Association between Sarcopenia and Balance in Patients Undergoing Inpatient Rehabilitation after Hip Fractures: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Study Design and Data Collection
2.3. Outcome Measurements
2.4. Diagnosis of Sarcopenia
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
3.1. Participants
3.2. Functional Outcomes
3.3. Association between Sarcopenia and Balance Function
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheung, C.L.; Ang, S.B.; Chadha, M.; Chow, E.S.; Chung, Y.S.; Hew, F.L.; Jaisamrarn, U.; Ng, H.; Takeuchi, Y.; Wu, C.H.; et al. An updated hip fracture projection in Asia: The Asian Federation of Osteoporosis Societies study. Osteoporos. Sarcopenia 2018, 4, 16–21. [Google Scholar] [CrossRef]
- Elliott, J.; Beringer, T.; Kee, F.; Marsh, D.; Willis, C.; Stevenson, M. Predicting survival after treatment for fracture of the proximal femur and the effect of delays to surgery. J. Clin. Epidemiol. 2003, 56, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.-H.; Kuo, Y.-J.; Chen, Y.-P. The association between sarcopenia and postoperative outcomes among older adults with hip fracture: A systematic review. J. Appl. Gerontol. 2021, 40, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Tang, V.L.; Sudore, R.; Cenzer, I.S.; Boscardin, W.J.; Smith, A.; Ritchie, C.; Wallhagen, M.; Finlayson, E.; Petrillo, L.; Covinsky, K. Rates of recovery to pre-fracture function in older persons with hip fracture: An observational study. J. Gen. Intern. Med. 2017, 32, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Kuo, Y.J.; Huang, Y.Y.; Tsai, M.J.; Chen, Y.P. Poor activities of daily living function reflect poor quality of life after hip fracture surgery for geriatric patients. Soc. Health Behav. 2019, 2, 41–46. [Google Scholar] [CrossRef]
- Morisaki, S.; Yoshii, K.; Tsuchida, S.; Oda, R.; Okubo, N.; Takahashi, K. Factors associated with maintaining walking ability postoperation for hip fractures and the predictive value of the CGA7 score for postoperative walking ability. Geriatr. Gerontol. Int. 2023, 23, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Naruse, H.; Kitade, I.; Shimada, S.; Tsubokawa, M.; Kokubo, Y.; Matsumine, A. Functional outcomes after the treatment of hip fracture. PLoS ONE 2020, 15, e0236652. [Google Scholar] [CrossRef] [PubMed]
- McGilton, K.S.; Chu, C.H.; Naglie, G.; van Wyk, P.M.; Stewart, S.; Davis, A.M. Factors influencing outcomes of older adults after undergoing rehabilitation for hip fracture. J. Am. Geriatr. Soc. 2016, 64, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, K.J.; Williamson, L.; Alexander, J.; Filliter, C.; Sobolev, B.; Guy, P.; Bearne, L.M.; Sackley, C. Prognostic factors of functional outcome after hip fracture surgery: A systematic review. Age Ageing 2018, 47, 661–670. [Google Scholar] [CrossRef]
- Morandi, A.; Onder, G.; Fodri, L.; Sanniti, A.; Schnelle, J.; Simmons, S.; Landi, F.; Gentile, S.; Trabucchi, M.; Bellelli, G. The association between the probability of sarcopenia and functional outcomes in older patients undergoing in-hospital rehabilitation. J. Am. Med. Dir. Assoc. 2015, 16, 951–956. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Ortolani, E.; Salini, S.; Martone, A.M.; Santoro, L.; Santoliquido, A.; Sisto, A.; Picca, A.; Marzetti, E. The association between sarcopenia and functional outcomes among older patients with hip fracture undergoing in-hospital rehabilitation. Osteoporos. Int. 2017, 28, 1569–1576. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Tanoue, M. Prevalence of sarcopenia and its association with activities of daily living and dysphagia in convalescent rehabilitation ward inpatients. Clin. Nutr. 2018, 37, 2022–2028. [Google Scholar] [CrossRef] [PubMed]
- Iida, H.; Seki, T.; Sakai, Y.; Watanabe, T.; Wakao, N.; Matsui, H.; Imagama, S. Low muscle mass affect hip fracture treatment outcomes in older individuals: A single-institution case-control study. BMC Musculoskelet. Disord. 2021, 22, 259. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wong, P.K.; Tsai, M.J.; Chang, W.C.; Hsieh, T.S.; Leu, T.H.; Jeff Lin, C.F.; Lee, C.H.; Kuo, Y.J.; Lin, C.Y. The high prevalence of sarcopenia and its associated outcomes following hip surgery in Taiwanese geriatric patients with a hip fracture. J. Formos. Med. Assoc. 2020, 119, 1807–1816. [Google Scholar] [CrossRef]
- Kanaya, Y.; Inoue, H.; Sawamura, H.; Hoshino, Y.; Takeshita, K. Rehabilitation after hip fracture surgery improves physical and cognitive function in patients with or without sarcopenia. Geriatr. Orthop. Surg. Rehabil. 2023, 14, 21514593231181988. [Google Scholar] [CrossRef] [PubMed]
- Araiza-Nava, B.; Mendez-Sanchez, L.; Clark, P.; Peralta-Pedrero, M.L.; Javaid, M.K.; Calo, M.; Martinez-Hernandez, B.M.; Guzman-Jimenez, F. Short- and long-term prognostic factors associated with functional recovery in elderly patients with hip fracture: A systematic review. Osteoporos. Int. 2022, 33, 1429–1444. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef]
- Landi, F.; Cruz-Jentoft, A.J.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing 2013, 42, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.; Bernabei, R.; Onder, G. Sarcopenia as a risk factor for falls in elderly individuals: Results from the ilSIRENTE study. Clin. Nutr. 2012, 31, 652–658. [Google Scholar] [CrossRef]
- Tanimoto, Y.; Watanabe, M.; Sun, W.; Sugiura, Y.; Hayashida, I.; Kusabiraki, T.; Tamaki, J. Sarcopenia and falls in community-dwelling elderly subjects in Japan: Defining sarcopenia according to criteria of the European Working Group on Sarcopenia in Older People. Arch. Gerontol. Geriatr. 2014, 59, 295–299. [Google Scholar] [CrossRef]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Montalvo, J.I.; Alarcon, T.; Gotor, P.; Queipo, R.; Velasco, R.; Hoyos, R.; Pardo, A.; Otero, A. Prevalence of sarcopenia in acute hip fracture patients and its influence on short-term clinical outcome. Geriatr. Gerontol. Int. 2016, 16, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Park, J.W.; Lee, Y.K.; Yoo, J.I.; Choi, Y.S.; Yoon, B.H.; Ha, Y.C.; Koo, K.H. Prevalence of sarcopenia and mortality rate in older adults with hip fracture. J. Am. Geriatr. Soc. 2022, 70, 2379–2385. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.H.; Lee, S.U.; Jung, S.H.; Lee, S.J.; Lee, S.Y. Effectiveness of the computerized balance rehabilitation after hip fracture surgery: A study protocol of a prospective and open-label clinical trial. Medicine 2018, 97, e12199. [Google Scholar] [CrossRef] [PubMed]
- Sihvonen, S.; Kulmala, J.; Kallinen, M.; Alen, M.; Kiviranta, I.; Sipila, S. Postural balance and self-reported balance confidence in older adults with a hip fracture history. Gerontology 2009, 55, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Sonoda, S.; Domen, K. Stroke Impairment Assessment Set (SIAS) and Functional Independence Measure (FIM) and their practical use. In Functional Assessment of Stroke Patients: Practical Aspects of SIAS and FIM; Chino, N., Ed.; Splinger: Tokyo, Japan, 1997; pp. 17–139. [Google Scholar]
- Tsuji, T.; Sonoda, S.; Domen, K.; Saitoh, E.; Liu, M.; Chino, N. ADL structure for stroke patients in Japan based on the functional independence measure. Am. J. Phys. Med. Rehabil. 1995, 74, 432–438. [Google Scholar] [CrossRef] [PubMed]
- WHO. Obesity: Preventing and Managing the Global Epidemic; Report of a WHO Consultation; World Health Organ Technical Report Series 894; WHO: Geneva, Switzerland, 2000; pp. 1–253.
- Matsushima, M.; Yabe, I.; Uwatoko, H.; Shirai, S.; Hirotani, M.; Sasaki, H. Reliability of the Japanese version of the Berg Balance Scale. Intern. Med. 2014, 53, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphine, S.; Williams, J.I.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Holbein-Jenny, M.A.; Billek-Sawhney, B.; Beckman, E.; Smith, T. Balance in personal care home residents: A comparison of the Berg Balance Scale, the Multi-Directional Reach Test, and the Activities-Specific Balance Confidence Scale. J. Geriatr. Phys. Ther. 2005, 28, 48–53. [Google Scholar] [CrossRef]
- Viveiro, L.A.P.; Gomes, G.C.V.; Bacha, J.M.R.; Carvas Junior, N.; Kallas, M.E.; Reis, M.; Jacob Filho, W.; Pompeu, J.E. Reliability, validity, and ability to identity fall status of the Berg Balance Scale, Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest in older adults who live in nursing homes. J. Geriatr. Phys. Ther. 2019, 42, E45–E54. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.K.; Gill, K.M.; Magliozzi, M.R.; Nathan, J.; Piehl-Baker, L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness. Phys. Ther. 1984, 64, 35–40. [Google Scholar] [CrossRef]
- Mehrholz, J.; Wagner, K.; Rutte, K.; Meissner, D.; Pohl, M. Predictive validity and responsiveness of the functional ambulation category in hemiparetic patients after stroke. Arch. Phys. Med. Rehabil. 2007, 88, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Tamura, S.; Miyata, K.; Kobayashi, S.; Takeda, R.; Iwamoto, H. Development of cut-off values on the Berg Balance Scale for predicting walking independence in older adults with hip fracture. Prog. Rehabil. Med. 2022, 7, 20220043. [Google Scholar] [CrossRef]
- Lim, S.K.; Lee, S.Y.; Beom, J.; Lim, J.Y. Comparative outcomes of inpatient fragility fracture intensive rehabilitation management (FIRM) after hip fracture in sarcopenic and non-sarcopenic patients: A prospective observational study. Eur. Geriatr. Med. 2018, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K.; Satake, S.; Matsui, Y.; Arai, H. Quantifying muscle mass by adjusting for body mass index is the best for discriminating low strength and function in Japanese older outpatients. J. Nutr. Health Aging 2021, 25, 501–506. [Google Scholar] [CrossRef]
- Radosavljevic, N.; Nikolic, D.; Lazovic, M.; Petronic, I.; Milicevic, V.; Radosavljevic, Z.; Potic, J.; Ilic-Stojanovic, O.; Jeremic, A. Estimation of functional recovery in patients after hip fracture by Berg Balance Scale regarding the sex, age and comorbidity of participants. Geriatr. Gerontol. Int. 2013, 13, 365–371. [Google Scholar] [CrossRef]
- Ariza-Vega, P.; Lozano-Lozano, M.; Olmedo-Requena, R.; Martín-Martín, L.; Jiménez-Moleón, J.J. Influence of cognitive impairment on mobility recovery of patients with hip fracture. Am. J. Phys. Med. Rehabil. 2017, 96, 109–115. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum Associates: Mahwah, NJ, USA, 1998. [Google Scholar]
- Gadelha, A.B.; Neri, S.G.R.; Oliveira, R.J.; Bottaro, M.; David, A.C.; Vainshelboim, B.; Lima, R.M. Severity of sarcopenia is associated with postural balance and risk of falls in community-dwelling older women. Exp. Aging Res. 2018, 44, 258–269. [Google Scholar] [CrossRef]
- Wu, C.H.; Yang, K.C.; Chang, H.H.; Yen, J.F.; Tsai, K.S.; Huang, K.C. Sarcopenia is related to increased risk for low bone mineral density. J. Clin. Densitom. 2013, 16, 98–103. [Google Scholar] [CrossRef]
- Buyukavci, R.; Akturk, S.; Evren, B.; Ersoy, Y. Impacts of combined osteopenia/osteoporosis and sarcopenia on balance and quality of life in older adults. North. Clin. Istanb. 2020, 7, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, H.S.; Lee, Y.K.; Yoo, J.I.; Choi, Y.; Ha, Y.C.; Koo, K.H. Sarcopenia: An unsolved problem after hip fracture. J. Bone Miner. Metab. 2022, 40, 688–695. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Wakabayashi, H.; Bise, T.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Yamaga, M.; Koga, H. Sarcopenia is associated with worse recovery of physical function and dysphagia and a lower rate of home discharge in Japanese hospitalized adults undergoing convalescent rehabilitation. Nutrition 2019, 61, 111–118. [Google Scholar] [CrossRef]
- Gialanella, B.; Santoro, R.; Prometti, P.; Bertolinelli, M.; Monguzzi, V.; Grioni, G. Predictors of balance in older hip fracture patients undergoing standard motor rehabilitation. Eur. Geriatr. Med. 2021, 12, 69–77. [Google Scholar] [CrossRef]
- Fujita, T.; Kasahara, R.; Kurita, M.; Jinbo, R.; Yamamoto, Y.; Ohira, Y.; Otsuki, K.; Iokawa, K. Balance function required for bathing independence in patients with stroke and hip fracture. Prog. Rehabil. Med. 2023, 8, 20230028. [Google Scholar] [CrossRef]
- Achamrah, N.; Colange, G.; Delay, J.; Rimbert, A.; Folope, V.; Petit, A.; Grigioni, S.; Déchelotte, P.; Coëffier, M. Comparison of body composition assessment by DXA and BIA according to the body mass index: A retrospective study on 3655 measures. PLoS ONE 2018, 13, e0200465. [Google Scholar] [CrossRef]
- Steihaug, O.M.; Gjesdal, C.G.; Bogen, B.; Kristoffersen, M.H.; Lien, G.; Hufthammer, K.O.; Ranhoff, A.H. Does sarcopenia predict change in mobility after hip fracture? A multicenter observational study with one-year follow-up. BMC Geriatr. 2018, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Arai, H.; Kritchevsky, S.B.; Guralnik, J.; Bauer, J.M.; Pahor, M.; Clark, B.C.; Cesari, M.; et al. International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, diagnosis and management. J. Nutr. Health Aging 2018, 22, 1148–1161. [Google Scholar] [CrossRef]
- McKendry, J.; Currier, B.S.; Lim, C.; McLeod, J.C.; Thomas, A.C.Q.; Phillips, S.M. Nutritional supplements to support resistance exercise in countering the sarcopenia of aging. Nutrients 2020, 12, 2057. [Google Scholar] [CrossRef]
- Chudyk, A.M.; Jutai, J.W.; Petrella, R.J.; Speechley, M. Systematic review of hip fracture rehabilitation practices in the elderly. Arch. Phys. Med. Rehabil. 2009, 90, 246–262. [Google Scholar] [CrossRef]
- Stenvall, M.; Olofsson, B.; Nyberg, L.; Lundstrom, M.; Gustafson, Y. Improved performance in activities of daily living and mobility after a multidisciplinary postoperative rehabilitation in older people with femoral neck fracture: A randomized controlled trial with 1-year follow-up. J. Rehabil. Med. 2007, 39, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Jung, S.H.; Lee, S.U.; Ha, Y.C.; Lim, J.Y. Effect of balance training after hip fracture surgery: A systematic review and meta-analysis of randomized controlled studies. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Q.; Mao, L.B.; Wu, J. Efficacy of balance training for hip fracture patients: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2019, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Kuo, Y.J.; Hung, S.W.; Wen, T.W.; Chien, P.C.; Chiang, M.H.; Maffulli, N.; Lin, C.Y. Loss of skeletal muscle mass can be predicted by sarcopenia and reflects poor functional recovery at one year after surgery for geriatric hip fractures. Injury 2021, 52, 3446–3452. [Google Scholar] [CrossRef] [PubMed]
Total (n = 62) | Sarcopenia (n = 15) | Non-Sarcopenia (n = 47) | p | Effect Size | |||||
---|---|---|---|---|---|---|---|---|---|
Age | 78.2 | ±8.3 | 82.9 | ±8.4 | 76.7 | ±7.8 | 0.010 * | 0.79 | a |
Sex, number of women | 47 | 75.8% | 7 | 46.7% | 40 | 85.1% | 0.005 * | 0.38 | c |
Cause of Injury | |||||||||
Falls to the ground | 52 | 83.9% | 13 | 86.7% | 39 | 83.0% | 0.589 | 0.16 | c |
Falls from a height | 4 | 6.5% | 0 | 0.0% | 4 | 8.5% | |||
Others | 6 | 9.7% | 2 | 40.0% | 4 | 8.5% | |||
Fracture Type | |||||||||
Neck fracture | 31 | 50.0% | 7 | 46.7% | 24 | 51.1% | 0.902 | 0.06 | c |
Trochanteric fracture | 26 | 41.9% | 7 | 46.7% | 19 | 40.4% | |||
Subtrochanteric fracture | 5 | 8.1% | 1 | 6.7% | 4 | 8.5% | |||
Surgery type | |||||||||
ORIF | 39 | 62.9% | 8 | 53.3% | 31 | 66.0% | 0.709 | 0.12 | c |
THA | 4 | 6.5% | 1 | 6.7% | 3 | 6.4% | |||
BHA | 19 | 30.6% | 6 | 40.0% | 13 | 27.7% | |||
Surgery-to-DXA-scan duration (days) | 23.5 | (19.0–32.3) | 31.0 | (21.0–42.0) | 22.0 | (19.0–28.0) | 0.021 * | 0.29 | b |
CCI | 1.0 | (0.0–2.0) | 2.0 | (1.0–3.0) | 1.0 | (0.0–2.0) | 0.048 * | 0.25 | b |
Comorbid neurological conditions | 15 | 24.2% | 4 | 26.7% | 11 | 23.4% | 0.523 | 0.03 | c |
Independent ambulators before fracture (FAC > 3) | 62 | 100% | 15 | 100% | 47 | 100% | – | – | – |
FIM | |||||||||
Motor score | 61.5 | (48.8–70.0) | 58.0 | (45.0–64.0) | 64.0 | (52.0–71.0) | 0.054 | 0.25 | b |
Cognition score | 30.0 | (27.0–32.0) | 30.0 | (24.0–32.0) | 31.0 | (27.0–32.0) | 0.402 | 0.11 | b |
Total score | 90.0 | (75.5–99.25) | 82.0 | (68.0–94.0) | 92.0 | (76.0–102.0) | 0.084 | 0.22 | b |
Anthropometric measures | |||||||||
Body height (cm) | 154.4 | ±8.4 | 156.0 | ±8.2 | 153.9 | ±8.4 | 0.399 | 0.25 | a |
Body weight (kg) | 51.6 | ±10.4 | 53.1 | ±8.3 | 51.1 | ±11.1 | 0.519 | 0.19 | a |
BMI (weight/height2) | 21.6 | ±3.6 | 21.9 | ±3.6 | 21.5 | ±3.7 | 0.682 | 0.12 | a |
Handgrip strength (kg) | 18.3 | (14.0–20.6) | 15.4 | (14.0–23.0) | 18.5 | (14.0–20.0) | 0.780 | 0.04 | b |
SMI adjusted by height2 | 5.4 | (4.9–6.0) | 5.1 | ±0.7 | 5.6 | ±0.9 | 0.064 | 0.56 | a |
SMI adjusted by BMI | 0.6 | (0.5–0.7) | 0.6 | (0.5–0.7) | 0.6 | (0.6–0.7) | 0.233 | 0.15 | b |
Total (n = 62) | Sarcopenia (n = 15) | Non-Sarcopenia (n = 47) | p | Effect Size | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Length of hospital stay (days) | 65.9 | ±17.6 | 68.0 | (51.0–84.0) | 65.0 | (54.0–80.0) | 0.511 | 0.08 | b | |
Number of home discharge | 59 | 95.2% | 14 | 93.3% | 45 | 95.7% | 0.571 | 0.05 | d | |
Daily rehabilitation therapy (hours) | 2.4 | (2.3–2.5) | 2.4 | (2.3–2.5) | 2.4 | (2.2–2.5) | 0.593 | 0.07 | b | |
BBS score | 47.0 | (40.5–54.3) | 41.0 | (29.0–49.0) | 49.0 | (42.0–55.0) | 0.004 * | 0.37 | b | |
Poor balance (BBS ≤ 45) | 30 | 48.4% | 11 | 73.3% | 19 | 40.4% | 0.038 * | 0.28 | c | |
FAC | ||||||||||
≤3 | 4 | 6.5% | 2 | 13.3% | 2 | 4.3% | 0.255 | 0.18 | d | |
4 | 10 | 16.1% | 3 | 20.0% | 7 | 14.9% | ||||
5 | 48 | 77.4% | 10 | 66.7% | 38 | 80.9% | ||||
Independent ambulators (FAC > 3) | 58 | 93.5% | 13 | 86.7% | 45 | 95.7% | 0.244 | 0.21 | d | |
SWS (m/s) | 1.0 | ±0.4 | 0.8 | ±0.3 | 1.0 | ±0.4 | 0.029 * | 0.66 | a | |
FIM | ||||||||||
Motor score | 80.0 | (74.0–83.3) | 74.0 | (61.0–80.0) | 81.0 | (79.0–84.0) | 0.008 * | 0.34 | b | |
Cognition score | 32.0 | (30.0–34.0) | 32.0 | (28.0–33.0) | 33.0 | (30.0–34.0) | 0.073 | 0.23 | b | |
Total score | 112.0 | (103.3–116.0) | 104.0 | (92.0–113.0) | 113.0 | (106.0–117.0) | 0.010 * | 0.33 | b |
BBS Score at the Time of Discharge | ||||
---|---|---|---|---|
Standardized Coefficient | ||||
β | (95% CI) | p | VIF | |
Constant | (32.015–92.744) | <0.001 * | ||
Age | −0.248 | (−0.596–0.005) | 0.054 | 1.252 |
Sex (women/men) | 0.109 | (−3.454–8.447) | 0.404 | 1.330 |
CCI | −0.128 | (−3.08–0.972) | 0.302 | 1.192 |
FIM cognition score at admission | 0.216 | (−0.041–0.908) | 0.073 | 1.105 |
Sarcopenia (non-sarcopenia/sarcopenia) | −0.282 | (−12.592–[−0.382]) | 0.038 * | 1.400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ishimoto, R.; Mutsuzaki, H.; Shimizu, Y.; Takeuchi, R.; Matsumoto, S.; Hada, Y. Association between Sarcopenia and Balance in Patients Undergoing Inpatient Rehabilitation after Hip Fractures: A Retrospective Cohort Study. Medicina 2024, 60, 742. https://doi.org/10.3390/medicina60050742
Ishimoto R, Mutsuzaki H, Shimizu Y, Takeuchi R, Matsumoto S, Hada Y. Association between Sarcopenia and Balance in Patients Undergoing Inpatient Rehabilitation after Hip Fractures: A Retrospective Cohort Study. Medicina. 2024; 60(5):742. https://doi.org/10.3390/medicina60050742
Chicago/Turabian StyleIshimoto, Ryu, Hirotaka Mutsuzaki, Yukiyo Shimizu, Ryoko Takeuchi, Shuji Matsumoto, and Yasushi Hada. 2024. "Association between Sarcopenia and Balance in Patients Undergoing Inpatient Rehabilitation after Hip Fractures: A Retrospective Cohort Study" Medicina 60, no. 5: 742. https://doi.org/10.3390/medicina60050742
APA StyleIshimoto, R., Mutsuzaki, H., Shimizu, Y., Takeuchi, R., Matsumoto, S., & Hada, Y. (2024). Association between Sarcopenia and Balance in Patients Undergoing Inpatient Rehabilitation after Hip Fractures: A Retrospective Cohort Study. Medicina, 60(5), 742. https://doi.org/10.3390/medicina60050742