Comparative Analysis of Right vs. Left Radial Access in Percutaneous Coronary Intervention: Impact on Silent Cerebral Ischemia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grüntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978, 311, 263. [Google Scholar] [CrossRef]
- Jin, C.; Xu, Y.; Qiao, S.; Tang, X.; Wu, Y.; Yan, H.; Dou, K.; Xu, B.; Yang, J.; Xian, Y.; et al. Comparison of Transradial and Transfemoral Approaches in Women Undergoing Percutaneous Coronary Intervention in China: A Retrospective Observational Study. Angiology 2017, 68, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, R.; D’Acierno, L.; Crisci, M.; Tartaglione, D.; Cappelli Bigazzi, M.; Canonico, M.; Albanese, M.; Gragnano, F.; Fimiani, F.; Russo, M.; et al. From Femoral to Radial Approach in Coronary Intervention. Angiology 2017, 68, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Bashore, T.M.; Gehrig, T. Cholesterol emboli after invasive cardiac procedures. J. Am. Coll. Cardiol. 2003, 42, 217–218. [Google Scholar] [CrossRef]
- Doll, J.A.; Hira, R.S.; Kearney, K.E.; Kandzari, D.E.; Riley, R.F.; Marso, S.P.; Grantham, J.A.; Thompson, C.A.; McCabe, J.M.; Karmpaliotis, D.; et al. Management of Percutaneous Coronary Intervention Complications: Algorithms from the 2018 and 2019 Seattle Percutaneous Coronary Intervention Complications Conference. Circ. Cardiovasc. Interv. 2020, 13, e008962. [Google Scholar] [CrossRef] [PubMed]
- Hassell, M.E.C.; Nijveldt, R.; Roos, Y.B.W.; Majoie, C.B.L.; Hamon, M.; Piek, J.J.; Delewi, R. Silent cerebral infarcts associated with cardiac disease and procedures. Nat. Rev. Cardiol. 2013, 10, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Aykan, A.; Gökdeniz, T.; Bektaş, H.; Boyacı, F.; Gül, İ.; Hatem, E.; Kalaycıoğlu, E.; Turan, T.; Çevirme, D.; Çelik, Ş. Assessment of Silent Neuronal Injury Following Coronary Angiography and Intervention in Patients with Acute Coronary Syndrome. Clin. Appl. Thromb. Hemost. 2016, 22, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Göksülük, H.; Güleç, S.; Özyüncü, N.; Kürklü, S.T.; Vurgun, V.K.; Candemir, B.; Uludağ, M.G.; Öztürk, S.; Us, E.; Erol, Ç. Comparison of Frequency of Silent Cerebral Infarction after Coronary Angiography and Stenting with Transradial Versus Transfemoral Approaches. Am. J. Cardiol. 2018, 122, 548–553. [Google Scholar] [CrossRef]
- Kaiser, E.; Kuzmits, R.; Pregant, P.; Burghuber, O.; Worofka, W. Clinical biochemistry of neuron specific enolase. Clin. Chim. Acta 1989, 183, 13–31. [Google Scholar] [CrossRef]
- Haque, A.; Ray, S.K.; Cox, A.; Banik, N.L. Neuron specific enolase: A promising therapeutic target in acute spinal cord injury. Metab. Brain Dis. 2016, 31, 487–495. [Google Scholar] [CrossRef]
- Feldman, D.N.; Swaminathan, R.V.; Kaltenbach, L.A.; Baklanov, D.V.; Kim, L.K.; Wong, S.C.; Minutello, R.M.; Messenger, J.C.; Moussa, I.; Garratt, K.N.; et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: An updated report from the national cardiovascular data registry (2007–2012). Circulation 2013, 127, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Kontopantelis, E.; Myint, P.K.; Zaman, A.; Berry, C.; Keavney, B.; Nolan, J.; Ludman, P.F.; de Belder, M.A.; Buchan, I.; et al. Stroke following percutaneous coronary intervention: Type-specific incidence, outcomes and determinants seen by the British Cardiovascular Intervention Society 2007–12. Eur. Heart J. 2015, 36, 1618–1628. [Google Scholar] [CrossRef] [PubMed]
- Mason, P.J.; Shah, B.; Tamis-Holland, J.E.; Bittl, J.A.; Cohen, M.G.; Safirstein, J.; Drachman, D.E.; Valle, J.A.; Rhodes, D.; Gilchrist, I.C.; et al. An Update on Radial Artery Access and Best Practices for Transradial Coronary Angiography and Intervention in Acute Coronary Syndrome: A Scientific Statement from the American Heart Association. Circ. Cardiovasc. Interv. 2018, 11, e000035. [Google Scholar] [CrossRef] [PubMed]
- Spina, R.; Simon, N.; Markus, R.; Muller, D.W.; Kathir, K. Contrast-induced encephalopathy following cardiac catheterization. Catheter. Cardiovasc. Interv. 2017, 90, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Büsing, K.A.; Schulte-Sasse, C.; Flüchter, S.; Süselbeck, T.; Haase, K.K.; Neff, W.; Hirsch, J.G.; Borggrefe, M.; Düber, C. Cerebral infarction: Incidence and risk factors after diagnostic and interventional cardiac catheterization--prospective evaluation at diffusion-weighted MR imaging. Radiology 2005, 235, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Sciahbasi, A.; Romagnoli, E.; Burzotta, F.; Trani, C.; Sarandrea, A.; Summaria, F.; Pendenza, G.; Tommasino, A.; Patrizi, R.; Mazzari, M.; et al. Transradial approach (left vs right) and procedural times during percutaneous coronary procedures: TALENT study. Am. Heart J. 2011, 161, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Freixa, X.; Trilla, M.; Feldman, M.; Jiménez, M.; Betriu, A.; Masotti, M. Right versus left transradial approach for coronary catheterization in octogenarian patients. Catheter. Cardiovasc. Interv. 2012, 80, 267–272. [Google Scholar] [CrossRef]
- Dehghani, P.; Mohammad, A.; Bajaj, R.; Hong, T.; Suen, C.M.; Sharieff, W.; Chisholm, R.J.; Kutryk, M.J.; Fam, N.P.; Cheema, A.N. Mechanism and predictors of failed transradial approach for percutaneous coronary interventions. JACC Cardiovasc. Interv. 2009, 2, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Karalis, D.G.; Quinn, V.; Victor, M.F.; Ross, J.J.; Polansky, M.; Spratt, K.A.; Chandrasekaran, K. Risk of catheter-related emboli in patients with atherosclerotic debris in the thoracic aorta. Am. Heart J. 1996, 131, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Ozyuncu, N.; Gulec, S.; Kaya, C.T.; Goksuluk, H.; Tan, T.S.; Vurgun, V.K.; Us, E.; Erol, C. Relation of Acute Decompensated Heart Failure to Silent Cerebral Infarcts in Patients with Reduced Left Ventricular Ejection Fraction. Am. J. Cardiol. 2019, 123, 1835–1839. [Google Scholar] [CrossRef]
- Kozdag, G.; Ciftci, E.; Ural, D.; Sahin, T.; Selekler, M.; Agacdiken, A.; Demirci, A.; Komsuoglu, S.; Komsuoglu, B. Silent cerebral infarction in chronic heart failure: Ischemic and nonischemic dilated cardiomyopathy. Vasc. Health Risk Manag. 2008, 4, 463–469. [Google Scholar] [CrossRef]
- Chiarito, M.; Cao, D.; Nicolas, J.; Roumeliotis, A.; Power, D.; Chandiramani, R.; Sartori, S.; Camaj, A.; Goel, R.; Claessen, B.E.; et al. Radial versus femoral access for coronary interventions: An updated systematic review and meta-analysis of randomized trials. Catheter. Cardiovasc. Interv. 2021, 97, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Reifart, J.; Göhring, S.; Albrecht, A.; Haerer, W.; Levenson, B.; Ringwald, G.; Gärtner, P.; Reifart, N. Acceptance and safety of femoral versus radial access for percutaneous coronary intervention (PCI): Results from a large monitor-controlled German registry (QuIK). BMC Cardiovasc. Disord. 2022, 22, 7. [Google Scholar] [CrossRef]
- Sifat, A.E.; Vaidya, B.; Villalba, H.; Albekairi, T.H.; Abbruscato, T.J. Neurovascular unit transport responses to ischemia and common coexisting conditions: Smoking and diabetes. Am. J. Physiol. Cell Physiol. 2019, 316, C2–C15. [Google Scholar] [CrossRef] [PubMed]
- Björkhem, I.; Meaney, S. Brain cholesterol: Long secret life behind a barrier. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.H.; Li, T.H.; Peng, J.; Zheng, J.; Li, T.T.; Liu, L.S.; Jiang, Z.S.; Zheng, X.L. PCSK9: A novel inflammation modulator in atherosclerosis? J. Cell. Physiol. 2019, 234, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Yawoot, N.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021, 47, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Kotani, K.; Osaki, Y.; Sakane, N.; Adachi, S.; Ishimaru, Y. Risk factors for silent cerebral infarction in the elderly. Arch. Med. Res. 2004, 35, 522–524. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Kase, C.S.; Wolf, P.A.; Chodosh, E.H.; Zacker, H.B.; Kelly-Hayes, M.; Kannel, W.B.; D’Agostino, R.B.; Scampini, L. Prevalence of silent stroke in patients presenting with initial stroke: The Framingham Study. Stroke 1989, 20, 850–852. [Google Scholar] [CrossRef]
Parameter | Left Radial Group (n = 98) | Right Radial Group (n = 99) | p |
---|---|---|---|
Age (year) | 61.4 ± 8.9 8.99 | 62.7 ± 8.6 8.65 | 0.307 |
Male, n (%) | 69 (70.4) | 68 (68.7) | 0.867 |
Smoking, n (%) | 49 (49.2) | 43 (44.8) | 0.393 |
Body mass index (kg/m2) | 28.7 ± 3.9 3.92 | 28.5 ± 3.9 3.93 | 0.666 |
Hypertension n (%) | 77 (78.6) | 81 (81.8) | 0.596 |
Diabetes n (%) | 43 (43.9) | 52 (52.5) | 0.255 |
Hyperlipidemia n (%) | 54 (55.1) | 52 (52.5) | 0.776 |
Prior MI n (%) | 21 (21.4) | 23 (23.5) | 0.864 |
LVEF, % | 54.8 ± 7.7 | 54.5 ± 7.4 | 0.803 |
Diagnosis at admission | 0.762 | ||
NSTE-ACS n (%) | 33 (33.7) | 31 (31.3) | |
CCS n % | 65 (66.3) | 68 (68.7) | |
Hemoglobin, g/dL | 13.7 ± 1.6 | 13.4 ± 1.7 | 0.252 |
Hematocrit, % | 40.2 ± 4.4 | 39.3 ± 4.4 | 0.150 |
GFR, mL/dk | 84.8 ± 22.6 | 80.1 ± 22.9 | 0.206 |
HbA1c, mg/dL | 6.8 ± 1.6 | 7 ± 1.6 | 0.077 |
Triglyceride, mg/dL | 185.2 ± 85.2 | 196.4 ± 117.5 | 0.529 |
Total Cholesterol, mg/dL | 185.3 ± 45.6 | 188 ± 41.1 | 0.417 |
HDL-Cholesterol, mg/dL | 41.0 ± 9.3 | 41.8 ± 10.4 | 0.586 |
LDL-Cholesterol, mg/dL | 108.4 ± 39.5 | 110.3 ± 40.9 | 0.712 |
Parameter | Left Radial Group (n = 98) | Right Radial Group (n = 99) | p |
---|---|---|---|
Contrast volume (mL) | 154.8 ± 47.6 | 161.5 ± 50.8 | 0.276 |
Procedure time (min) | 29.2 ± 11.7 | 31.4 ± 12.2 | 0.125 |
Fluoroscopy time (min) | 14.1 ± 6.8 | 14.4 ± 7.3 | 0.980 |
Number of catheter, n | 2.8 ± 0.6 | 2 ± 0.4 | <0.001 |
Total number of used materials, n | 6.7 ± 1.5 | 6.2 ± 1.7 | 0.012 |
Total stent length (mm) | 29.6 ± 13.6 | 29.3 ± 14.0 | 0.805 |
Predilatation, n (%) | 71 (72.4) | 73 (73.7) | 0.873 |
Postdilatation, n (%) | 52 (53.1) | 65 (65.7) | 0.083 |
Catheter type | 0.542 | ||
Judkins, n (%) | 33 (33.7) | 29 (29.3) | |
Non-Judkins, n (%) | 65 (66.3) | 70 (70.7) | |
SYNTAX score | 11.5 ± 6.7 | 10.4 ± 5.7 | 0.388 |
Target vessel | 0.772 | ||
LAD, n (%) | 38 (38.7) | 35 (35.4) | |
LCX, n (%) | 25 (25.5) | 27 (27.3) | |
RCA, n (%) | 28 (28.6) | 29 (29.3) | |
LAD + LCX, n (%) | 3 (3.1) | 4 (4) | |
LAD + RCA, n (%) | 1 (1) | 3 (3) | |
RCA + LCX, n (%) | 3 (3.1) | 1 (1) | |
Subclavian tortuosity | <0.001 | ||
Severe tortuosity (+), n (%) | 6 (6.1) | 23 (23.2) | |
Severe tortuosity (−), n (%) | 92 (93.9) | 76 (76.9) | |
P2Y12 | 0.955 | ||
Clopidogrel, n (%) | 74 (75.5) | 75 (75.8) | |
Ticagrelor, n (%) | 8 (8.2) | 9 (9.1) | |
Prasugrel, n (%) | 16 (16.3) | 15 (15.2) |
Parameter | SCI (−) (n = 137) | SCI (+) (n = 60) | p |
---|---|---|---|
Radial preference | 0.034 | ||
Left radial, n (%) | 75 (76.5) | 23 (23.5) | |
Right radial, n (%) | 62 (62.6) | 37 (37.4) | |
Age (year) | 62.2 ± 8.6 | 61.8 ± 9.2 | 0.790 |
Male, (n) % | (90) 65.7 | (47) 78.3 | 0.076 |
Body mass index (kg/m2) | 29.1 ± 4.1 | 27.6 ± 3.0 | 0.033 |
Hypertension, n (%) | 111 (81) | 47 (78.3) | 0.699 |
Diabetes, n (%) | 61 (44.5) | 34 (56.7) | 0.117 |
HbA1c, mg/dL | 6.7 ± 1.5 | 7.2 ± 1.7 | 0.031 |
Prior MI, n (%) | 30 (21.9) | 14 (23.3) | 0.824 |
Smoking, n (%) | 57 (41.6) | 35 (58.3) | 0.043 |
Hyperlipidemia n (%) | 70 (51.1) | 36 (60) | 0.249 |
Subclavian tortuosity, n (%) | 15 (10.9) | 14 (23.3) | 0.027 |
LVEF, % | 55.4 ± 7.1 | 52.9 ± 8.2 | 0.061 |
Contrast volume (mL) | 158.9 ± 50.5 | 155.3 ± 47.1 | 0.762 |
Procedure time (min) | 29.9 ± 11.8 | 31.1 ± 12.5 | 0.506 |
Total stent length (mm) | 30.4 ± 14.2 | 26.9 ± 12.5 | 0.108 |
Total number of used materials, n | 6.5 ± 1.7 | 6.3 ± 1.5 | 0.552 |
Parameter | Odds Ratio (OR) | %95 C.I. for OR | p | |
---|---|---|---|---|
Lower | Upper | |||
Right radial preference | 1.946 | 1.047–3.676 | 0.035 | |
Smoking | 0.713 | 0.524–0.970 | 0.031 | |
HbA1c | 1.195 | 0.997–1.432 | 0.051 | |
Male | 0.530 | 0.261–1.075 | 0.079 | |
Procedure time | 1.009 | 0.984–1.034 | 0.505 | |
Subclavian tortuosity | 0.341 | 0.153–0.763 | 0.009 | |
Total number of used materials | 0.924 | 0.766–1.114 | 0.406 | |
LVEF | 0.958 | 0.922–0.966 | 0.033 |
Parameter | Odds Ratio (OR) | 95% C.I. for OR | p | |
---|---|---|---|---|
Lower | Upper | |||
Right radial preference | 2.104 | 1.102–3.995 | 0.023 | |
Smoking | 2.088 | 1.105–3.944 | 0.023 | |
LVEF | 0.958 | 0.920–0.998 | 0.039 |
Risk Factor | AUC (95% C.I.) | p | Cut-Off Value | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
LVEF | 0.639 (0.551–0.809) | 0.007 | 51.5 | 40 | 73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, A.; Soylu, K.; Yildirim, U.; Uyanik, M.; Coksevim, M.; Avci, B. Comparative Analysis of Right vs. Left Radial Access in Percutaneous Coronary Intervention: Impact on Silent Cerebral Ischemia. Medicina 2024, 60, 1193. https://doi.org/10.3390/medicina60081193
Kara A, Soylu K, Yildirim U, Uyanik M, Coksevim M, Avci B. Comparative Analysis of Right vs. Left Radial Access in Percutaneous Coronary Intervention: Impact on Silent Cerebral Ischemia. Medicina. 2024; 60(8):1193. https://doi.org/10.3390/medicina60081193
Chicago/Turabian StyleKara, Abdulkadir, Korhan Soylu, Ufuk Yildirim, Muhammet Uyanik, Metin Coksevim, and Bahattin Avci. 2024. "Comparative Analysis of Right vs. Left Radial Access in Percutaneous Coronary Intervention: Impact on Silent Cerebral Ischemia" Medicina 60, no. 8: 1193. https://doi.org/10.3390/medicina60081193
APA StyleKara, A., Soylu, K., Yildirim, U., Uyanik, M., Coksevim, M., & Avci, B. (2024). Comparative Analysis of Right vs. Left Radial Access in Percutaneous Coronary Intervention: Impact on Silent Cerebral Ischemia. Medicina, 60(8), 1193. https://doi.org/10.3390/medicina60081193