Laboratory and Microbiological Considerations in Sepsis-Induced Cardiac Dysfunction
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Definitions and Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA—J. Am. Med. Assoc. 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mellhammar, L.; Rose, N.; Cassini, A.; Rudd, K.E.; Schlattmann, P.; Allegranzi, B.; Reinhart, K. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020, 46, 1552–1562. [Google Scholar] [CrossRef]
- Ljungström, L.; Andersson, R.; Jacobsson, G. Incidences of community onset severe sepsis, Sepsis-3 sepsis, and bacteremia in Sweden—A prospective population-based study. PLoS ONE 2019, 14, e0225700. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International study of the prevalence and outcomes of infection in intensive care units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef]
- Mayr, F.B.; Yende, S.; Linde-Zwirble, W.T.; Peck-Palmer, O.M.; Barnato, A.E.; Weissfeld, L.A.; Angus, D.C. Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. JAMA 2010, 303, 2495–2503. [Google Scholar] [CrossRef]
- Panday, R.S.N.; Lammers, E.M.J.; Alam, N.; Nanayakkara, P.W.B. An overview of positive cultures and clinical outcomes in septic patients: A sub-analysis of the Prehospital Antibiotics Against Sepsis (PHANTASi) trial. Crit. Care 2019, 23, 182. [Google Scholar] [CrossRef]
- Gupta, S.; Sakhuja, A.; Kumar, G.; McGrath, E.; Nanchal, R.S.; Kashani, K.B. Culture-Negative Severe Sepsis: Nationwide Trends and Outcomes. Chest 2016, 150, 1251–1259. [Google Scholar] [CrossRef]
- Ohnuma, T.; Chihara, S.; Costin, B.; Treggiari, M.; Bartz, R.R.M.; Raghunathan, K.M.; Krishnamoorthy, V. Epidemiology, Resistance Profiles, and Outcomes of Bloodstream Infections in Community-Onset Sepsis in the United States. Crit. Care Med. 2023, 51, 1148–1158. [Google Scholar] [CrossRef]
- Martin, L.; Derwall, M.; Al Zoubi, S.; Zechendorf, E.; Reuter, D.A.; Thiemermann, C.; Schuerholz, T. The Septic Heart: Current Understanding of Molecular Mechanisms and Clinical Implications. Chest 2019, 155, 427–437. [Google Scholar] [CrossRef]
- Hasegawa, D.; Ishisaka, Y.; Maeda, T.; Prasitlumkum, N.; Nishida, K.; Dugar, S.; Sato, R. Prevalence and Prognosis of Sepsis-Induced Cardiomyopathy: A Systematic Review and Meta-Analysis. J. Intensive Care Med. 2023, 38, 797–808. [Google Scholar] [PubMed]
- Paraschiv, C.; Moraru, M.R.P.; Paduraru, L.F.; Palcau, C.A.; Popescu, A.C.; Balanescu, S.M. Current challenges in understanding, diagnosing and managing sepsis-induced cardiac dysfunction. J. Crit. Care 2026, 91, 155250. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Yu, M.-M.; Shou, S.-T.; Chai, Y.-F. Sepsis-induced cardiomyopathy: Mechanisms and treatments. Front. Immunol. 2017, 8, 1021. [Google Scholar] [CrossRef]
- Brown, A.O.; Singh, K.V.; Cruz, M.R.; Kaval, K.G.; Francisco, L.E.; Murray, B.E.; Garsin, D.A. Cardiac microlesions form during severe bacteremic enterococcus faecalis infection. J. Infect. Dis. 2021, 223, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Svennerholm, K.; Park, K.-S.; Wikström, J.; Lässer, C.; Crescitelli, R.; Shelke, G.V.; Jang, S.C.; Suzuki, S.; Bandeira, E.; Olofsson, C.S.; et al. Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci. Rep. 2017, 7, 17434. [Google Scholar] [CrossRef]
- Li, Z.; Bryant, A.E.; Parimon, T.; Stevens, D.L. Cardiac dysfunction in StrepTSS: Group A streptococcus disrupts the directional cardiomyocyte-to-macrophage crosstalk that maintains macrophage quiescence. Cytokine 2012, 59, 191–194. [Google Scholar] [CrossRef]
- Bolz, D.D.; Li, Z.; McIndoo, E.R.; Tweten, R.K.; Bryant, A.E.; Stevens, D.L. Cardiac myocyte dysfunction induced by streptolysin O is membrane pore and calcium dependent. Shock 2015, 43, 178–184. [Google Scholar] [CrossRef]
- Sato, R.; Kuriyama, A.; Takada, T.; Nasu, M.; Luthe, S.K. Prevalence and risk factors of sepsis-induced cardiomyopathy A retrospective cohort study. Medicine 2016, 95, e5031. [Google Scholar] [CrossRef]
- Dias, S.P.; Brouwer, M.C.; van de Beek, D. Sex and Gender Differences in Bacterial Infections. Infect. Immun. 2022, 90, e0028322. [Google Scholar] [CrossRef]
- Klouche, K.; Pommet, S.; Amigues, L.; Bargnoux, A.S.; Dupuy, A.M.; Machado, S.; Serveaux-Delous, M.; Morena, M.; Jonquet, O.; Cristol, J.P. Plasma brain natriuretic peptide and troponin levels in severe sepsis and septic shock: Relationships with systolic myocardial dysfunction and intensive care unit mortality. J. Intensive Care Med. 2014, 29, 229–237. [Google Scholar] [CrossRef]
- Liang, Y.-W.; Zhu, Y.-F.; Zhang, R.; Zhang, M.; Ye, X.-L.; Wei, J.-R. Incidence, prognosis, and risk factors of sepsis-induced cardiomyopathy. World J. Clin. Cases 2021, 9, 9452–9468. [Google Scholar] [CrossRef]
- Casserly, B.; Phillips, G.S.; Schorr, C.; Dellinger, R.P.; Townsend, S.R.; Osborn, T.M.; Reinhart, K.; Selvakumar, N.; Levy, M.M. Lactate measurements in sepsis-induced tissue hypoperfusion: Results from the surviving sepsis campaign database. Crit. Care Med. 2015, 43, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Landesberg, G.; Gilon, D.; Meroz, Y.; Georgieva, M.; Levin, P.D.; Goodman, S.; Avidan, A.; Beeri, R.; Weissman, C.; Jaffe, A.S.; et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur. Heart J. 2012, 33, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Wang, X.; Guo, T.; Gao, W.; Huang, Q.; Yang, J.; Gao, H.; Liu, Q. Cardiac troponin as a prognosticator of mortality in patients with sepsis: A systematic review and meta-analysis. Immun. Inflamm. Dis. 2023, 11, e1014. [Google Scholar] [CrossRef] [PubMed]
- Gajardo, A.I.J.; Ferrière-Steinert, S.; Valenzuela Jiménez, J. Early high-sensitivity troponin elevation and short-term mortality in sepsis: A systematic review with meta-analysis. Crit. Care 2025, 29, 76. [Google Scholar] [CrossRef]
- Wang, Z.; Murad, M.H.; Sundaragiri, P.R.; Kashani, K.; Miller, W.L.; Jaffe, A.S.; Vallabhajosyula, S. Natriuretic Peptides to Predict Short-Term Mortality in Patients with Sepsis: A Systematic Review and Meta-analysis. Mayo Clin. Proc. Innov. Qual. Outcomes 2020, 4, 50–64. [Google Scholar]
- Landesberg, G.; Levin, P.D.; Gilon, D.; Goodman, S.; Georgieva, M.; Weissman, C.; Jaffe, A.S.; Sprung, C.L.; Barak, V. Myocardial dysfunction in severe sepsis and septic shock: No correlation with inflammatory cytokines in real-life clinical setting. Chest 2015, 148, 93–102. [Google Scholar] [CrossRef]
- Hanumanthu, B.K.J.; Nair, A.S.; Katamreddy, A.; Gilbert, J.S.; You, J.Y.; Offor, O.L.; Kushwaha, A.; Krishnan, A.; Napolitano, M.; Palaidimos, L.; et al. Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis. Acute Crit. Care 2021, 36, 215–222. [Google Scholar] [CrossRef]
- Lappin, E.; Ferguson, A.J. Gram-positive toxic shock syndromes. Lancet Infect. Dis. 2009, 9, 281–290. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, J.C.; Chiscano-Camón, L.; Maldonado, C.; Ruiz-Sanmartin, A.; Martin, L.; Bajaña, I.; Bastidas, J.; Lopez-Martinez, R.; Franco-Jarava, C.; González-López, J.J.; et al. Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits. Antibiotics 2024, 13, 187. [Google Scholar] [CrossRef]
- Alhamdi, Y.; Neill, D.R.; Abrams, S.T.; Malak, H.A.; Yahya, R.; Barrett-Jolley, R.; Wang, G.; Kadioglu, A.; Toh, C.-H. Circulating Pneumolysin Is a Potent Inducer of Cardiac Injury during Pneumococcal Infection. PLoS Pathog. 2015, 11, e1004836. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, S.; Vallejo, J.G.; Knuefermann, P.; Misra, A.; Defreitas, G.; Carabello, B.A.; Mann, D.L. Escherichia coli LPS-induced LV dysfunction: Role of toll-like receptor-4 in the adult heart. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, H2316–H2323. [Google Scholar] [CrossRef]
- Suffredini, A.F.; Fromm, R.E.; Parker, M.M.; Brenner, M.; Kovacs, J.A.; Wesley, R.A.; Parrillo, J.E. The Cardiovascular Response of Normal Humans to the Administration of Endotoxin. New Engl. J. Med. 1989, 321, 280–287. [Google Scholar] [CrossRef]
- Sato, K.; Naito, A.; Shiratori, T.; Yamamoto, M.; Shimane, K.; Mikami, M.; Senda, M.; Kume, H.; Suzuki, M. A case of sepsis-induced cardiomyopathy successfully treated with venoarterial extracorporeal membrane oxygenation. IJU Case Rep. 2023, 6, 26–29. [Google Scholar] [CrossRef]
- Kumar, H.; Kumar, S.; Nag, D.S.; Diwakar, K.; Singh, N. Sepsis-Induced Cardiomyopathy Secondary to Escherichia coli Sepsis and Intestinal Perforation: A Diagnostic Challenge in a Paediatric Patient. Cureus 2024, 16, e76552. [Google Scholar] [CrossRef]
- Mutig, N.; Geers-Knoerr, C.; Piep, B.; Pahuja, A.; Vogt, P.M.; Brenner, B.; Niederbichler, A.D.; Kraft, T. Lipoteichoic acid from Staphylococcus aureus directly affects cardiomyocyte contractility and calcium transients. Mol. Immunol. 2013, 56, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Knuefermann, P.; Sakata, Y.; Baker, J.S.; Huang, C.-H.; Sekiguchi, K.; Hardarson, H.S.; Takeuchi, O.; Akira, S.; Vallejo, J.G. Toll-like receptor 2 mediates Staphylococcus aureus-induced myocardial dysfunction and cytokine production in the heart. Circulation 2004, 110, 3693–3698. [Google Scholar] [CrossRef] [PubMed]
- Grandel, U.; Hopf, M.; Buerke, M.; Hattar, K.; Heep, M.; Fink, L.; Bohle, R.M.; Morath, S.; Hartung, T.; Pullamsetti, S.; et al. Mechanisms of cardiac depression caused by lipoteichoic acids from Staphylococcus aureus in isolated rat hearts. Circulation 2005, 112, 691–698. [Google Scholar] [CrossRef]
SICD (n = 14) | Non-SICD (n = 86) | p | |
---|---|---|---|
Age, median (IQR) | 73 (54, 82) | 72.5 (65, 81) | 0.371 |
Male, number (%) | 10 (71) | 45 (52) | 0.183 |
In-hospital mortality, number (%) | 6 (43) | 38 (44) | 0.926 |
Hospitalization, days, median (IQR) | 14 (7, 24) | 10 (7, 19) | 0.468 |
ICU stay, days, median (IQR) | 3.5 (1, 12) | 2 (1, 6) | 0.176 |
OTI upon admission, number (%) | 4 (29) | 18 (21) | 0.502 |
Septic shock, number (%) | 13 (93) | 55 (64) | 0.033 |
SOFA Score, median (IQR) | 7 (5, 8) | 7 (5, 9) | 0.678 |
Healthcare-associated infection, number (%) | 4 (29) | 39 (45) | 0.240 |
LVEF upon admission, median (IQR) | 40 (30, 44) | 55 (54, 60) | <0.001 |
TAPSE upon admission, median (IQR) | 16.5 (14, 19) | 20 (18, 22) | <0.001 |
Comorbidities | |||
Diabetes mellitus, number (%) | 3 (21) | 36 (42) | 0.146 |
Obstructive lung diseases, number (%) | 0 (0) | 16 (19) | 0.117 |
Chronic kidney disease, number (%) | 2 (14) | 22 (26) | 0.508 |
Chronic hepatitis, number (%) | 2 (14) | 6 (7) | 0.311 |
Obesity, number (%) | 2 (14) | 12 (14) | 1 |
Atrial fibrillation, number (%) | 7 (50) | 35 (40) | 0.567 |
Coronary artery disease, number (%) | 0 (0) | 7 (8) | 0.268 |
Hypertension, number (%) | 11 (78) | 77 (89) | 0.240 |
Infection site | |||
Respiratory, number (%) | 3 (21) | 34 (39) | 0.193 |
Urinary, number (%) | 4 (29) | 25 (29) | 1 |
Abdominal, number (%) | 1 (7) | 13 (15) | 0.685 |
Skin and soft tissue, number (%) | 2 (14) | 10 (12) | 0.674 |
Catheter-related, number (%) | 1 (7) | 4 (5) | 0.537 |
SICD | Non-SICD | p Value | ||
---|---|---|---|---|
Microbiology findings | ||||
Positive blood cultures, number (%) | 6 (43) | 31 (36) | 0.625 | |
Gram-positive bacteria, number (%) | 5 (36) | 23 (27) | 0.527 | |
Staphylococci (MRSA, MSSA), number (%) | 0 (0) | 13 (15) | 0.205 | |
Streptococci, number (%) | 4 (29) | 8 (9) | 0.040 | |
Enterococci, number (%) | 1 (7) | 2 (2) | 0.367 | |
Gram-negative bacteria, number (%) | 11 (79) | 67 (78) | 1 | |
Enterobacterales, number (%) | 10 (71) | 50 (58) | 0.347 | |
Escherichia coli, number (%) | 6 (43) | 23 (27) | 0.222 | |
Klebsiella pneumoniae, number (%) | 3 (21) | 19 (22) | 1 | |
Proteus mirabilis, number (%) | 2 (14) | 4 (5) | 0.197 | |
Pseudomonas aeruginosa, number (%) | 0 (0) | 9 (10) | 0.352 | |
Polymicrobial cultures, number (%) | 5 (36%) | 9 (10%) | 0.025 | |
Laboratory findings upon admission | URL | |||
Lactate (mmol/L), median (IQR) | 1.4 mmol/L | 4.5 (3.4, 7.3) | 2.3 (1.8, 3.5) | <0.001 |
Leucocytes (103/μL), median (IQR) | 10.2 × 103/μL | 16.8 (11, 22) | 15 (11, 25) | 0.980 |
Lymphocytes (103/μL), median (IQR) | 3.4 × 103/μL | 0.7 (0.5, 1) | 0.9 (0.5, 1.3) | 0.548 |
Neutrophils (103/μL), median (IQR) | 6.9 × 103/μL | 15 (8.8, 21.5) | 13.9 (9.9, 22) | 0.972 |
NLR, median (IQR) | 20.4 (12, 31) | 16.5 (10.4, 24.4) | 0.427 | |
Thrombocytes (103/μL, median (IQR) | 400 × 103/μL | 211 (140, 240) | 226 (142, 293) | 0.353 |
CRP (mg/mL), median (IQR) | 10 mg/mL | 254 (90, 301) | 211 (81, 326) | 0.554 |
Procalcitonin (mg/mL), median (IQR) | 0.077 mg/mL | 14.6 (3.1, 49) | 8.6 (3.4, 33.6) | 0.585 |
AST (U/L), median (IQR) | 34 U/L | 62 (35, 88) | 33.5 (22, 66) | 0.036 |
ALT (U/L), median (IQR) | 55 U/L | 52.5 (32, 70) | 35 (22, 58) | 0.048 |
Total bilirubin (mg/dL), median (IQR) | 1.2 mg/dL | 1.2 (0.9, 2.9) | 1 (0.7, 1.6) | 0.050 |
Troponin (ng/mL), median (IQR) | 0.12 ng/mL | 0.68 (0.0, 2.7) | 0.1 (0.0, 0.29) | 0.097 |
NT pro BNP (pg/mL), median (IQR) | 125 pg/mL | 9185 (3100, 13,000) | 7270 (2758, 20,400) | 0.806 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paraschiv, C.; Nicolaescu, D.O.; Popescu, M.R.; Vasile, C.C.; Moisa, E.; Negoita, S.I.; Balanescu, S.M. Laboratory and Microbiological Considerations in Sepsis-Induced Cardiac Dysfunction. Medicina 2025, 61, 1765. https://doi.org/10.3390/medicina61101765
Paraschiv C, Nicolaescu DO, Popescu MR, Vasile CC, Moisa E, Negoita SI, Balanescu SM. Laboratory and Microbiological Considerations in Sepsis-Induced Cardiac Dysfunction. Medicina. 2025; 61(10):1765. https://doi.org/10.3390/medicina61101765
Chicago/Turabian StyleParaschiv, Catalina, Denisa Oana Nicolaescu, Mihaela Roxana Popescu, Carmen Cristina Vasile, Emanuel Moisa, Silvius Ioan Negoita, and Serban Mihai Balanescu. 2025. "Laboratory and Microbiological Considerations in Sepsis-Induced Cardiac Dysfunction" Medicina 61, no. 10: 1765. https://doi.org/10.3390/medicina61101765
APA StyleParaschiv, C., Nicolaescu, D. O., Popescu, M. R., Vasile, C. C., Moisa, E., Negoita, S. I., & Balanescu, S. M. (2025). Laboratory and Microbiological Considerations in Sepsis-Induced Cardiac Dysfunction. Medicina, 61(10), 1765. https://doi.org/10.3390/medicina61101765