Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes
Abstract
1. Introduction
2. Types of Chromosomal Abnormalities
2.1. Numerical Abnormalities and Association with Infertility
2.2. Structural Abnormalities and Association with Infertility
3. Mechanisms of Aneuploidy in Spermatogenesis
3.1. Meiotic Nondisjunction
3.2. Cohesin and Synaptonemal Complex Defects
3.3. Clinical and Translational Implications of Cohesin and Synaptonemal Complex Defects
3.4. Spindle Assembly Checkpoint Dysfunction
4. Influence of Paternal Age
5. Environmental and Lifestyle Factors
5.1. Introduction
5.2. Environmental Toxins and Pollutants
5.3. Lifestyle Factors: Smoking, Alcohol, and Drugs
5.4. Diet and Nutrition
5.5. Physical Activity, Heat Exposure, and Obesity
6. Specific Chromosomal Syndromes Impacting Male Fertility
6.1. AZF Region Deletions
6.2. Kallmann Syndrome
6.3. XX Male Syndrome (46,XX Testicular DSD)
7. Managing Chromosomal Risks in Male Infertility
8. Discussion
8.1. Synthesis of Genetic, Environmental, and Epigenetic Factors
8.2. Future Directions
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- McFadden, D.E.; Friedman, J.M. Chromosome Abnormalities in Human Beings. Mutat. Res. Mol. Mech. Mutagen. 1997, 396, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Marks, L.; May, G.H.W.; Wilson, J.B. The Genetic Basis of Disease. Essays Biochem. 2018, 62, 643–723. [Google Scholar] [CrossRef] [PubMed]
- Hassold, T.; Hall, H.; Hunt, P. The Origin of Human Aneuploidy: Where We Have Been, Where We Are Going. Hum. Mol. Genet. 2007, 16, R203–R208. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.O.; Feist, C.D.; Norton, M.E.; Caughey, A.B. Noninvasive Prenatal Testing. Obstet. Gynecol. Surv. 2014, 69, 89–99. [Google Scholar] [CrossRef]
- Hixson, L.; Goel, S.; Schuber, P.; Faltas, V.; Lee, J.; Narayakkadan, A.; Leung, H.; Osborne, J. An Overview on Prenatal Screening for Chromosomal Aberrations. SLAS Technol. 2015, 20, 562–573. [Google Scholar] [CrossRef]
- Natarajan, A.T.; Boei, J.J.W.A. Formation of Chromosome Aberrations: Insights from FISH. Mutat. Res. Mutat. Res. 2003, 544, 299–304. [Google Scholar] [CrossRef]
- Harton, G.L.; Tempest, H.G. Chromosomal Disorders and Male Infertility. Asian J. Androl. 2012, 14, 32–39. [Google Scholar] [CrossRef]
- Lamb, D.J. Chromosome Defects and Male Factor Infertility. Fertil. Steril. 2025, 123, 933–942. [Google Scholar] [CrossRef]
- Van Rijn, S. A Review of Neurocognitive Functioning and Risk for Psychopathology in Sex Chromosome Trisomy (47,XXY, 47,XXX, 47, XYY). Curr. Opin. Psychiatry 2019, 32, 79–84. [Google Scholar] [CrossRef]
- Stochholm, K.; Holmgård, C.; Davis, S.M.; Gravholt, C.H.; Berglund, A. Incidence, Prevalence, Age at Diagnosis, and Mortality in Individuals with 45,X/46,XY Mosaicism: A Population-Based Registry Study. Genet. Med. 2024, 26, 100987. [Google Scholar] [CrossRef]
- Maiburg, M.; Repping, S.; Giltay, J. The Genetic Origin of Klinefelter Syndrome and Its Effect on Spermatogenesis. Fertil. Steril. 2012, 98, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Elahwany, A.; Elrefaey, F.A.; Alahwany, H.; Torad, H.; GamalEl Din, S.F.; Dawood, R.M.S.; Ragab, M.W.; Megawer, A.F. Evaluation of the Predictors of Successful Sperm Retrieval of Micro-TESE in Cases with Mosaic Klinefelter versus Cases with Non-Mosaic Klinefelter: A Prospective Case Series Study. Basic Clin. Androl. 2025, 35, 18. [Google Scholar] [CrossRef] [PubMed]
- Fesahat, F.; Montazeri, F.; Hoseini, S.M. Preimplantation Genetic Testing in Assisted Reproduction Technology. J. Gynecol. Obstet. Hum. Reprod. 2020, 49, 101723. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Pedano, A.; Compagnone, M.; La Vignera, S.; Condorelli, R.A.; Calogero, A.E. Gonadal Function in Patients with 47,XYY Syndrome: A Systematic Review and Meta-Analysis. Endocr. Connect. 2025, 14, e240697. [Google Scholar] [CrossRef]
- Urbach, A.; Benvenisty, N. Studying Early Lethality of 45,XO (Turner’s Syndrome) Embryos Using Human Embryonic Stem Cells. PLoS ONE 2009, 4, e4175. [Google Scholar] [CrossRef]
- Ding, F.; Xu, J.; Xiong, J.; Li, Q.; Cheng, Z.; Deng, L. Epidemiological Analysis of Turner Syndrome in Children Aged 0–14 Years: Global, Regional, and National Perspectives (1990–2021). Front. Endocrinol. 2025, 16, 1552300. [Google Scholar] [CrossRef]
- Berglund, A.; Chang, S.; Lind-Holst, M.; Stochholm, K.; Gravholt, C.H. The Epidemiology of Disorders of Sex Development. Best Pract. Res. Clin. Endocrinol. Metab. 2025, 39, 102002. [Google Scholar] [CrossRef]
- Corona, L.E.; Lee, V.S.; Weisman, A.G.; Rosoklija, I.; Hirsch, J.; Whitehead, J.; Almaghraby, A.; Papadakis, J.; Yuodsnukis, B.; Chen, D.; et al. Mixed Gonadal Dysgenesis: A Narrative Literature Review and Clinical Primer for the Urologist. J. Urol. 2024, 212, 660–671. [Google Scholar] [CrossRef]
- Lu, L.; Luo, F.; Wang, X. Gonadal Tumor Risk in Pediatric and Adolescent Phenotypic Females with Disorders of Sex Development and Y Chromosomal Constitution with Different Genetic Etiologies. Front. Pediatr. 2022, 10, 856128. [Google Scholar] [CrossRef]
- Poot, M.; Hochstenbach, R. Prevalence and Phenotypic Impact of Robertsonian Translocations. Mol. Syndromol. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Gomes De Lima, L.; Guarracino, A.; Koren, S.; Potapova, T.; McKinney, S.; Rhie, A.; Solar, S.J.; Seidel, C.; Fagen, B.; Walenz, B.P.; et al. The Formation and Propagation of Human Robertsonian Chromosomes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Trieu, S.; Pham, M.; Le, H.; Vo, H.; Nguyen, P.; Tran, T.; Nguyen, N.; Trinh, S. Survey of Structural Autosomal Abnormalities and Autosomal Variants in Infertile Patients Treated at Some IVF Centers in Vietnam. Appl. Clin. Genet. 2025, 18, 29–40. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, J.; Zhang, L.; Wei, R.; Liu, Z.; Zhao, D.; Bi, X.; Liang, L.; Zhang, X.; Su, D.; et al. Influence of the Sex of Translocation Carrier on Clinical Outcomes of Couples Undergoing Preimplantation Genetic Testing. Mol. Genet. Genom. Med. 2025, 13, e70050. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, M.J.; Huffman, P.J.; Haney, N.M.; Kohn, T.P. Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. Appl. Clin. Genet. 2021, 14, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Takeshima, T.; Mimura, N.; Seki, H.; Yumura, Y. Successful Sperm Retrieval by Microdissection Testicular Sperm Extraction in a Man with Partial AZFb Deletion: A Case Report. Transl. Androl. Urol. 2025, 14, 191–195. [Google Scholar] [CrossRef]
- Muthuvel, A.; Ravindran, M.; Chander, A.; Subbian, C. Pericentric Inversion of Chromosome 9 Causing Infertility and Subsequent Successful in Vitro Fertilization. Niger. Med. J. 2016, 57, 142. [Google Scholar] [CrossRef] [PubMed]
- Ting, N.-S.; Chen, Y.-H.; Chen, S.-F.; Chen, P.-C. Successful Live Twin Birth through IVF/ICSI from a Couple with an Infertile Father with Pericentric Inversion of Chromosome 9 (P12q13): A Case with a High Aneuploidy Rate. Medicina 2022, 58, 1646. [Google Scholar] [CrossRef]
- Mohsen-Pour, N.; Talebi, T.; Naderi, N.; Moghadam, M.H.; Maleki, M.; Kalayinia, S. Chromosome 9 Inversion: Pathogenic or Benign?A Comprehensive Systematic Review of All Clinical Reports. Curr. Mol. Med. 2022, 22, 385–400. [Google Scholar] [CrossRef]
- Mottola, F.; Santonastaso, M.; Ronga, V.; Finelli, R.; Rocco, L. Polymorphic Rearrangements of Human Chromosome 9 and Male Infertility: New Evidence and Impact on Spermatogenesis. Biomolecules 2023, 13, 729. [Google Scholar] [CrossRef]
- Yuan, J.; Jin, L.; Wang, M.; Wei, S.; Zhu, G.; Xu, B. Detection of Chromosome Aberrations in 17 054 Individuals with Fertility Problems and Their Subsequent Assisted Reproductive Technology Treatments in Central China. Hum. Reprod. 2023, 38, ii34–ii46. [Google Scholar] [CrossRef]
- Akalin, H.; Sahin, I.O.; Paskal, S.A.; Tan, B.; Yalcinkaya, E.; Demir, M.; Yakubi, M.; Caliskan, B.O.; Ekinci, O.G.; Ercan, M.; et al. Evaluation of Chromosomal Abnormalities in the Postnatal Cohort: A Single-center Study on 14,242 Patients. J. Clin. Lab. Anal. 2024, 38, e24997. [Google Scholar] [CrossRef]
- Egozcue, S. Human Male Infertility: Chromosome Anomalies, Meiotic Disorders, Abnormal Spermatozoa and Recurrent Abortion. Hum. Reprod. Update 2000, 6, 93–105. [Google Scholar] [CrossRef]
- Keen, C.; Hunter, J.E.; Allen, E.G.; Rocheleau, C.; Waters, M.; Sherman, S.L. The Association between Maternal Occupation and down Syndrome: A Report from the National Down Syndrome Project. Int. J. Hyg. Environ. Health 2020, 223, 207–213. [Google Scholar] [CrossRef]
- Kocaaga, A.; Salik, E.A. Chromosomal Abnormalities of Embryos from Sporadic and Recurrent Miscarriages: A Tertiary Center Experience. Mol. Biol. Rep. 2025, 52, 512. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Chen, C.; Li, H. Maternal Age-Related Gender Bias in Trisomy 21 and Trisomy 18. Birth Defects Res. 2025, 117, e2489. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Jones, A.W.; Watanabe, Y. Acetylation of Rec8 Cohesin Complexes Regulates Reductional Chromosome Segregation in Meiosis. Life Sci. Alliance 2024, 7, e202402606. [Google Scholar] [CrossRef]
- Chavda, A.P.; Ang, K.; Ivanov, D. The Torments of the Cohesin Ring. Nucleus 2017, 8, 261–267. [Google Scholar] [CrossRef]
- Kulemzina, I.; Ang, K.; Zhao, X.; Teh, J.-T.; Verma, V.; Suranthran, S.; Chavda, A.P.; Huber, R.G.; Eisenhaber, B.; Eisenhaber, F.; et al. A Reversible Association between Smc Coiled Coils Is Regulated by Lysine Acetylation and Is Required for Cohesin Association with the DNA. Mol. Cell 2016, 63, 1044–1054. [Google Scholar] [CrossRef]
- Sasaki, M.; Miyoshi, N.; Fujino, S.; Saso, K.; Ogino, T.; Takahashi, H.; Uemura, M.; Yamamoto, H.; Matsuda, C.; Yasui, M.; et al. The Meiosis-Specific Cohesin Component Stromal Antigen 3 Promotes Cell Migration and Chemotherapeutic Resistance in Colorectal Cancer. Cancer Lett. 2021, 497, 112–122. [Google Scholar] [CrossRef]
- Lee, J. Roles of Cohesin and Condensin in Chromosome Dynamics During Mammalian Meiosis. J. Reprod. Dev. 2013, 59, 431–436. [Google Scholar] [CrossRef]
- Van Der Bijl, N.; Röpke, A.; Biswas, U.; Wöste, M.; Jessberger, R.; Kliesch, S.; Friedrich, C.; Tüttelmann, F. Mutations in the Stromal Antigen 3 (STAG3) Gene Cause Male Infertility Due to Meiotic Arrest. Hum. Reprod. 2019, 34, 2112–2119. [Google Scholar] [CrossRef]
- Revenkova, E.; Eijpe, M.; Heyting, C.; Hodges, C.A.; Hunt, P.A.; Liebe, B.; Scherthan, H.; Jessberger, R. Cohesin SMC1β Is Required for Meiotic Chromosome Dynamics, Sister Chromatid Cohesion and DNA Recombination. Nat. Cell Biol. 2004, 6, 555–562. [Google Scholar] [CrossRef]
- Tsabai, P.N.; Pavlova, N.S.; Shatylko, T.V.; Kumykova, Z.K.; Stupko, O.K.; Kochetkova, T.O.; Lobanova, N.N.; Goltsov, A.Y.; Leukhina, O.O.; Shubina, J.; et al. Novel STAG3 Variant Causes Oligoasthenoteratozoospermia with High Sperm Aneuploidy Rate. J. Assist. Reprod. Genet. 2025, 42, 1239–1245. [Google Scholar] [CrossRef]
- Liu, W.; Gao, X.; Zhang, H.; Liu, R.; Cao, Y.; Yu, R.; Fang, G.; Ma, J.; Zhao, S. Analysis of STAG3 Variants in Chinese Non-Obstructive Azoospermia Patients with Germ Cell Maturation Arrest. Sci. Rep. 2021, 11, 10077. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Zhao, Y.; Luo, H. A Novel Loss-of-Function SYCP2 Variant Causes Asthenoteratozoospermia in Infertile Males. Front. Genet. 2025, 16, 1595720. [Google Scholar] [CrossRef] [PubMed]
- Heyting, C. Synaptonemal Complexes: Structure and Function. Curr. Opin. Cell Biol. 1996, 8, 389–396. [Google Scholar] [CrossRef]
- Billmyre, K.K.; Kesler, E.A.; Tsuchiya, D.; Corbin, T.J.; Weaver, K.; Moran, A.; Yu, Z.; Adams, L.; Delventhal, K.; Durnin, M.; et al. SYCP1 Head-to-Head Assembly Is Required for Chromosome Synapsis in Mouse Meiosis. Sci. Adv. 2023, 9, eadi1562. [Google Scholar] [CrossRef]
- Zwettler, F.U.; Spindler, M.-C.; Reinhard, S.; Klein, T.; Kurz, A.; Benavente, R.; Sauer, M. Tracking down the Molecular Architecture of the Synaptonemal Complex by Expansion Microscopy. Nat. Commun. 2020, 11, 3222. [Google Scholar] [CrossRef]
- Gray, J.E.; Schenker, M.; Nahit Şendur, M.A.; Leonova, V.; Kowalski, D.; Kato, T.; Orlova, R.; Chih-Hsin Yang, J.; Langleben, A.; Pilz, A.; et al. The Phase 3 KEYLYNK-006 Study of Pembrolizumab plus Olaparib versus Pembrolizumab plus Pemetrexed as Maintenance Therapy for Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2024, 20, 219–232. [Google Scholar] [CrossRef]
- Enguita-Marruedo, A.; Van Cappellen, W.A.; Hoogerbrugge, J.W.; Carofiglio, F.; Wassenaar, E.; Slotman, J.A.; Houtsmuller, A.; Baarends, W.M. Live Cell Analyses of Synaptonemal Complex Dynamics and Chromosome Movements in Cultured Mouse Testis Tubules and Embryonic Ovaries. Chromosoma 2018, 127, 341–359. [Google Scholar] [CrossRef]
- Stouffs, K.; Vandermaelen, D.; Tournaye, H.; Liebaers, I.; Lissens, W. Mutation Analysis of Three Genes in Patients with Maturation Arrest of Spermatogenesis and Couples with Recurrent Miscarriages. Reprod. Biomed. Online 2011, 22, 65–71. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, J.-G.; Zhao, J.; Brundell, E.; Daneholt, B.; Höög, C. The Murine SCP3 Gene Is Required for Synaptonemal Complex Assembly, Chromosome Synapsis, and Male Fertility. Mol. Cell 2000, 5, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Minase, G.; Shin, T.; Ueda, H.; Okada, H.; Sengoku, K. Human Male Infertility and Its Genetic Causes. Reprod. Med. Biol. 2017, 16, 81–88. [Google Scholar] [CrossRef]
- Zhou, G.; Zhang, M.; Zhang, J.; Feng, Y.; Xie, Z.; Liu, S.; Zhu, D.; Luo, Y. The Gene Regulatory Role of Non-Coding RNAs in Non-Obstructive Azoospermia. Front. Endocrinol. 2022, 13, 959487. [Google Scholar] [CrossRef]
- Rohayem, J.; Zitzmann, M.; Nieschlag, E. Congenital Hypogonadotropic Hypogonadism and Kallmann’s Syndrome★. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2015; p. B9780128012383988743. ISBN 978-0-12-801238-3. [Google Scholar]
- Li, T.-F.; Wu, Q.-Y.; Zhang, C.; Li, W.-W.; Zhou, Q.; Jiang, W.-J.; Cui, Y.-X.; Xia, X.-Y.; Shi, Y.-C. 46,XX Testicular Disorder of Sexual Development with SRY-Negative Caused by Some Unidentified Mechanisms: A Case Report and Review of the Literature. BMC Urol. 2014, 14, 104. [Google Scholar] [CrossRef]
- Du Fossé, N.A.; Van Der Hoorn, M.-L.P.; Van Lith, J.M.M.; Le Cessie, S.; Lashley, E.E.L.O. Advanced Paternal Age Is Associated with an Increased Risk of Spontaneous Miscarriage: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2020, 26, 650–669. [Google Scholar] [CrossRef]
- Kaltsas, A.; Markou, E.; Kyrgiafini, M.-A.; Zikopoulos, A.; Symeonidis, E.N.; Dimitriadis, F.; Zachariou, A.; Sofikitis, N.; Chrisofos, M. Oxidative-Stress-Mediated Epigenetic Dysregulation in Spermatogenesis: Implications for Male Infertility and Offspring Health. Genes 2025, 16, 93. [Google Scholar] [CrossRef]
- Kuchakulla, M.; Narasimman, M.; Khodamoradi, K.; Khosravizadeh, Z.; Ramasamy, R. How Defective Spermatogenesis Affects Sperm DNA Integrity. Andrologia 2021, 53, e13615. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Sakkas, D. Paternal Factors Contributing to Embryo Quality. J. Assist. Reprod. Genet. 2018, 35, 1953–1968. [Google Scholar] [CrossRef] [PubMed]
- Dviri, M.; Madjunkova, S.; Koziarz, A.; Madjunkov, M.; Mashiach, J.; Nekolaichuk, E.; Trivodaliev, K.; Al-Asmar, N.; Moskovtsev, S.I.; Librach, C. Is There an Association between Paternal Age and Aneuploidy? Evidence from Young Donor Oocyte-Derived Embryos: A Systematic Review and Individual Patient Data Meta-Analysis. Hum. Reprod. Update 2021, 27, 486–500. [Google Scholar] [CrossRef]
- Eaker, S.; Pyle, A.; Cobb, J.; Handel, M.A. Evidence for Meiotic Spindle Checkpoint from Analysis of Spermatocytes from Robertsonian-Chromosome Heterozygous Mice. J. Cell Sci. 2001, 114, 2953–2965. [Google Scholar] [CrossRef]
- Shannon, K.B.; Canman, J.C.; Salmon, E.D. Mad2 and BubR1 Function in a Single Checkpoint Pathway That Responds to a Loss of Tension. Mol. Biol. Cell 2002, 13, 3706–3719. [Google Scholar] [CrossRef]
- Marchetti, F.; Venkatachalam, S. The Multiple Roles of Bub1 in Chromosome Segregation during Mitosis and Meiosis. Cell Cycle 2010, 9, 58–63. [Google Scholar] [CrossRef]
- Mihajlović, A.I.; Byers, C.; Reinholdt, L.; FitzHarris, G. Spindle Assembly Checkpoint Insensitivity Allows MEIOSIS-II despite Chromosomal Defects in Aged Eggs. EMBO Rep. 2023, 24, e57227. [Google Scholar] [CrossRef] [PubMed]
- Vogt, E.; Kirsch-Volders, M.; Parry, J.; Eichenlaub-Ritter, U. Spindle Formation, Chromosome Segregation and the Spindle Checkpoint in Mammalian Oocytes and Susceptibility to Meiotic Error. Mutat. Res. Toxicol. Environ. Mutagen. 2008, 651, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Ribagorda, M.; Berríos, S.; Solano, E.; Ayarza, E.; Martín-Ruiz, M.; Gil-Fernández, A.; Parra, M.T.; Viera, A.; Rufas, J.S.; Capanna, E.; et al. Meiotic Behavior of a Complex Hexavalent in Heterozygous Mice for Robertsonian Translocations: Insights for Synapsis Dynamics. Chromosoma 2019, 128, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Wang, W.; Tu, C.; Meng, L.; Lu, G.; Lin, G.; Lu, L.-Y.; Tan, Y.-Q. Meiotic Recombination: Insights into Its Mechanisms and Its Role in Human Reproduction with a Special Focus on Non-Obstructive Azoospermia. Hum. Reprod. Update 2022, 28, 763–797. [Google Scholar] [CrossRef]
- Wieland, J.; Buchan, S.; Sen Gupta, S.; Mantzouratou, A. Genomic Instability and the Link to Infertility: A Focus on Microsatellites and Genomic Instability Syndromes. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 274, 229–237. [Google Scholar] [CrossRef]
- Zhang, C.; Guo, Y.; Yang, Y.; Du, Z.; Fan, Y.; Zhao, Y.; Yuan, S. Oxidative Stress on Vessels at the Maternal-Fetal Interface for Female Reproductive System Disorders: Update. Front. Endocrinol. 2023, 14, 1118121. [Google Scholar] [CrossRef]
- Potapova, T.; Gorbsky, G. The Consequences of Chromosome Segregation Errors in Mitosis and Meiosis. Biology 2017, 6, 12. [Google Scholar] [CrossRef]
- Kops, G.J.P.L.; Snel, B.; Tromer, E.C. Evolutionary Dynamics of the Spindle Assembly Checkpoint in Eukaryotes. Curr. Biol. 2020, 30, R589–R602. [Google Scholar] [CrossRef] [PubMed]
- Keefe, D.L. Telomeres and Genomic Instability during Early Development. Eur. J. Med. Genet. 2020, 63, 103638. [Google Scholar] [CrossRef] [PubMed]
- Rosenbusch, B.; Sterzik, K. Cytogenetics of Human Spermatozoa. The Frequency of Various Chromosome Aberrations and Their Relationship to Clinical and Biological Parameters. Arch. Gynecol. Obstet. 1994, 255, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Hwang, K.; Weedin, J.W.; Lamb, D.J. The Use of Fluorescent in Situ Hybridization in Male Infertility. Ther. Adv. Urol. 2010, 2, 157–169. [Google Scholar] [CrossRef]
- Chamayou, S.; Giacone, F.; Cannarella, R.; Guglielmino, A. What Does Intracytoplasmic Sperm Injection Change in Embryonic Development? The Spermatozoon Contribution. J. Clin. Med. 2023, 12, 671. [Google Scholar] [CrossRef]
- Ramos-Treviño, J.; Bassol-Mayagoitia, S.; Hernández-Ibarra, J.A.; Ruiz-Flores, P.; Nava-Hernández, M.P. Toxic Effect of Cadmium, Lead, and Arsenic on the Sertoli Cell: Mechanisms of Damage Involved. DNA Cell Biol. 2018, 37, 600–608. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Chen, Y.; Zhang, L.; Shen, H.; Wang, Z.; Tian, S.; Yang, X.; Cui, D.; He, Y.; et al. Engineering C-Met-CAR NK-92 Cells as a Promising Therapeutic Candidate for Lung Adenocarcinoma. Pharmacol. Res. 2023, 188, 106656. [Google Scholar] [CrossRef]
- Asadi, N. The Impact of Oxidative Stress on Testicular Function and the Role of Antioxidants in Improving It: A Review. J. Clin. Diagn. Res. 2017, 11, IE01–IE05. [Google Scholar] [CrossRef]
- Daniels, D.; Berger Eberhardt, A. Climate Change, Microplastics, and Male Infertility. Curr. Opin. Urol. 2024, 34, 366–370. [Google Scholar] [CrossRef]
- Estill, M.S.; Krawetz, S.A. The Epigenetic Consequences of Paternal Exposure to Environmental Contaminants and Reproductive Toxicants. Curr. Environ. Health Rep. 2016, 3, 202–213. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.; Fu, W.; Lin, X.; Zhang, F.; Qin, G.; Yuan, Z.; Huang, B. Environmental Toxicant 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Induces Non-Obstructive Azoospermia: New Insights from Network Toxicology, Integrated Machine Learning, and Biomolecular Modeling. Ecotoxicol. Environ. Saf. 2025, 295, 118173. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, A.M.; Henkel, R.; Tofighi Niaki, M.; Fesahat, F. Adverse Effects of Nicotine on Human Sperm Nuclear Proteins. World J. Mens Health 2025, 43, 291. [Google Scholar] [CrossRef] [PubMed]
- Tommasi, S.; Kitapci, T.H.; Blumenfeld, H.; Besaratinia, A. Secondhand Smoke Affects Reproductive Functions by Altering the Mouse Testis Transcriptome, and Leads to Select Intron Retention in Pde1a. Environ. Int. 2022, 161, 107086. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Thanh, T.; Hoang-Thi, A.-P.; Anh Thu, D.T. Investigating the Association between Alcohol Intake and Male Reproductive Function: A Current Meta-Analysis. Heliyon 2023, 9, e15723. [Google Scholar] [CrossRef]
- Lim, J.; Squire, E.; Jung, K.-M. Phytocannabinoids, the Endocannabinoid System and Male Reproduction. World J. Mens Health 2023, 41, 1. [Google Scholar] [CrossRef]
- Schifano, N.; Chiappini, S.; Mosca, A.; Miuli, A.; Santovito, M.C.; Pettorruso, M.; Capogrosso, P.; Dehò, F.; Martinotti, G.; Schifano, F. Recreational Drug Misuse and Its Potential Contribution to Male Fertility Levels’ Decline: A Narrative Review. Brain Sci. 2022, 12, 1582. [Google Scholar] [CrossRef]
- Smith, S.J.; Lopresti, A.L.; Fairchild, T.J. The Effects of Alcohol on Testosterone Synthesis in Men: A Review. Expert Rev. Endocrinol. Metab. 2023, 18, 155–166. [Google Scholar] [CrossRef]
- Koh, K.; Kim, S.S.; Kim, J.-S.; Jung, J.-G.; Yoon, S.-J.; Suh, W.Y.; Kim, H.G.; Kim, N. Relationship between Alcohol Consumption and Testosterone Deficiency According to Facial Flushes among Middle-Aged and Older Korean Men. Korean J. Fam. Med. 2022, 43, 381–387. [Google Scholar] [CrossRef]
- Pascoal, G.D.F.L.; Geraldi, M.V.; Maróstica, M.R.; Ong, T.P. Effect of Paternal Diet on Spermatogenesis and Offspring Health: Focus on Epigenetics and Interventions with Food Bioactive Compounds. Nutrients 2022, 14, 2150. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chiu, Y.-H.; Williams, P.L.; Ford, J.B.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Association between Serum Folate and Vitamin B-12 and Outcomes of Assisted Reproductive Technologies. Am. J. Clin. Nutr. 2015, 102, 943–950. [Google Scholar] [CrossRef]
- Young, S.S.; Eskenazi, B.; Marchetti, F.M.; Block, G.; Wyrobek, A.J. The Association of Folate, Zinc and Antioxidant Intake with Sperm Aneuploidy in Healthy Non-Smoking Men. Hum. Reprod. 2008, 23, 1014–1022. [Google Scholar] [CrossRef]
- Al-Azemi, M.; Omu, A.; Fatinikun, T.; Mannazhath, N.; Abraham, S. Factors Contributing to Gender Differences in Serum Retinol and α-Tocopherol in Infertile Couples. Reprod. Biomed. Online 2009, 19, 583–590. [Google Scholar] [CrossRef]
- Colagar, A.H.; Marzony, E.T. Ascorbic Acid in Human Seminal Plasma: Determination and Its Relationship to Sperm Quality. J. Clin. Biochem. Nutr. 2009, 45, 144–149. [Google Scholar] [CrossRef]
- Matorras, R.; Pérez-Sanz, J.; Corcóstegui, B.; Pérez-Ruiz, I.; Malaina, I.; Quevedo, S.; Aspichueta, F.; Crisol, L.; Martinez-Indart, L.; Prieto, B.; et al. Effect of Vitamin E Administered to Men in Infertile Couples on Sperm and Assisted Reproduction Outcomes: A Double-Blind Randomized Study. FS Rep. 2020, 1, 219–226. [Google Scholar] [CrossRef]
- Keskes-Ammar, L.; Feki-Chakroun, N.; Rebai, T.; Sahnoun, Z.; Ghozzi, H.; Hammami, S.; Zghal, K.; Fki, H.; Damak, J.; Bahloul, A. Sperm Oxidative Stress and the Effect of an Oral Vitamin E And Selenium Supplement on Semen Quality in Infertile Men. Arch. Androl. 2003, 49, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Kinuta, K.; Tanaka, H.; Moriwake, T.; Aya, K.; Kato, S.; Seino, Y. Vitamin D Is an Important Factor in Estrogen Biosynthesis of Both Female and Male Gonads*. Endocrinology 2000, 141, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Blomberg Jensen, M.; Bjerrum, P.J.; Jessen, T.E.; Nielsen, J.E.; Joensen, U.N.; Olesen, I.A.; Petersen, J.H.; Juul, A.; Dissing, S.; Jørgensen, N. Vitamin D Is Positively Associated with Sperm Motility and Increases Intracellular Calcium in Human Spermatozoa. Hum. Reprod. 2011, 26, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Dong, X.; Hu, X.; Long, Z.; Wang, L.; Liu, Q.; Sun, B.; Wang, Q.; Wu, Q.; Li, L. Zinc Levels in Seminal Plasma and Their Correlation with Male Infertility: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 22386. [Google Scholar] [CrossRef]
- Nadjarzadeh, A.; Sadeghi, M.R.; Amirjannati, N.; Vafa, M.R.; Motevalian, S.A.; Gohari, M.R.; Akhondi, M.A.; Yavari, P.; Shidfar, F. Coenzyme Q10 Improves Seminal Oxidative Defense but Does Not Affect on Semen Parameters in Idiopathic Oligoasthenoteratozoospermia: A Randomized Double-Blind, Placebo Controlled Trial. J. Endocrinol. Investig. 2011, 34. [Google Scholar] [CrossRef]
- Balercia, G.; Buldreghini, E.; Vignini, A.; Tiano, L.; Paggi, F.; Amoroso, S.; Ricciardo-Lamonica, G.; Boscaro, M.; Lenzi, A.; Littarru, G. Coenzyme Q10 Treatment in Infertile Men with Idiopathic Asthenozoospermia: A Placebo-Controlled, Double-Blind Randomized Trial. Fertil. Steril. 2009, 91, 1785–1792. [Google Scholar] [CrossRef]
- Zańko, A.; Pawłowski, M.; Milewski, R. The Impact of Physical Exercise on Male Fertility Through Its Association with Various Processes and Aspects of Human Biology. J. Clin. Med. 2025, 14, 3442. [Google Scholar] [CrossRef]
- Antinozzi, C.; Di Luigi, L.; Sireno, L.; Caporossi, D.; Dimauro, I.; Sgrò, P. Protective Role of Physical Activity and Antioxidant Systems During Spermatogenesis. Biomolecules 2025, 15, 478. [Google Scholar] [CrossRef]
- Cadegiani, F.A.; Kater, C.E. Hormonal Aspects of Overtraining Syndrome: A Systematic Review. BMC Sports Sci. Med. Rehabil. 2017, 9, 14. [Google Scholar] [CrossRef]
- Mennitti, C.; Farina, G.; Imperatore, A.; De Fonzo, G.; Gentile, A.; La Civita, E.; Carbone, G.; De Simone, R.R.; Di Iorio, M.R.; Tinto, N.; et al. How Does Physical Activity Modulate Hormone Responses? Biomolecules 2024, 14, 1418. [Google Scholar] [CrossRef]
- Hoang-Thi, A.-P.; Dang-Thi, A.-T.; Phan-Van, S.; Nguyen-Ba, T.; Truong-Thi, P.-L.; Le-Minh, T.; Nguyen-Vu, Q.-H.; Nguyen-Thanh, T. The Impact of High Ambient Temperature on Human Sperm Parameters: A Meta-Analysis. Iran. J. Public Health 2022, 51, 710–723. [Google Scholar] [CrossRef]
- Barbagallo, F.; Condorelli, R.A.; Mongioì, L.M.; Cannarella, R.; Cimino, L.; Magagnini, M.C.; Crafa, A.; La Vignera, S.; Calogero, A.E. Molecular Mechanisms Underlying the Relationship between Obesity and Male Infertility. Metabolites 2021, 11, 840. [Google Scholar] [CrossRef]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle Factors and Reproductive Health: Taking Control of Your Fertility. Reprod. Biol. Endocrinol. 2013, 11, 66. [Google Scholar] [CrossRef]
- Koh, E.; Sin, H.; Fukushima, M.; Namiki, M. Azoospermia Factor and Male Infertility. Reprod. Med. Biol. 2010, 9, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, X.; Qu, M.; Li, H. Sertoli Cell-Only Syndrome: Advances, Challenges, and Perspectives in Genetics and Mechanisms. Cell. Mol. Life Sci. 2023, 80, 67. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Modi, D. Genetics of the Human Y Chromosome and Its Association with Male Infertility. Reprod. Biol. Endocrinol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Deng, C.-Y.; Zhang, Z.; Tang, W.-H.; Jiang, H. Microdeletions and Vertical Transmission of the Y-Chromosome Azoospermia Factor Region. Asian J. Androl. 2023, 25, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Valdes-Socin, H.; Rubio Almanza, M.; Tomé Fernández-Ladreda, M.; Debray, F.G.; Bours, V.; Beckers, A. Reproduction, Smell, and Neurodevelopmental Disorders: Genetic Defects in Different Hypogonadotropic Hypogonadal Syndromes. Front. Endocrinol. 2014, 5, 109. [Google Scholar] [CrossRef] [PubMed]
- Wiese, C.B.; Avetisyan, R.; Reue, K. The Impact of Chromosomal Sex on Cardiometabolic Health and Disease. Trends Endocrinol. Metab. 2023, 34, 652–665. [Google Scholar] [CrossRef]
- Bouvattier, C. Disorders of Sex Development. In Pediatric Urology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 459–475. ISBN 978-1-4160-3204-5. [Google Scholar]
- Peng, Y.; He, Q. Reproductive Toxicity and Related Mechanisms of Micro(Nano)Plastics in Terrestrial Mammals: Review of Current Evidence. Ecotoxicol. Environ. Saf. 2024, 279, 116505. [Google Scholar] [CrossRef]
- Martin, R.H. Cytogenetic Determinants of Male Fertility. Hum. Reprod. Update 2008, 14, 379–390. [Google Scholar] [CrossRef]
- Sun, S.-C.; Kim, N.-H. Spindle Assembly Checkpoint and Its Regulators in Meiosis. Hum. Reprod. Update 2012, 18, 60–72. [Google Scholar] [CrossRef]
- Zhang, S.; Tao, W.; Han, J.-D.J. 3D Chromatin Structure Changes during Spermatogenesis and Oogenesis. Comput. Struct. Biotechnol. J. 2022, 20, 2434–2441. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Guo, J.; Zhang, P.; Zeng, W. The Roles of microRNAs in Regulation of Mammalian Spermatogenesis. J. Anim. Sci. Biotechnol. 2017, 8, 35. [Google Scholar] [CrossRef]
- Mobasheri, M.B.; Babatunde, K.A. Testicular miRNAs in Relation to Spermatogenesis, Spermatogonial Stem Cells and Cancer/Testis Genes. Sci. Afr. 2019, 3, e00067. [Google Scholar] [CrossRef]
- Walker, W.H. Regulation of Mammalian Spermatogenesis by miRNAs. Semin. Cell Dev. Biol. 2022, 121, 24–31. [Google Scholar] [CrossRef]
- Lu, Y.; Oura, S.; Matsumura, T.; Oji, A.; Sakurai, N.; Fujihara, Y.; Shimada, K.; Miyata, H.; Tobita, T.; Noda, T.; et al. CRISPR/Cas9-Mediated Genome Editing Reveals 30 Testis-Enriched Genes Dispensable for Male Fertility in Mice†. Biol. Reprod. 2019, 101, 501–511. [Google Scholar] [CrossRef]
Abbreviation | Cytogenetic Notation | Prevalence in Infertile Men | Clinical Outcomes |
---|---|---|---|
Klinefelter Syndrome | 47,XXY | almost 3–4% [9,12] | Azoospermia, low testosterone, small testes |
Jacob’s Syndrome | 47,XYY | 1:1000 [9,14] | Often normospermic, but some with oligospermia |
Turner Mosaicism | 45,X/46,XY | 2–5 per 100,000 males [10,18] | Gonadal dysgenesis, infertility, tumor risk |
AZF Deletions | Yq11 microdeletions | 5–20% in NOA [13,24] | Sertoli-cell only syndrome, meiotic arrest |
Robertsonian Translocations | rob(13;14), rob(14;21), etc. | 1:800 general population [20,22] | Risk of unbalanced gametes, miscarriages |
Reciprocal Translocations | Various | almost 1% in infertile men [22,23] | Meiotic arrest, risk of offspring abnormalities |
Pericentric Inversion | inv(9)(p12q13) | 0.25–3% [26,27] | Often benign; possible link to infertility or miscarriage |
Gene | Molecular Function | Associated Pathology | References |
---|---|---|---|
STAG3 | Cohesin complex | Meiotic arrest, azoospermia | [41,43] |
SMC1β | Sister chromatid cohesion | Recombination failure, meiotic defects | [42] |
SYCP3 | Synaptonemal complex | Meiotic failure, non-obstructive azoospermia | [51,53] |
SYCE1–3, TEX12 | Central SC proteins | Abnormal synapsis, meiotic arrest | [46,48] |
KAL1 (ANOS1) | GnRH neuron migration | Kallmann syndrome, hypogonadism | [55] |
FGFR1 | FGF signaling | Hypogonadotropic hypogonadism | [55] |
SRY (translocated) | Sex determination | 46,XX DSD, azoospermia | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitrakas, A.G.; Alexiadi, C.-A.; Gargani, S.; Alexiadis, T.; Alexopoulou, S.-P.; Pagonopoulou, O.; Lambropoulou, M. Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes. Medicina 2025, 61, 1864. https://doi.org/10.3390/medicina61101864
Mitrakas AG, Alexiadi C-A, Gargani S, Alexiadis T, Alexopoulou S-P, Pagonopoulou O, Lambropoulou M. Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes. Medicina. 2025; 61(10):1864. https://doi.org/10.3390/medicina61101864
Chicago/Turabian StyleMitrakas, Achilleas G., Christina-Angelika Alexiadi, Sofia Gargani, Triantafyllos Alexiadis, Sofia-Panagiota Alexopoulou, Olga Pagonopoulou, and Maria Lambropoulou. 2025. "Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes" Medicina 61, no. 10: 1864. https://doi.org/10.3390/medicina61101864
APA StyleMitrakas, A. G., Alexiadi, C.-A., Gargani, S., Alexiadis, T., Alexopoulou, S.-P., Pagonopoulou, O., & Lambropoulou, M. (2025). Chromosomal Roadblocks in Male Fertility: Mechanisms, Risk Factors and Syndromes. Medicina, 61(10), 1864. https://doi.org/10.3390/medicina61101864