Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Measures
2.3.1. Respiratory Functions
2.3.2. Physical Functions
Exercise Capacity
Lower Extremity Muscle Performance
Hand Grip Strength
2.3.3. Fatigue Severity
2.3.4. Dyspnea Severity
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wostyn, P. COVID-19 and chronic fatigue syndrome: Is the worst yet to come? Med. Hypotheses 2021, 146, 110469. [Google Scholar] [CrossRef]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, e048391. [Google Scholar] [CrossRef]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Baricich, A.; No-more Covid Group; Borg, M.B.; Cuneo, D.; Cadario, E.; Azzolina, D.; Balbo, P.E.; Bellan, M.; Zeppegno, P.; Pirisi, M.; et al. Midterm functional sequelae and implications in rehabilitation after COVID-19: A cross-sectional study. Eur. J. Phys. Rehabil. Med. 2021, 57, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Lund Berven, L.; Selvakumar, J.; Havdal, L.; Stiansen-Sonerud, T.; Einvik, G.; Leegaard, T.M.; Tjade, T.; Michelsen, A.E.; Mollnes, T.E.; Wyller, V.B.B. Inflammatory Markers, Pulmonary Function, and Clinical Symptoms in Acute COVID-19 Among Non-Hospitalized Adolescents and Young Adults. Front. Immunol. 2022, 13, 837288. [Google Scholar] [CrossRef]
- Zhou, F.; Tao, M.; Shang, L.; Liu, Y.; Pan, G.; Jin, Y.; Wang, L.; Hu, S.; Li, J.; Zhang, M.; et al. Assessment of Sequelae of COVID-19 Nearly 1 Year After Diagnosis. Front. Med. 2021, 8, 717194. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute COVID-19 in primary care. BMJ (Clin. Res. Ed.) 2020, 370, m3026. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef] [PubMed]
- Akinci, B.; Kaya, B.K.; Kisa, E.P.; Kocyigit, A.; Hosbay, Z.; Ozdincler, A. The Effects of COVID-19 in Respiratory Functions and Exercise Capacity: A Pilot Study in Young Adults. Glob. J. Respir. Care 2021, 7, 14–19. [Google Scholar] [CrossRef]
- Saglam, M.; Arikan, H.; Savci, S.; Inal-Ince, D.; Bosnak-Guclu, M.; Karabulut, E.; Tokgozoglu, L. International physical activity questionnaire: Reliability and validity of the Turkish version. Percept. Mot. Ski. 2010, 111, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Black, L.F.; Hyatt, R.E. Maximal respiratory pressures: Normal values and relationship to age and sex. Am. Rev. Respir. Dis. 1969, 99, 696–702. [Google Scholar] [PubMed]
- McGowan, A.; Sylvester, K.; Burgos, F.; Boros, P.; de Jongh, F.; Kendrick, A. Recommendation from ERS Group 9.1 (Respiratory Function Technologists/Scientists) Lung Function Testing During COVID-19 Pandemic and Beyond; ERS: Lausanne, Switzerland, 2020. [Google Scholar]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Núñez-Cortés, R.; Rivera-Lillo, G.; Arias-Campoverde, M.; Soto-García, D.; García-Palomera, R.; Torres-Castro, R. Use of sit-to-stand test to assess the physical capacity and exertional desaturation in patients post COVID-19. Chronic Respir. Dis. 2021, 18, 1479973121999205. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Armutlu, K.; Korkmaz, N.C.; Keser, I.; Sumbuloglu, V.; Akbiyik, D.I.; Guney, Z.; Karabudak, R. The validity and reliability of the Fatigue Severity Scale in Turkish multiple sclerosis patients. Int. J. Rehabil. Res. Int. Z. Rehabilitationsforschung. Rev. Int. Rech. Readapt. 2007, 30, 81–85. [Google Scholar] [CrossRef]
- Yorke, J.; Moosavi, S.H.; Shuldham, C.; Jones, P.W. Quantification of dyspnoea using descriptors: Development and initial testing of the Dyspnoea-12. Thorax 2010, 65, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Gök Metin, Z.; Helvacı, A. Dispne-12 Ölçeğinin Türkçe Geçerlik ve Güvenirlik Çalışması. J. Hacet. Univ. Fac. Nurs. 2018, 5, 102–115. [Google Scholar] [CrossRef]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar] [CrossRef] [PubMed]
- Mogensen, I.; Hallberg, J.; Björkander, S.; Du, L.; Zuo, F.; Hammarström, L.; Pan-Hammarström, Q.; Ekström, S.; Georgelis, A.; Palmberg, L.; et al. Lung function before and after COVID-19 in young adults: A population-based study. J. Allergy Clin. Immunol. Glob. 2022, 1, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Bostancı, Ö.; Karaduman, E.; Çolak, Y.; Yılmaz, A.K.; Kabadayı, M.; Bilgiç, S. Respiratory muscle strength and pulmonary function in unvaccinated athletes before and after COVID-19 infection: A prospective cohort study. Respir. Physiol. Neurobiol. 2023, 308, 103983. [Google Scholar] [CrossRef] [PubMed]
- Sousa, B.G.; Silva, Í.C.; Costa, R.F.D.; Rebouças, E.R.N.; Ramos, T.R.; Almondes, J.G.S.; Pereira, E.D.B.; Campos, N.G. Persistence of symptoms and lung function in mild cases of COVID-19 six months after infection: A cross-sectional study. J. Bras. Pneumol. Publicacao Offcial Soc. Bras. Pneumol. Tisilogia 2024, 50, e20230305. [Google Scholar] [CrossRef]
- Çelik, Z.; Güzel, N.A.; Kafa, N.; Köktürk, N. Respiratory muscle strength in volleyball players suffered from COVID-19. Ir. J. Med. Sci. 2022, 191, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.S.; Zafar, U.; Shehwar, D.E.; Amin, H. Comparison of Pulmonary Functions After Induction of Stress Between Post-COVID and Healthy Adults. Cureus 2023, 15, e43612. [Google Scholar] [CrossRef]
- Güneş, M.; Yana, M.; Güçlü, M.B. Physical activity levels respiratory and peripheral muscle strength and pulmonary function in young post-COVID-19 patients: A cross-sectional study. Wien. Klin. Wochenschr. 2023, 135, 251–259. [Google Scholar] [CrossRef]
- Plaza, M.; Sevilla, G.G.P. Respiratory muscle sequelae in young university students infected by coronavirus disease 2019: An observational study. Rev. Assoc. Medica Bras. 2022, 68, 245–249. [Google Scholar] [CrossRef]
- Del Corral, T.; Fabero-Garrido, R.; Plaza-Manzano, G.; Fernández-de-Las-Peñas, C.; Navarro-Santana, M.J.; López-de-Uralde-Villanueva, I. Minimal Clinically Important Differences in Inspiratory Muscle Function Variables after a Respiratory Muscle Training Programme in Individuals with Long-Term Post-COVID-19 Symptoms. J. Clin. Med. 2023, 12, 2720. [Google Scholar] [CrossRef] [PubMed]
- Berentschot, J.C.; Heijenbrok-Kal, M.H.; Bek, L.M.; Huijts, S.M.; van Bommel, J.; van Genderen, M.E.; Aerts, J.G.; Ribbers, G.M.; Hellemons, M.E.; Berg-Emons, R.J.v.D.; et al. Physical recovery across care pathways up to 12 months after hospitalization for COVID-19: A multicenter prospective cohort study (CO-FLOW). Lancet Reg. Health. Eur. 2022, 22, 100485. [Google Scholar] [CrossRef]
- Ora, J.; Rogliani, P.; Ferron, F.; Vignuoli, M.; Valentino, L.; Pontoni, G.; Di Ciuccio, F.; Ferrara, R.; Sciarra, T. Effects of SARS-CoV-2 on Pulmonary Function and Muscle Strength Testing in Military Subjects According to the Period of Infection: Cross-Sectional Study. Diagnostics 2023, 13, 1679. [Google Scholar] [CrossRef]
- Sirayder, U.; Inal-Ince, D.; Kepenek-Varol, B.; Acik, C. Long-Term Characteristics of Severe COVID-19: Respiratory Function, Functional Capacity, and Quality of Life. Int. J. Environ. Res. Public Health 2022, 19, 6304. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Legarra-Gorgoñon, G.; Oscoz-Ochandorena, S.; García-Alonso, Y.; García-Alonso, N.; Oteiza, J.; Ernaga Lorea, A.; Correa-Rodríguez, M.; Izquierdo, M. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J. Appl. Physiol. 2023, 134, 50–58. [Google Scholar] [CrossRef]
- Evers, G.; Schulze, A.B.; Osiaevi, I.; Harmening, K.; Vollenberg, R.; Wiewrodt, R.; Pistulli, R.; Boentert, M.; Tepasse, P.R.; Sindermann, J.R.; et al. Sustained Impairment in Cardiopulmonary Exercise Capacity Testing in Patients after COVID-19: A Single Center Experience. Can. Respir. J. 2022, 2022, 2466789. [Google Scholar] [CrossRef] [PubMed]
- Rinaldo, R.F.; Mondoni, M.; Parazzini, E.M.; Pitari, F.; Brambilla, E.; Luraschi, S.; Balbi, M.; Sferrazza Papa, G.F.; Sotgiu, G.; Guazzi, M.; et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur. Respir. J. 2021, 58, 2100870. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Straudi, S.; Yee Sien, N.; Fayed, N.; Melvin, J.L.; Sivan, M. Applying the WHO ICF Framework to the Outcome Measures Used in the Evaluation of Long-Term Clinical Outcomes in Coronavirus Outbreaks. Int. J. Environ. Res. Public Health 2020, 17, 6476. [Google Scholar] [CrossRef]
- Fuglebjerg, N.J.U.; Jensen, T.O.; Hoyer, N.; Ryrsø, C.K.; Lindegaard, B.; Harboe, Z.B. Silent hypoxia in patients with SARS CoV-2 infection before hospital discharge. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2020, 99, 100–101. [Google Scholar] [CrossRef]
- Rooney, S.; Webster, A.; Paul, L. Systematic Review of Changes and Recovery in Physical Function and Fitness After Severe Acute Respiratory Syndrome-Related Coronavirus Infection: Implications for COVID-19 Rehabilitation. Phys. Ther. 2020, 100, 1717–1729. [Google Scholar] [CrossRef] [PubMed]
- Casanova, C.; Celli, B.R.; Barria, P.; Casas, A.; Cote, C.; de Torres, J.P.; Jardim, J.; Lopez, M.V.; Marin, J.M.; Montes de Oca, M.; et al. The 6-min walk distance in healthy subjects: Reference standards from seven countries. Eur. Respir. J. 2011, 37, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Torres-Castro, R.; Núñez-Cortés, R.; Larrateguy, S.; Alsina-Restoy, X.; Barberà, J.A.; Gimeno-Santos, E.; García, A.R.; Sibila, O.; Blanco, I. Assessment of Exercise Capacity in Post-COVID-19 Patients: How Is the Appropriate Test Chosen? Life 2023, 13, 621. [Google Scholar] [CrossRef] [PubMed]
- Daines, L.; Zheng, B.; Elneima, O.; Harrison, E.; Lone, N.I.; Hurst, J.R.; Brown, J.S.; Sapey, E.; Chalmers, J.D.; Quint, J.K.; et al. Characteristics and risk factors for post-COVID-19 breathlessness after hospitalisation for COVID-19. ERJ Open Res. 2023, 9, 00274–2022. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls n = 25 | Post-COVID Group 1 n = 25 | Post-COVID Group 2 n = 25 | p | |
---|---|---|---|---|
Age (years) | 21.9 ± 0.96 | 21.3 ± 1.86 | 20.85 ± 1.49 | 0.078 |
Gender | ||||
Female | 14 (56%) | 16 (64%) | 17 (68%) | 1.000 |
BMI (kg/m2) | 21.92 ± 2.25 | 23.84 ± 3.99 | 22.21 ± 2.79 | 0.177 |
Time after positive PCR (days) | - | 124.75 ± 27.52 | 279.60 ± 70.93 | <0.0001 |
Vaccination | 0.457 | |||
Sinovac | 1 (4%) | 1 (4%) | 3 (12%) | |
BioNTech | 2 (8%) | 1 (4%) | - | |
Smoking status | 0.478 | |||
Smoker | 17 (70%) | 14 (56%) | 15 (60%) | |
Non-smoker | 8 (30%) | 8 (30%) | 6 (25%) | |
Ex-smoker | - | 3 (14%) | 3 (14%) | |
Physical activity level (IPAQ-SF) | 0.686 | |||
Low | 4 (15%) | 4 (15%) | 1 (5%) | |
Moderate | 17 (70%) | 16 (65%) | 16 (65%) | |
High | 4 (15%) | 5 (20%) | 8 (30%) | |
FEV1 * | 3.71 ± 0.49 | 3.42 ± 0.80 | 3.08 ± 0.28 | 0.004 |
FEV1%pred | 91.62 ± 8.03 | 88.52 ± 12.16 | 86.88 ± 9.12 | 0.322 |
FVC * | 4.42 ± 0.61 | 4.25 ± 0.87 | 3.71 ± 0.53 | 0.006 |
FVC%pred | 93.87 ± 8.99 | 95.70 ± 6.90 | 81.94 ± 27.53 | 0.032 |
FEV1/FVC% * | 0.84 ± 0.05 | 0.80 ± 0.07 | 0.84 ± 0.10 | 0.157 |
PEF | 7.31 ± 1.52 | 6.15 ± 1.66 | 5.20 ± 0.84 | <0.0001 |
PEF%pred * | 82 ± 14.84 | 73.06 ± 15.62 | 69.58 ± 12.31 | 0.024 |
MIP (cmH2O) * | 103.37 ± 19.15 | 95.23 ± 18.39 | 90.66 ± 17.46 | 0.072 |
MIP%pred * | 0.95 ± 0.18 | 0.90 ± 0.15 | 0.90 ± 0.15 | 0.846 |
MEP (cmH2O) * | 119.06 ± 23.39 | 109 ± 21.23 | 95.27 ± 14.98 | 0.002 |
MEP%pred * | 0.60 ± 0.13 | 0.58 ± 0.08 | 0.55 ± 0.10 | 0.882 |
Healthy Controls n = 25 | Post-COVID Group 1 n = 25 | Post-COVID Group 2 n = 25 | p | |
---|---|---|---|---|
6MWD (m) * | 615.37 ± 40.88 | 570.88 ± 45.97 | 571.61 ± 32.54 | 0.001 |
Δ SpO2 (%) | −0.37 ± 0.78 | −0.41 ± 0.97 | −0.38 ± 0.92 | 0.956 |
Δ Heart rate (beat/min) * | 46.37 ± 16.07 | 37.94 ± 19.42 | 39.83 ± 20.03 | 0.329 |
Δ BORG dyspnea | 0.68 ± 1.15 | 0.52 ± 1.34 | 0.72 ± 1.44 | 0.823 |
Δ BORG leg fatigue | 2.25 ± 2.58 | 2.41 ± 2.95 | 2.22 ± 2.58 | 0.984 |
ISWT walking distance (m) | 582.63 ± 127.058 | 544.03 ± 108.56 | 530.90 ± 124.96 | 0.026 |
Δ SpO2 (%) | 0 ± 0.97 | −0.29 ± 0.62 | −0.72 ± 1.20 | 0.038 |
Δ Heart rate (beat/min) * | 58.56 ± 23.86 | 49.05 ± 25.05 | 44.22 ± 24.14 | 0.176 |
Δ BORG dyspnea | 1.06 ± 1.95 | 2.11 ± 2.44 | 0.77 ± 1.14 | 0.170 |
Δ BORG leg fatigue | 3.62 ± 2.19 | 3.35 ± 2.53 | 3 ± 2.51 | 0.666 |
Δ Blood lactate change (mmol/dL) * | 1.75 ± 1.69 | 1.08 ± 1.98 | 1.48 ± 2.32 | 0.580 |
VO2 max | 18.75 ± 3.17 | 17.79 ± 2.71 | 17.46 ± 3.12 | 0.026 |
1 min sit-to-stand test | 32.14 ± 4.98 | 26.01 ± 4.01 | 28.82 ± 4.90 | 0.001 |
Dominant hand grip strength | 42.25 ± 21.55 | 44.65 ± 26.15 | 40.92 ± 16.83 | 0.966 |
FSS | 28.31 ± 9.96 | 29.05 ± 10.32 | 31.35 ± 11.39 | 0.613 |
Dyspnea 12 | 3.50 ± 4.77 | 3.20 ± 4.03 | 3.23 ± 2.64 | 0.635 |
Physical dyspnea | 2.93 ± 3.53 | 3.05 ± 3.95 | 2.94 ± 2.35 | 0.552 |
Emotional dyspnea | 0.56 ± 1.77 | 0.15 ± 0.48 | 0.29 ± 0.70 | 0.297 |
COVID-19 Symptoms | Post-COVID Group 1 n = 25 | Post-COVID Group 2 n = 25 | p |
---|---|---|---|
Fatigue | 14 (55%) | 17 (70%) | 0.327 |
Headache | 11 (45%) | 9 (35%) | 0.519 |
Cough | 10 (40%) | 7 (28%) | 0.507 |
Dyspnea | 9 (35%) | 7 (28%) | 0.736 |
Muscle and joint pain | 10 (40%) | 9 (35%) | 0.744 |
Secretion | 6 (25%) | 4 (16%) | 0.429 |
Loss of smell and taste | 7 (30%) | 4 (16%) | 0.256 |
Gastrointestinal problems | 5 (20%) | 4 (16%) | 0.677 |
Fewer | 5 (20%) | 4 (16%) | 0.677 |
Medical treatment during acute infection | |||
None | 8 (32%) | 7 (28%) | 0.758 |
Hidroksiklorokin | - | 4 (16%) | |
Azitromisin | 5 (20%) | 5 (20%) | |
Favipiravir | 12 (48%) | 9 (36%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ülker Ekşi, B.; Kısa, E.P.; Ertan Harputlu, Ö.; Kara Kaya, B.; Hoşbay, Z.; Akıncı, B. Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19. Medicina 2025, 61, 86. https://doi.org/10.3390/medicina61010086
Ülker Ekşi B, Kısa EP, Ertan Harputlu Ö, Kara Kaya B, Hoşbay Z, Akıncı B. Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19. Medicina. 2025; 61(1):86. https://doi.org/10.3390/medicina61010086
Chicago/Turabian StyleÜlker Ekşi, Büşra, Eylül Pınar Kısa, Özge Ertan Harputlu, Begüm Kara Kaya, Zeynep Hoşbay, and Buket Akıncı. 2025. "Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19" Medicina 61, no. 1: 86. https://doi.org/10.3390/medicina61010086
APA StyleÜlker Ekşi, B., Kısa, E. P., Ertan Harputlu, Ö., Kara Kaya, B., Hoşbay, Z., & Akıncı, B. (2025). Exploring Medium- and Long-Term Respiratory and Functional Sequelae in Young Adults Post-COVID-19. Medicina, 61(1), 86. https://doi.org/10.3390/medicina61010086