Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues
Abstract
:1. Introduction
2. Technical Overview and Mechanistic Explanation of Irreversible Electroporation
3. Patient Selection
4. Procedural Considerations
5. Safety and Complications
6. Clinical Outcomes
7. Post-IRE Immunological Responses
8. Challenges for New Centers to Start Using IRE
9. Post-IRE Pathologic-Radiologic Aspects
10. Comparison between IRE and Thermal Ablation Methods
11. Future Directions with IRE for Liver Cancers
12. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Glossary
High-Focused Ultrasound (HIFU) | Non-invasive technique that uses focused ultrasound to induce cell death |
Microwave Ablation (MWA) | Thermal ablative technique that uses heat energy generated from microwaves to induce cell death |
Irreversible Electroporation (IRE) | Non-thermal ablative technique that utilizes direct current to induce cell death |
Cryoablation (CRYO) | Thermal ablative technique that uses |
Radiofrequency ablation (RFA) | Thermal ablative technique that uses alternating current to induce cell death |
Nanoknife | Commercial name of irreversible electroporation device |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Vera, R.; González-Flores, E.; Rubio, C.; Urbano, J.; Camps, M.V.; Ciampi-Dopazo, J.J.; Rincón, J.O.; Macías, V.M.; Braco, M.A.G.; Suarez-Artacho, G. Multidisciplinary management of liver metastases in patients with colorectal cancer: A consensus of SEOM, AEC, SEOR, SERVEI, and SEMNIM. Clin. Transl. Oncol. 2019, 22, 647–662. [Google Scholar] [CrossRef] [PubMed]
- Ruers, T.; Van Coevorden, F.; Punt, C.J.A.; Pierie, J.-P.E.N.; Borel-Rinkes, I.; Ledermann, J.A.; Poston, G.; Bechstein, W.; Lentz, M.-A.; Mauer, M.; et al. Local Treatment of Unresectable Colorectal Liver Metastases: Results of a Randomized Phase II Trial. J. Natl. Cancer Inst. 2017, 109, djx015. [Google Scholar] [CrossRef] [PubMed]
- Puijk, R.S.; Ruarus, A.H.; Vroomen, L.G.P.H.; Van Tilborg, A.A.J.M.; Scheffer, H.J.; Nielsen, K.; De Jong, M.C.; De Vries, J.J.J.; Zonderhuis, B.M.; Eker, H.H.; et al. Colo rectal liver metastases: Surgery versus thermal ablation (COLLISION)—A phase III single-blind prospective randomized controlled trial. BMC Cancer 2018, 18, 821. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Benson, A.B.; D’angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A.; et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef]
- Hackl, C.; Neumann, P.; Gerken, M.; Loss, M.; Klinkhammer-Schalke, M.; Schlitt, H.J. Treatment of colorectal liver metastases in Germany: A ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer 2014, 14, 810. [Google Scholar] [CrossRef]
- Edeline, J.; Raoul, J.-L.; Vauleon, E.; Guillygomac’h, A.; Boudjema, K.; Boucher, E. Systemic chemotherapy for hepatocellular carcinoma in non-cirrhotic liver: A retrospective study. World J. Gastroenterol. 2009, 15, 713–716. [Google Scholar] [CrossRef]
- Merle, P.; Subic, M. Comparison and analysis of the efficacy of drug therapy for liver cancer. Hepatoma Res. 2020, 6, 60. [Google Scholar] [CrossRef]
- Uhlig, J.; Lukovic, J.; Dawson, L.A.; Patel, R.A.; Cavnar, M.J.; Kim, H.S. Locoregional Therapies for Colorectal Cancer Liver Metastases: Options Beyond Resection. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 133–146. [Google Scholar] [CrossRef]
- Llovet, J.M.; De Baere, T.; Kulik, L.; Haber, P.K.; Greten, T.F.; Meyer, T.; Lencioni, R. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 293–313. [Google Scholar] [CrossRef]
- Thomas, S.; Kim, K.R. Complications of image-guided thermal ablation of liver and kidney neoplasms. Semin. Interv. Radiol. 2014, 31, 138–148. [Google Scholar] [CrossRef]
- Foltz, G. Image-guided percutaneous ablation of hepatic malignancies. Semin. Interv. Radiol. 2014, 31, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Villard, C.; Soler, L.; Gangi, A.; Mutter, D.; Marescaux, J. Toward realistic radiofrequency ablation of hepatic tumors 3D simulation and planning. In Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display; SPIE: Bellingham, WA, USA, 2004; Volume 5367, p. 586. [Google Scholar] [CrossRef]
- Davalos, R.V.; Mir, L.M.; Rubinsky, B. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 2005, 33, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, G. Irreversible Electroporation. Semin. Interv. Radiol. 2015, 32, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.R.; Cheung, W.; Ellis, S.J.; Federman, D.; Kavnoudias, H.; Loader-Oliver, D.; Roberts, S.; Evans, P.; Ball, C.; Haydon, A. Investigation of the safety of irreversible electroporation in humans. J. Vasc. Interv. Radiol. 2011, 22, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Ruarus, A.H.; Barabasch, A.; Catalano, O.; Leen, E.; Narayanan, G.; Nilsson, A.; Padia, S.A.; Wiggermann, P.; Scheffer, H.J.; Meijerink, M.R. Irreversible Electroporation for Hepatic Tumors: Protocol Standardization Using the Modified Delphi Technique. J. Vasc. Interv. Radiol. 2020, 31, 1765–1771.e15. [Google Scholar] [CrossRef] [PubMed]
- Freeman, E.; Cheung, W.; Kavnoudias, H.; Majeed, A.; Kemp, W.; Roberts, S.K. Irreversible Electroporation For Hepatocellular Carcinoma: Longer-Term Outcomes At A Single Centre. Cardiovasc. Interv. Radiol. 2021, 44, 247–253. [Google Scholar] [CrossRef]
- Cannon, R.; Ellis, S.; Hayes, D.; Narayanan, G.; Martin, R.C. Safety and early efficacy of irreversible electroporation for hepatic tumors in proximity to vital structures. J. Surg. Oncol. 2012, 107, 544–549. [Google Scholar] [CrossRef]
- Patel, I.J.; Rahim, S.; Davidson, J.C.; Hanks, S.E.; Tam, A.L.; Walker, T.G.; Wilkins, L.R.; Sarode, R.; Weinberg, I. Society of Interventional Radiology Consensus Guidelines for the Periprocedural Management of Thrombotic and Bleeding Risk in Patients Undergoing Percutaneous Image-Guided Interventions—Part II: Recommendations. J. Vasc. Interv. Radiol. 2019, 30, 1168–1184.e1. [Google Scholar] [CrossRef] [PubMed]
- Kreiner, D.S.; Hwang, S.W.; Easa, J.E.; Resnick, D.K.; Baisden, J.L.; Bess, S.; Cho, C.H.; DePalma, M.J.; Dougherty, P.; Fernand, R.; et al. An evidence-based clinical guideline for the diagnosis and treatment of lumbar disc herniation with radiculopathy. Spine J. 2014, 14, 180–191. [Google Scholar] [CrossRef]
- Deodhar, A.; Dickfeld, T.; Single, G.W.; Hamilton, W.C.; Thornton, R.H.; Sofocleous, C.T.; Maybody, M.; Gónen, M.; Rubinsky, B.; Solomon, S.B. Irreversible electroporation near the heart: Ventricular arrhythmias can be prevented with ECG synchronization. Am. J. Roentgenol. 2011, 196, W330–W335. [Google Scholar] [CrossRef] [PubMed]
- Langan, R.C.; Goldman, D.A.; D’Angelica, M.I.; DeMatteo, R.P.; Allen, P.J.; Balachandran, V.P.; Jarnagin, W.R.; Kingham, T.P. Recurrence patterns following irreversible electroporation for hepatic malignancies. J. Surg. Oncol. 2017, 115, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Scheffer, H.J.; Vieveen, J.M.; van Tilborg, A.A.J.M.; Meijer, S.; van Kuijk, C.; Tol, M.P.v.D.; Meijerink, M.R.; Bouwman, R.A. Anaesthetic management during open and percutaneous irreversible electroporation. Br. J. Anaesth. 2014, 113, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, H.J.; Nielsen, K.; de Jong, M.C.; van Tilborg, A.A.; Vieveen, J.M.; Bouwman, A.; Meijer, S.; van Kuijk, C.; van den Tol, P.M.; Meijerink, M.R. Irreversible Electroporation for nonthermal tumor ablation in the clinical setting: A systematic review of safety and efficacy. J. Vasc. Interv. Radiol. 2014, 25, 997–1011. [Google Scholar] [CrossRef]
- Narayanan, G.; Hosein, P.J.; Arora, G.; Barbery, K.J.; Froud, T.; Livingstone, A.S.; Franceschi, D.; Lima, C.M.R.; Yrizarry, J. Percutaneous irreversible electroporation for downstaging and control of unresectable pancreatic adenocarcinoma. J. Vasc. Interv. Radiol. 2012, 23, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, H.J.; Melenhorst, M.C.; Echenique, A.M.; Nielsen, K.; van Tilborg, A.A.; van den Bos, W.; Vroomen, L.G.; van den Tol, P.M.; Meijerink, M.R. Irreversible Electroporation for Colorectal Liver Metastases. Tech. Vasc. Interv. Radiol. 2015, 18, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Froud, T.; Venkat, S.R.; Barbery, K.J.; Gunjan, A.; Narayanan, G. Liver Function Tests Following Irreversible Electroporation of Liver Tumors: Experience in 174 Procedures. Tech. Vasc. Interv. Radiol. 2015, 18, 140–146. [Google Scholar] [CrossRef]
- Narayanan, G.; Bhatia, S.; Echenique, A.; Suthar, R.; Barbery, K.; Yrizarry, J. Vessel Patency Post Irreversible Electroporation. Cardiovasc. Interv. Radiol. 2014, 37, 1523–1529. [Google Scholar] [CrossRef]
- Distelmaier, M.; Barabasch, A.; Heil, P.; Kraemer, N.A.; Isfort, P.; Keil, S.; Kuhl, C.K.; Bruners, P. Midterm safety and efficacy of irreversible electroporation of malignant liver tumors located close to major portal or hepatic veins. Radiology 2017, 285, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Dollinger, M.; Zeman, F.; Niessen, C.; Lang, S.A.; Beyer, L.P.; Müller, M.; Stroszczynski, C.; Wiggermann, P. Bile duct injury after irreversible electroporation of hepatic malignancies: Evaluation of mr imaging findings and laboratory values. J. Vasc. Interv. Radiol. 2016, 27, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Pedersoli, F.; Schulze-Hagen, M.; Zimmerman, M.; Isfort, P.; Kuhl, C.K.; Schmitz-Rode, T.; Bruners, P. Predictors of Occlusion of Hepatic Blood Vessels after Irreversible Electroporation of Liver Tumors. J. Vasc. Interv. Radiol. 2020, 31, 2033–2042.e1. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Crocetti, L.; Narayanan, G. Irreversible Electroporation in the Treatment of Hepatocellular Carcinoma. Tech. Vasc. Interv. Radiol. 2015, 18, 135–139. [Google Scholar] [CrossRef]
- Hosein, P.J.; Echenique, A.; Loaiza-Bonilla, A.; Froud, T.; Barbery, K.; Lima, C.M.R.; Yrizarry, J.M.; Narayanan, G. Percutaneous irreversible electroporation for the treatment of colorectal cancer liver metastases with a proposal for a new response evaluation system. J. Vasc. Interv. Radiol. 2014, 25, 1233–1239.e2. [Google Scholar] [CrossRef] [PubMed]
- Verloh, N.; Jensch, I.; Lürken, L.; Haimerl, M.; Dollinger, M.; Renner, P.; Wiggermann, P.; Werner, J.M.; Zeman, F.; Stroszczynski, C.; et al. Similar complication rates for irreversible electroporation and thermal ablation in patients with hepatocellular tumors. Radiol. Oncol. 2019, 53, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Dollinger, M.; Beyer, L.P.; Haimerl, M.; Niessen, C.; Jung, E.-M.; Zeman, F.; Stroszczynski, C.; Wiggermann, P. Adverse effects of irreversible electroporation of malignant liver tumors under CT fluoroscopic guidance: A single-center experience. Diagn. Interv. Radiol. 2015, 21, 471–475. [Google Scholar] [CrossRef]
- Niessen, C.; Thumann, S.; Beyer, L.; Pregler, B.; Kramer, J.; Lang, S.; Teufel, A.; Jung, E.M.; Stroszczynski, C.; Wiggermann, P. Percutaneous Irreversible Electroporation: Long-term survival analysis of 71 patients with inoperable malignant hepatic tumors. Sci. Rep. 2017, 7, 43687. [Google Scholar] [CrossRef]
- Stillström, D.; Beermann, M.; Engstrand, J.; Freedman, J.; Nilsson, H. Initial experience with irreversible electroporation of liver tumours. Eur. J. Radiol. Open 2019, 6, 62–67. [Google Scholar] [CrossRef]
- Frühling, P.; Nilsson, A.; Duraj, F.; Haglund, U.; Norén, A. Single-center nonrandomized clinical trial to assess the safety and efficacy of irreversible electroporation (IRE) ablation of liver tumors in humans: Short to mid-term results. Eur. J. Surg. Oncol. 2017, 43, 751–757. [Google Scholar] [CrossRef]
- Mafeld, S.; Wong, J.J.; Kibriya, N.; Stenberg, B.; Manas, D.; Bassett, P.; Aslam, T.; Evans, J.; Littler, P. Percutaneous Irreversible Electroporation (IRE) of Hepatic Malignancy: A Bi-institutional Analysis of Safety and Outcomes. Cardiovasc. Interv. Radiol. 2019, 42, 577–583. [Google Scholar] [CrossRef]
- Sutter, O.; Calvo, J.; N’kontchou, G.; Nault, J.-C.; Ourabia, R.; Nahon, P.; Ganne-Carrié, N.; Bourcier, V.; Zentar, N.; Bouhafs, F.; et al. Safety and efficacy of irreversible electroporation for the treatment of hepatocellular carcinoma not amenable to thermal ablation techniques: A retrospective single-center case series. Radiology 2017, 284, 877–886. [Google Scholar] [CrossRef]
- Mazal, N.; West, D. Novel Therapy for Unresectable Hilar Cholangiocarcinoma ‘Klatskin Tumor’ Utilizing Percutaneous Irreversible Electroporation: A Case Report. OMICS J. Radiol. 2017, 6, 258. [Google Scholar] [CrossRef]
- Martin, E.K.; Bhutiani, N.; Egger, M.E.; Philips, P.; Scoggins, C.R.; McMasters, K.M.; Kelly, L.R.; Vitale, G.C.; Martin, R.C. Safety and efficacy of irreversible electroporation in the treatment of obstructive jaundice in advanced hilar cholangiocarcinoma. HPB 2018, 20, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Franken, L.C.; van Veldhuisen, E.; Ruarus, A.H.; Coelen, R.J.; Roos, E.; van Delden, O.M.; Besselink, M.G.; Klümpen, H.-J.; van Lienden, K.P.; van Gulik, T.M.; et al. Outcomes of Irreversible Electroporation for Perihilar Cholangiocarcinoma: A Prospective Pilot Study. J. Vasc. Interv. Radiol. 2022, 33, 805–813.e1. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wang, Z.; Lei, K.; Liao, J.; Peng, Z.; Lin, M.; Liang, P.; Yu, J.; Peng, S.; Chen, S.; et al. Irreversible electroporation induces CD8+ T cell immune response against post-ablation hepatocellular carcinoma growth. Cancer Lett. 2021, 503, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, K.; Kakimi, K.; Takeuchi, H.; Fujieda, N.; Saito, K.; Sato, E.; Sakamaki, K.; Moriyasu, F.; Itoi, T. Irreversible Electroporation versus Radiofrequency Ablation: Comparison of Systemic Immune Responses in Patients with Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2019, 30, 845–853.e6. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Beicos, A.; Venkat, S.; Songrug, T.; Poveda, J.; Garcia-Buitrago, M.; Mohan, P.P.; Narayanan, G. Irreversible Electroporation of Hepatic and Pancreatic Malignancies: Radiologic-Pathologic Correlation. Tech. Vasc. Interv. Radiol. 2015, 18, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.G.; Bhattacharya, R.; Yeh, M.M.; Padia, S.A. Irreversible Electroporation Can Effectively Ablate Hepatocellular Carcinoma to Complete Pathologic Necrosis. J. Vasc. Interv. Radiol. 2015, 26, 1184–1188. [Google Scholar] [CrossRef] [PubMed]
- Bhutiani, N.; Philips, P.; Scoggins, C.R.; McMasters, K.M.; Potts, M.H.; Martin, R.C. Evaluation of tolerability and efficacy of irreversible electroporation (IRE) in treatment of Child-Pugh B (7/8) hepatocellular carcinoma (HCC). HPB 2016, 18, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Fu, D.; Fan, Y.; Wang, Z.; Lang, X. Irreversible electroporation versus radiofrequency ablation for malignant hepatic tumor: A prospective single-center double-arm trial. J. Interv. Med. 2022, 5, 89–94. [Google Scholar] [CrossRef]
- Wada, T.; Sugimoto, K.; Sakamaki, K.; Takahashi, H.; Kakegawa, T.; Tomita, Y.; Abe, M.; Yoshimasu, Y.; Takeuchi, H.; Itoi, T. Comparisons of Radiofrequency Ablation, Microwave Ablation, and Irreversible Electroporation by Using Propensity Score Analysis for Early Stage Hepatocellular Carcinoma. Cancers 2023, 15, 732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, W.; Procissi, D.; Tyler, P.; Omary, R.A.; Larson, A.C.; Lo, L.-W.; Chen, S.-A.; Young, M.-L.; Dawes, T.R.; et al. Rapid dramatic alterations to the tumor microstructure in pancreatic cancer following irreversible electroporation ablation. Nanomedicine 2014, 9, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wen, X.; Tian, L.; Li, T.; Xu, C.; Wen, X.; Melancon, M.P.; Gupta, S.; Shen, B.; Peng, W.; et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat. Commun. 2019, 10, 899. [Google Scholar] [CrossRef]
- SWhite, B.; Zhang, Z.; Chen, J.; Gogineni, V.R.; Larson, A.C. Early Immunologic Response of Irreversible Electroporation versus Cryoablation in a Rodent Model of Pancreatic Cancer. J. Vasc. Interv. Radiol. 2018, 29, 1764–1769. [Google Scholar]
- Partridge, B.R.; O’brien, T.J.; Lorenzo, M.F.; Coutermarsh-Ott, S.L.; Barry, S.L.; Stadler, K.; Muro, N.; Meyerhoeffer, M.; Allen, I.C.; Davalos, R.V.; et al. High-Frequency Irreversible Electroporation for Treatment of Primary Liver Cancer: A Proof-of-Principle Study in Canine Hepatocellular Carcinoma. J. Vasc. Interv. Radiol. 2020, 31, 482–491.e4. [Google Scholar] [CrossRef]
- Gish, R.G.; Marrero, J.A.; Benson, A.B. A multidisciplinary approach to the management of hepatocellular carcinoma. Gastroenterol. Hepatol. 2010, 6 (Suppl. S6), 1–16. [Google Scholar]
- Siddique, O.; Yoo, E.R.; Perumpail, R.B.; Perumpail, B.J.; Liu, A.; Cholankeril, G.; Ahmed, A. The importance of a multidisciplinary approach to hepatocellular carcinoma. J. Multidiscip. Healthc. 2017, 10, 95–100. [Google Scholar] [CrossRef] [PubMed]
Technology | Mode of Action | Advantages | Limitations |
---|---|---|---|
Radiofrequency ablation (RFA) | Thermally induced coagulation necrosis generated by high-frequency alternating current. | Widely available. Relatively inexpensive. Effective. | Potential for inadequate treatment in proximity to large vessels. Risk of thermal damage to adjacent structures. Tissue charring. Larger tumors (>2.5 cm) require multiple electrodes. |
Microwave ablation (MWA) | Thermal ablation induced through agitation of water molecules. | Does not require grounding pads. More predictable lesion as compared to RFA. Can treat larger tumors. Fast acting. | Potential for inadequate treatment in proximity to large vessels. Risk of thermal damage to adjacent structures. |
Cryoablation | Changes in argon gas pressure generate freeze-thaw cycles. Probe tip temperatures of −185° can be reached. | Relatively lower postoperative pain as compared to RFA and MWA. | Potential for inadequate treatment in proximity to large vessels. Risk of thermal damage to adjacent structures. |
High Intensity Focused Ultrasound (HIFU) | Thermal coagulation combined with cavitation. | No percutaneous probes. | Potential for inadequate treatment in proximity to large vessels. Risk of thermal damage to adjacent structures. |
Irreversible electroporation (IRE) | Electrical pulses which create permanent pores in cell membranes leading to apoptosis. | Non-thermal. Can be used near vessels and ducts. Preservation of extracellular matrix and parenchymal structures. | Risk of arrhythmia. Requires general anesthesia, muscle relaxation, and cardiac synchronization. Technically challenging and time consuming. |
Indications | Relative Contraindication | Absolute Contraindication |
---|---|---|
Patient | ||
|
|
|
Anatomic | ||
|
|
|
Study | Patient Characteristics | Tumor Types | IRE Parameters | Major Outcomes |
---|---|---|---|---|
Narayanan et al. [30] | 101 patients, ages 24–83, 129 lesions,158 vessels examined for patency on follow-up | Liver (100), Pancreas (18), Kidney (3), Pelvis (1), Aorto-caval lymph nodes (2), Adrenal (2), Lung (1), Retroperitoneal (1), Surgical bed of prior Whipple (1) | 90 high-voltage (1500–3000 V) direct current (25–45 A) electrical pulses were delivered, in nine sets of 10 pulses between paired unipolar electrodes or a single bipolar electrode. | Vascular changes in 4.4% (7/158) after IRE of hepatic tumors with 50 tumors abutting and 10 surrounding vessels |
Distelmaier et al. [31] | 29 patients, mean age 63 years ± 12 | 8 primary, 35 secondary malignant liver tumors located immediately adjacent to major hepatic veins, portal veins or both | 70–90 pulses per probe pair, pulse length 90 μs, max voltage 3000 V w/electrocardiographic triggering | No occlusion or narrowing of vessels post-IRE procedure for 43 hepatic tumors |
Tamura et al. [33] | 39 patients, mean age 57.8 years ± 11.8 | Colon (27), Intrahepatic (2), HCC (1), Hilar (1), Esophageal (2), Pancreatic (1), Mammary (1), Ewing sarcoma (1); Primary (1), Metastatic (38) | 70–90 pulses per probe pair; Pulse length 90 μs; Max voltage 3000 V with electrocardiographic triggering | 33 portal veins and 64 hepatic veins analyzed; Occlusions of hepatic/portal veins were subclinical w/out ramifications w/most being less than 4 mm; No hepatic veins larger than 4 mm became occluded |
Froud et al. [29] | 174 ablation procedures in 124 patients, mean age | Liver lesions included metastatic disease (62), with colorectal making up 31/62; Primary liver cancer (62), HCC (53), Cholangiocarcinoma (8) and (1) unknown diagnosis | 70–90 pulses per pair using between 1500–3000 V | In most post-IRE cases, abnormalities in liver functions resolved without intervention, did not prevent treatment, and showed similar results to those found after RFA or cryoablation |
Dollinger et al. [32] | 24 patients, mean age 59.3 years, 53 hepatic lesions in 35 ablation procedures | 53 hepatic tumors w/14 primary; Segment IV (20), Segment V (10), Segment VI (1), Segment VII (6), Segment VIII (16) | Two to six monopolar 18-gauge IRE probes were placed parallel to each other in or around the target tumor; 70 pulses per cycle; 90 µs pulse length; Voltage-to-distance ratio, 1500 V/cm of needle distance | Successful ablation of 53 tumors adjacent to 55 major bile ducts; Biliary ductal changes, including mild stenosis or dilatation, were observed on imaging in 15 out of 55 ducts, only 3 patients developed transient cholestasis that resolved without intervention |
Scheffer et al. [26] | 16 studies, 221 patients with 325 treated tumors | Patients presenting with lesions in liver (129), Pancreas (69), Kidney (14), Lung (6), Lesser pelvis (1), Lymph node (2) | Heterogeneity of reporting details, i.e., interelectrode distance, applied voltage + resulting current, pulse duration, number of electrodes, and probe repositioning, did not allow for detailed review of parameters | 16% complication rate (Grade I and II); Higher risk of complications associated with placement of more electrodes, i.e., probe-related punctures such as hemothorax, pneumothorax, and pleural effusions; 3 cases of biliary obstructions with 2 being a result of local tumor progression as opposed to ablation-induced biliary stenosis |
Dollinger et al. [37] | 85 IRE procedures in 56 patients; Patient group consisted of 42 men and 14 women with a median age of 61 years (range, 22–81 years) | 28 patients with 52 lesions of primary liver tumors; HCC (45), CCA (7); 28 patients with 62 lesions of secondary liver tumors; Colorectal tumor (44), Breast carcinoma (6), Neuroendocrine tumor (3), Pancreatic tumor (3), Other (6) | Voltage 1650–3000 V; 90 µs pulse length; 70 pulses per cycle | 7.1% (6/58) experienced major complications with hepatic abscess in 4.7% (4 patients), bleeding in 2.4% (2 patients), 1 patient needing arterial embolization and 1 a blood transfusion; Minor complications in 18.8% (16/85), minor hemorrhage in 5.9% (5), portal vein branch thrombosis in 5.9% (5), pneumothorax with no chest drain in 3.5% (3), hepatic arteriovenous shunt in 3.5% (3), and temporary neurologic deficits due to peri-interventional positioning in 2.3% (2) |
Study | Patient Characteristics | Tumor Types | Ablation Parameters | Major Outcomes |
---|---|---|---|---|
Niessen et al. [38] | 71 patients, median age 63.5 ± 10.8 years | 103 liver tumors, 35 patients had primary liver tumors, 36 had liver metastases; 43.7% HCC, 5.6% Cholangiocarcinoma, 38% Colorectal, 12.7% other metastases | 1650–3000 V; Pulse length 90 µs; 70 pulses per cycle under constant EKG monitoring | Median overall survival (OS) was 26.3 months, no difference in median OS between patients with primary and metastatic disease (26.8 vs. 19.9 months; p = 0.41). Patients with a tumor diameter >3 cm (p < 0.001) or more than 2 lesions (p < 0.005) had a lower overall median OS |
Stillström et al. [39] | 42 patients had 50 treatments, 59 tumors | 59 tumors, 51% colorectal liver metastases, 34% HCC | 10–20 test pulses delivered b/t each electrode pair, minimum of 70 treatment pulses delivered b/t each electrode pair | No local recurrence within 12 months for 61% of the patients; Local recurrence rates for the entire group were 26% at 6 months and 37% at 1 year; Local recurrence for the CRCLM and HCC groups at 1 year was 38% and 17% respectively |
Cannon et al. [20] | 44 patients, 48 IRE ablations | 20 colorectal lesions, 14 HCC, 10 other metastasis | 3000 V pulses, 90 pulses delivered lasting 20–100 µs each; Nanoknife system | Overall local recurrence-free survival (LRFS) at 6 months was 94.6% and 59.5% at 12 months; Higher recurrence rates was seen for tumors greater than 4 cm in size (HR 3.236, 95% CI: 0.585–17.891; p = 0.178) |
Frühling et al. [40] | 30 patients with 38 lesions treated with IRE between September 2011 and September 2014; Mean age 63 years | 23 CRLM (colorectal cancer w/liver metastasis), 8 HCC, 7 other metastases | Minimum 90 treatment pulses delivered b/t each adequate electrode pair (distance not exceeding 25 mm); Current 40 A, no less than 30 A | Ablation success 78.9% at 3 months, 65.8% at 6 months; 6 minor complications, 1 major complication; No mortality at 30 days |
Mafeld et al. [41] | 52 patients, 59 lesions, mean age of 64 years (range from 28–94), primary or secondary hepatic malignancy | Primary: HCC (20), Cholangiocarcinoma (3); Secondary: Colorectal (28), Neuroendocrine (1), Pancreatic (1), Breast (1), Gastrointestinal stromal tumor (1), Malignant thymoma (1); Mean diameter 2.4 cm | 90 pulses, 1500 v/cm applied b/t each electrode pair (including test pulses); Range of 20–50 A; Electrodes placed in parallel 1–2 cm apart | 12 months, 44% were progression-free (95% CI 30–66%); Lesions larger than 2 cm were associated with shorter time to progression and patients with CRCLM had a more rapid time to progression compared to HCC; Median OS was 38 months with a 90% (95% CI: 72%,97%) patient survival at 12 months and 65% (95% CI: 40%,81%) survival at 24 months and 52% (95% CI 22%, 75%) survival at 36 months |
Sutter et al. [42] | 58 patients, median age 65.4 years, range of 41.6–90 years, 75 HCC lesions | 75 HCC tumors, median lesion diameter 24 mm (range of 6–90 mm) | Nanoknife IRE; Max 3000 V and 50 A; 2–6 19-gauge electrodes w/adjustable exposure of length of active tip (5–40 mm); Cardiac synchronization; Electrodes placed parallel w/max distance of 2.5 cm | 77.3% achieved complete tumor ablation after single IRE procedure with 92.0% tumor ablation after 3 procedures; 6 and 12-month overall local tumor progression free survival (PFS) was 87% (95% CI: 77%, 93%) and 70% (95% CI: 56%, 81%) |
Hosein et al. [35] | 29 patients, 58 lesions, 36 IRE procedures, median age of 62 years | 58 tumors, median number of lesions treated was 2, median lesion size was 2.7 cm | Nanoknife IRE; 70-ms, 1500–3000 V, 25–45 A | 2 years after procedure, median OS was 62% (95% CI: 37%, 87%) and median PFS 18% (95% CI: 0%,35%); 36% of patients had complete response, 21% partial response, 25% stable disease, and 18% progressive disease at median follow up 11 months |
Martin et al. [44] | 26 patients with obstructive jaundice due to advanced hilar cholangiocarcinoma treated with IRE with median age of 63 years, 137 patients with no ablation (control) with median age of 61 years | Advanced stage 3 or 4 hilar cholangiocarcinoma causing obstructive jaundice, IRE patients had 26 total lesions, 137 non-IRE (control) patients | Goal to perform 100 electrical pulses in groups of 10, pulse duration 70–90 µs, pulse interval of 250 ms | After percutaneous transhepatic biliary drainage (PTBD), 2 patients had ≥grade 3 complications; IRE resulted in relief of biliary obstruction and let patients live w/out PTBD for median 10 months |
Franken et al. [45] | 12 patients, mean age of 63 years ± 12 | Unresectable locally advanced perihilar cholangiocarcinoma or N2 lymph node involvement | Active tip length 1.5–2 cm w/interelectrode distance of 10–24 mm w/5 mm margin around lesion; 90 treatment pulses, 9 sets of 10 pulses b/t paired unipolar electrodes; Voltage setting 1500 V/cm | 6 patients had major adverse events (CTCAE grade ≥ 3); No 90-day mortality; Technical success in 100% of cases; No intraprocedural events related to IRE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narayanan, G.; Koethe, Y.; Gentile, N. Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues. Medicina 2024, 60, 251. https://doi.org/10.3390/medicina60020251
Narayanan G, Koethe Y, Gentile N. Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues. Medicina. 2024; 60(2):251. https://doi.org/10.3390/medicina60020251
Chicago/Turabian StyleNarayanan, Govindarajan, Yilun Koethe, and Nicole Gentile. 2024. "Irreversible Electroporation of the Hepatobiliary System: Current Utilization and Future Avenues" Medicina 60, no. 2: 251. https://doi.org/10.3390/medicina60020251