shi, B.; Morrison, S.; Harding, S.; Larsen, P. Long-term single-center comparison of ICD lead survival: Evidence for premature Linox lead failure. J. Cardiovasc. Electrophysiol. 2018, 29, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Rordorf, R.; Taravelli, E.; Forleo, G.B.; Giannola, G.; Calzolari, V.; Tadeo, G.; Rossi, S.; Vicentini, A.; Curnis, A.; Serra, P.; et al. Performance of the Durata implantable cardioverter defibrillator lead: Results of an independent multicenter study. J. Cardiovasc. Med. 2019, 20, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, T.; Nonnenmacher, F.; Strauss, M.; Kouraki, K.; Werner, N.; Fendt, A.; Zahn, R. Long-term performance and lead failure analysis of the Durata defibrillation lead compared to its previous model, the recalled Riata defibrillation lead. J. Cardiovasc. Electrophysiol. 2019, 30, 2012–2019. [Google Scholar] [CrossRef]
- Marai, I.; Milman, A.; Nof, E.; Gurevitz, O.; Barlev, D.; Lipchenca, I.; Bachar, S.; Glikson, M.; Beinart, R. Performance of the Linox im-plantable cardioverter defibrillator leads: A single-center experience. Pacing Clin. Electrophysiol. 2019, 42, 1524–1528. [Google Scholar] [CrossRef]
- Kondo, Y.; Nakano, M.; Kajiyama, T.; Nakano, M.; Hayashi, T.; Ito, R.; Takahira, H.; Kobayashi, Y. Comparison of the performance of implantable cardioverter-defibrillator leads among manufacturers. J. Interv. Card. Electrophysiol. 2020, 58, 133–139. [Google Scholar] [CrossRef]
- Cairns, J.A.; Healey, J.S.; Epstein, A.E.; Themeles, E.; Balasubramanian, K.; Connolly, S.J. Prospective long-term follow-up of silicone-polyurethane–insulated implantable cardioverter-defibrillator leads. Heart Rhythm O2 2021, 3, 57–64. [Google Scholar] [CrossRef]
- Klampfleitner, S.; Mundel, M.; Schinke, K.; Neuberger, H.R. Performance of an implantable cardioverter-defibrillator lead fam-ily. J. Cardiovasc. Electrophysiol. 2023, 34, 700–709. [Google Scholar] [CrossRef]
- Brunner, M.P.; Cronin, E.M.; Jacob, J.; Duarte, V.E.; Tarakji, K.G.; Martin, D.O.; Callahan, T.; Borek, P.P.; Cantillon, D.J.; Niebauer, M.J.; et al. Transvenous extraction of implantable cardioverter-defibrillator leads under advisory—A comparison of Riata, Sprint Fidelis, and non-recalled implantable cardioverter-defibrillator leads. Heart Rhythm 2013, 10, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Valk, S.D.A.; Theuns, D.A.M.J.; Jordaens, L. Long-term performance of the St Jude Riata 1580–1582 ICD lead family. Neth. Heart J. 2013, 21, 127–134. [Google Scholar] [CrossRef]
- Richardson, T.D.; Kolek, M.J.; Goyal, S.K.; Shoemaker, M.B.; Lewis, A.A.; Rottman, J.N.; Whalen, S.P.; Ellis, C.R. Comparative Outcomes of Transvenous Extraction of Sprint Fidelis and Riata Defibrillator Leads: A Single Center Experience. J. Cardiovasc. Electrophysiol. 2014, 25, 36–42. [Google Scholar] [CrossRef]
- Zeitler, E.P.; Wang, Y.; Pokorney, S.D.; Curtis, J.; Prutkin, J.M. Comparative outcomes of Riata and Fidelis lead management strategies: Results from the NCDR-ICD Registry. Pacing Clin. Electrophysiol. 2021, 44, 1897–1906. [Google Scholar] [CrossRef]
- Blomström-Lundqvist, C.; Traykov, V.; Erba, P.A.; Burri, H.; Nielsen, J.C.; Bongiorni, M.G.; Poole, J.; Boriani, G.; Costa, R.; Deharo, J.C.; et al. European Heart Rhythm Association (EHRA) in-ternational consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infec-tions-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID), and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2020, 41, 2012–2032. [Google Scholar] [PubMed]
- Gianni, C.; Elchouemi, M.; Helmy, R.; Spinetta, L.; La Fazia, V.M.; Pierucci, N.; Asfour, I.; Della Rocca, D.G.; Mohanty, S.; Bassiouny, M.A.; et al. Safety and feasibility of same-day discharge following uncomplicated transvenous lead extraction. J. Cardiovasc. Electrophysiol. 2024, 35, 278–287. [Google Scholar] [CrossRef] [PubMed]

old—thick;
leads of the transition period;
thin and modern leads, p < 0.001.
old—thick;
leads of the transition period;
thin and modern leads, p < 0.001.

| ICD Lead Extraction Among ICD/CRT-D Group | Pacemaker Lead Extraction Among PM Group (Systems) | All Patients/Procedures | |
|---|---|---|---|
| N (%), Median [IQR] | N (%), Median [IQR] | N (%), Median [IQR] | |
| Number of patients | 1068 (100.0) | 2861 (100.0) | 3929 (100.0) |
| Female | 202 (18.91) | 1298 (45.37) <0.001 | 1500 (38.18) |
| Prior myocardial infarction | 481 (35.11) | 375 (13.11) <0.001 | 847 (21.57) |
| Left ventricle ejection fraction [%] | 35.00 [24.00] | 57.00 [15.00] <0.001 | 54.00 [23.00] |
| NYHA functional class III or IV | 380 (35.58) | 383 (13.39) <0.001 | 763 (19.42) |
| Charlson index (points) | 4 [6] | 4 [4] 0.003 | 4 [4] |
| Pacemaker | 0 (0.00) | 2861 (100.0) | 2861 (72.82) |
| ICD | 831 (77.81) | 0 (0.00) | 824 (20.97) |
| CRT-D | 237 (22.19) | 0 (0.00) | 237 (6.03) |
| Local (pocket infection) | 105 (9.83) | 266 (9.30) 0.496 | 371 (9.45) |
| Systemic infection | 275 (25.75) | 580 (20.27) <0.001 | 855 (21.76) |
| Age of oldest lead [years] | 5.08 [5.17] | 8.25 [8.50] <0.001 | 7.17 [7.50] |
| Age of all leads in the patient [years] | 4.83 [4.67] | 7.92 [7.75] <0.001 | 7.00 [7.25] |
| Age of ICD leads [months] | 61.00 [63.00] | ||
| Age of PM leads [months] | 97.00 [102.0] <0.001 | ||
| Number of prior CIED procedures | 1 [1] | 2 [1] <0.001 | 2 [1] |
| Two or more prior CIED procedures | 522 (48.88) | 1553 (54.28) <0.001 | 2075 (52.81) |
| Presence of an abandoned lead | 85 (7.96) | 328 (11.46) <0.001 | 413 (10.51) |
| Medtronic ICD Leads | Abbott (SJM) Leads | Biotronik Leads | Boston Leads | ANOVA, Pearson’s Chi2 | All ICD Leads | All Leads Among PM Systems Only “U” Mann–Whitney. Chi2 | |
|---|---|---|---|---|---|---|---|
| Subgroup number | I | II | III | IV | |||
| Number of patients in compared groups | 545 | 298 | 209 | 16 | 1068 | 2861 | |
| Median [IQR] N (%) | Median [IQR] N (%) | Median [IQR] N (%) | Median [IQR] N (%) | Median [IQR] N (%) | Median [IQR] N (%) | ||
| Extracted lead age [months] | 58.00 [56.00] | 58.00 [63.00] | 74.00 [76.00] <0.001(vs I) <0.001(vs II) | 55.00 [72.00] | <0.001 | 61.00 [63.00] | 97.00 [102.0] <0.001 |
| ICD lead as a component of the CRT-D system | 118 (21.65) | 76 (25.50) | 39 (18.66) | 4 (25.00) | 0.312 | 237 (22.19) | NA |
| TLE due to system infection (local or systemic) | 205 (37.61) | 113 (37.80) | 57 (27.27) 0.008(vs I) 0.012(vs II) | 5 (31.25) | 0.044 | 380 (35.58) | 846 (29.57) <0.001 |
| TLE due to mechanical lead damage (electric failure) | 178 (32.66) | 73 (24.50) | 106 (50.71) <0.001(vs I) <0.001(vs II) | 2 (12.50) | <0.001 | 359 (33.61) | 701 (24.50) <0.001 |
| TLE due to lead dysfunction (lead failure without mechanical damage) | 43 (7.90) | 30 (10.07) | 16 (7.66) | 2 (12.50) | 0.633 | 91 (8.52) | 387 (13.53) <0.001 |
| TLE due to lead heart perforation (dry or wet) | 64 (11.73) | 48 (16.11) | 16 (7.66) 0.003(vs II) | 3 (18.75) | 0.030 | 131 (12.27) | 264 (9.22) 0.006 |
| TLE due to lead dysfunction (including perforation) | 107 (19.63) | 78 (26.18) 0.028(vs I) | 32 (15.32) 0.003(vs II) | 5 (31.25) | 0.014 | 222 (20.79) | 651 (22.75) |
| Prophylactic functional ICD lead replacement (via another TLE) | 21 (3.85) | 8 (2.68) | 4 (1.91) | 1 (6.25) | 0.455 | 34 (3.18) | 0 (0.00) <0.001 |
| TLE due to other indication (abandoned lead, threatening lead, MRI, cancer, pain, superfluous system, recapture of venous access, or technical reasons) | 34 (6.24) | 26 (8.72) | 10 (4.78) | 3 (18.75) | 0.074 | 73 (6.84) | 664 (23.21) <0.001 |
| Group 1 | Group 2 | Group 1 (G1) | Group 2 (G2) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sprint Fidelis | Riata®, Riata ST® | Linox | Pear-son’s Chi2 | Sprint | Ventritex | Kainox, Kentrox | Pearson’s Chi2 | Chi2 test | |||
| Number of subgroups | 2 | 5 | 9 | 2, 5, 9 | 1 | 4 | 7–8 | 1, 4, (7–8) | 2, 5, 9 | 1, 7, 7–8 | G1 vs. G2 |
| N (%) | N (%) | N (%) | P | N (%) | N (%) | N (%) | P | N (%) | N (%) | p | |
| Number of patients | 141 (100.0) | 62 (100.0) | 154 (100.0) | 40 (100.0) | 7 (100.0) | 44 (100.0) | 357 (100.0) | 91 (100.0) | |||
| ICD-V | 75 (53.19) | 35 (56.45) | 72 (46.75) | 0.346 | 19 (47.50) | 4 (57.14) | 22 (50.00) | 0.890 | 182 (50.98) | 45 (49.45) | 0.886 |
| ICD-D | 48 (34.04) | 19 (30.65) | 48 (31.17) | 0.834 | 17 (42.50) | 3 (42.86) | 20 (45.45) | 0.962 | 115 (32.21) | 40 (43.96) | 0.048 |
| CRT-D | 18 (12.77) | 8 (12.90) | 34 (22.08) | 0.068 | 4 (10.00) | 0(0.00) | 2 (4.54) | 0.586 (Y) | 60 (16.81) | 6 (6.59) | 0.014 |
| TLE due to system infection (local or systemic) | 22 (15.60) | 25 (40.32) <0.001(vs 2) | 43 (27.92) | <0.001 | 7 (17.50) | 0(0.00) | 11 (25.00) | 0.403 (Y) | 90 (25.21) | 18 (19.78) | 0.280 |
| TLE due to mechanical lead damage (electric failure) | 83 (58.87) | 22 (35.48) 0.002(vs 2) | 74 (48.05) | 0.007 | 15 (37.50) | 5 (71.43) | 25 (56.82) | 0.101 | 179 (50.14) | 45 (49.45) | 0.907 |
| TLE due to lead dysfunction (lead failure without mechanical damage) | 9 (6.38) | 2 (3.23) | 15 (9.74) | 0.217 | 4 (10.00) | 0(0.00) | 1 (2.27) | 0.135 (Y) | 26 (7.28) | 5 (5.49) | 0.607 |
| TLE due to lead heart perforation (dry or wet) | 6 (4.26) | 9 (14.52) 0.002(vs 2) | 13 (8.44) | 0.041 | 8 (20.00) | 0(0.00) | 4 (9.09) | 0.154 (Y) | 28 (7.84) | 12 (13.19) | 0.111 |
| TLE due to lead dysfunction (including perforation) | 15 (10.64) | 11 (17.75) | 28 (18.18) | 0.160 | 12 (30.00) | 0(0.00) | 5 (11.36) | 0.064 (Y) | 54 (15.13) | 17 (18.68) | 0.297 |
| Prophylactic functional ICD lead replacement (via another TLE) | 17 (12.06) | 3 (4.84) | 3 (1.95) <0.001(vs 2) | 0.002 | 1 (2.50) | 0(0.00) | 1 (2.27) | 0.946 (Y) | 23 (6.44) | 2 (2.20) | 0.115 |
| TLE due to other indications (abandoned lead, threatening lead, MRI, cancer, pain, superfluous system, recapture of venous access, or technical reasons) | 4 (2.84) | 1 (1.61) | 6 (3.90) | 0.664 | 5 (12.50) | 1 (14.29) | 3 (6.82) | 0.630 | 11 (3.08) | 9 (9.89) | 0.005 |
| Medtronic; Sprint Quattro Family (6935, 6946, 6947) | Abbott (SJM); Durata | Biotronik: Linox, Linox Smart DX, Plexa, Protego | Pearson Chi2 | All Patients with ICD Leads | |
|---|---|---|---|---|---|
| Number of subgroups | 3 | 6 | 9–12 | 3 vs. 6 vs. (9–12) | |
| N (%) | N (%) | N (%) | N (%) | ||
| Number of patients/ICD leads (%) | 364 (100.0) | 229 (100.0) | 165 (100.0) | 758 (100.0) | |
| ICD-V | 146 (40.11) | 84 (36.68) | 79 (47.88) | 0.078 | 309 (40.77) |
| ICD-D | 122 (33.52) | 77 (36.84) | 49 (29.70) | 0.646 | 248 (32.72) |
| CRT-D | 96 (26.37) | 68 (32.54) | 37 (22.42) | 0.312 | 201 (26.52) |
| TLE due to infection | 176 (48.35) | 88 (38.42) 0.029(vs 3) | 46 (27.88) <0.001(vs 3) <0.001(vs 6) | <0.001 | 310 (40.90) |
| TLE due to mechanical lead damage (electric failure) | 80 (21.98) | 46 (20.09) | 81 (49.09) <0.001(vs 3) <0.001(vs 6) | <0.001 | 207 (27.31) |
| TLE due to lead dysfunction (including perforation) (lead failure without mechanical damage) | 80 (21.98) | 66 (28.82) | 28 (16.97) <0.001(vs 6) | 0.018 | 174 (22.96) |
| Prophylactic functional ICD lead replacement (via another TLE) | 3 (0.82) | 5 (2.18) | 3 (1.82) | 0.365 | 11 (1.45) |
| TLE due to other indications (abandoned lead, threatening lead, MRI, cancer, pain, superfluous system, recapture of venous access, or technical reasons) | 25 (6.87) | 24 (10.48) | 7 (4.24) | 0.057 | 56 (7.39) |
| Medtronic; Sprint, Sprint Fidelis, Sprint Quattro Family (6935, 6946, 6947) | Abbott (SJM); Ventritex, Riata, Riata ST®, Durata | Biotronik; Kainox, Kentrox, Linox, DX, Plexa Protego | Boston; Endotak Reliance | ANOVA I ÷ IV | All Patients with ICD Leads | All Patients with Sensing/Pacing Leads Among PM Systems Only | |
|---|---|---|---|---|---|---|---|
| I | II | III | IV | Mann-Whitney “U” test ICD vs. PM | |||
| Number of patients (%) | 545 (51.03) | 298 (27.90) | 209 (19.57) | 16 (1.81) | 1068 (100.0) | 2861 (100.0) | |
| Median [IQR] | Median [IQR] | Median [IQR] | Median [IQR] | Median [IQR] | Median [IQR] | ||
| Time–FIT–TLE due to infection [months] | 50.00 [59.00] | 45.00 [54.00] | 66.00 [80.00] | 30.00 [48.00] | 0.103 | 49.00 [59.5] | 98.00 [92.00] <0.001 |
| Time–FIT–TLE due to mechanical lead damage (electric failure) [months] | 60.50 [64.00] | 96.00 [67.00] | 82.00 [70.00] | 98.00 [116.0] | 0.968 | 70.0 [67.00] | 120.0 [131.5] <0.001 |
| Time–FIT–TLE due to lead dysfunction (including perforation) (lead failure without mechanical damage) [months] | 52.00 [50.00] | 46.50 [55.00] | 68.50 [73.5] | 74.00 [90.00] | 0.179 | 52.00 [56.00] | 74.00 [82.00] <0.001 |
| Time–FIT–TLE Prophylactic functional ICD lead replacement (via another TLE) [months] | 80.00 [45.00] | 116.0 [89.00] <0.001(vs I) | 82.50 [48.00] | 188.0 * | 0.002 | 90.50 [57.00] | AC |
| Time–FIT–TLE due to other indications (abandoned lead, threatening lead, MRI, cancer, pain, superfluous system, recapture of venous access, or technical reasons) [months] [months] | 83.50 [82.00] | 65.00 [51.00] | 131.5 [91.00] | 84.00 [23.00] | 0.217 | 77.00 [76.00] | 102.0 [102.0] <0.001 |
| Time–FIT–TLE due to any indications | 58.00 [56.00] | 58.00 [63.00] | 74.00 [76.00] | 55.00 [72.50] | 0.115 | 61.00 [63.00] | 97.00 [102.0] <0.001 |
| Group 1 | Group 2 | Group 1 (G1) | Group 2 (G2) | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Sprint Fidelis | Riata | Linox | ANO-VA | Sprint | Ventritex | Kainox, Kentrox | ANOVA | Mann-Whitney “U” test | |||
| Number of subgroups | 2 | 5 | 9 | 2, 5, 9 | 1 | 4 | 7–8 | 1, 4, 7–8 | 2, 5, 9 | 1, 4, 7–8 | G1 vs. G2 |
| Number of patients | 141 | 62 | 54 | 40 | 7 | 44 | 357 | 91 | |||
| Median, [IQR] | Median, [IQR] | Median, [IQR] | P | Median, [IQR] | Median, [IQR] | Median, [IQR] | P | Median, [IQR] | Median, [IQR] | P | |
| ICD-V (Time–FIT–TLE) [months] | 52.00 [52.00] | 77.00 [76.00] | 69.00 [65.00] | 0.845 | 104.0 [88.00] | 124.0 [83.00] | 148.0 [82.00] | 0.263 | 62.00 [61.00] | 124.0 [82.00] | <0.001 |
| ICD-D (Time–FIT–TLE) [months] | 57.00 [40.50] | 73.00 [65.00] | 62.50 [66.50] | 0.212 | 94.00 [92.00] | 125.0 [65.00] | 112.5 [83.50] | 0.232 | 61.00 [53.00] | 108 [85.00] | <0.001 |
| CRT-D (Time–FIT–TLE) [months] | 83.50 [57.00] | 56.00 [57.00] | 58.00 [55.00] | 0.467 | 114.5 [98.50] | AC | 99.00 [46.00] | 0.354 | 58.00 [58.00] | 114 [39.00] | 0.015 |
| Time–FIT–TLE due to infection [months] | 79.50 [57.00] | 46.00 [35.00] | 42.00 [79.00] | 0.560 | 88.00 [79.00] | AC | 112.0 [62.00] | 0.160 | 50.00 [61.00] | 105 [56.00] | <0.001 |
| Time–FIT–TLE due to mechanical lead damage [months] | 47.00 [37.00] | 124.0 [64.00] | 70.00 [53.00] | 0.846 | 104.0 [82.00] | 136.0 [17.00] | 142.0 [96.00] | 0.314 | 61.00 [61.00] | 124.0 [88.00] | <0.001 |
| Time–FIT–TLE due to lead dysfunction (including perforation) [months] | 55.00 [57.00] | 74.00 [43.00] | 61.50 [49.50] | 0.701 | 99.00 [47.00] | AC | 154.0 [51.00] | 0.018 | 63.00 [56.00] | 108.0 [68.00] | <0.001 |
| Time–FIT–TLE due to prophylactic functioning lead replacement [months] | 72.00 [35.00] | 80.00 [70.00] | 69.00 [61.00] | 0.109 | 179.0 * | AC | 104.0 * | 1.00 | 72.00 [35.00] | 141.0 [75.00] | 0.098 |
| Time–FIT–TLE due to other indication [months] | 73.50 [58.50] | 62.00 * | 108.5 [91.00] | 0.893 | 169.0 [121.0] | 71.00 * | 160.0 [111.0] | 0.764 | 84.00 [70.00] | 160.0 [121.00] | 0.119 |
| Time–FIT–TLE due to any indications [months] | 55.00 [48.00] | 73.00 [63.00] | 65.00 [61.00] | 0.187 | 99.00 [91.50] | 125.0 [71.00] | 131.5 [78.00] | 0.106 | 61.00 [60.00] | 117.0 [86.00] | <0.001 |
| Univariable Cox Regression | Multivariable Cox Regression | |||||
|---|---|---|---|---|---|---|
| HR | 95% CI | p | HR | 95% CI | p | |
| Female [y/n] | 0.989 | 0.812-1.204 | 0.911 | |||
| Age of patient during first implantation [by 1 year] | 1.013 | 1.007–1.019 | <0.001 | 1.265 | 1.242–1.289 | <0.001 |
| Age of patient during TLE [by 1 year] | 0.991 | 0.985–0.996 | <0.001 | 0.812 | 0.800–1.029 | <0.001 |
| Left ventricle ejection fraction [by 1%p] | 0.999 | 0.994–1.004 | 0.647 | |||
| NYHA FC [by 1] | 0.815 | 0.726–0.916 | <0.001 | 0.520 | 0.452–0.598 | <0.001 |
| Number of leads in the system [by one] | 0.831 | 0.748–0.923 | <0.001 | 0.918 | 0.820–1.028 | 1.138 |
| Old and thick models of ICD leads [y/n] | 0.494 | 0.378–0.645 | <0.001 | 0.749 | 0.562–0.996 | 0.048 |
| ICD leads from transition period [y/n] | 1.288 | 1.091–1.521 | 0.003 | 1.132 | 0.955–1.343 | 0.152 |
| Thin and modern ICD leads [y/n] | 0.863 | 0.714–1.043 | 0.128 | |||
| Popular Models of ICD Lead Survival and the Reason for ICD Lead Extraction | Medtronic: Sprint Quatro Family: (6935, 6946, 6947) | Abbott (SJM): Durata | Biotronik: LINOX + (DX, Plexa, Protego) | ANOVA | All Patients with ICD Leads |
|---|---|---|---|---|---|
| Number of subgroups | 3 | 6 | 9–12 | ||
| Number of patients (%) | 364 (48.02) | 229 (30.21) | 165 (21.77) | 758 (100.0) | |
| Median [IQR] | Median [IQR] | Median [IQR] | Median [IQR] | ||
| Time–FIT–TLE due to infection [months] | 48.00 [54.00] | 45.00 [59.00] | 42.00 [58.00] | 0.999 | 47.00 [58.00] |
| Time–FIT–TLE due to mechanical lead damage (electrical failure) [months] | 68.00 [68.00] | 81.00 [50.00] | 70.00 [51.00] | 0.778 | 70.00 [55.00] |
| Time–FIT–TLE due to lead dysfunction (including perforation) [months] | 49.00 [47.00] | 40.00 [47.00] | 61.50 [49.50] | 0.025 | 46.00 [50.00] |
| Time–FIT–TLE due to prophylactic indications [months] | 175.0 [85.50] | 154.0 [46.00] | 69.00 [61.00] | 0.174 | 58.00 [58.00] |
| Time–FIT–TLE due to other indications [months] | 81.00 [74.00] | 63.00 [52.50] | 85.00 [131.0] | 0.057 | 73.50 [55.00] |
| Time–FIT–TLE due to any indications [months] | 54.00 [56.00] | 52.00 [57.00] | 64.00 [59.00] | 0.027 | 55.00 [57.00] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kutarski, A.; Jacheć, W.; Stefańczyk, P.; Tułecki, Ł.; Kukulski, T.; Nowosielecka, D. Why and When ICD Leads Are Extracted: Does the ICD Lead Model Influence Lead Survival? Medicina 2025, 61, 1899. https://doi.org/10.3390/medicina61111899
Kutarski A, Jacheć W, Stefańczyk P, Tułecki Ł, Kukulski T, Nowosielecka D. Why and When ICD Leads Are Extracted: Does the ICD Lead Model Influence Lead Survival? Medicina. 2025; 61(11):1899. https://doi.org/10.3390/medicina61111899
Chicago/Turabian StyleKutarski, Andrzej, Wojciech Jacheć, Paweł Stefańczyk, Łukasz Tułecki, Tomasz Kukulski, and Dorota Nowosielecka. 2025. "Why and When ICD Leads Are Extracted: Does the ICD Lead Model Influence Lead Survival?" Medicina 61, no. 11: 1899. https://doi.org/10.3390/medicina61111899
APA StyleKutarski, A., Jacheć, W., Stefańczyk, P., Tułecki, Ł., Kukulski, T., & Nowosielecka, D. (2025). Why and When ICD Leads Are Extracted: Does the ICD Lead Model Influence Lead Survival? Medicina, 61(11), 1899. https://doi.org/10.3390/medicina61111899

