Clinical Syndromes Related to SARS-CoV-2 Infection and Vaccination in Pediatric Age: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. SARS-CoV-2 Infection
3.2. MIS-C
3.3. SARS-CoV-2 Vaccines
3.4. BNT162b2/Cominarty/Pfizer
3.5. mRNA-1273/Spikevax
3.6. Novavax–Nuvaxovid
3.7. CoronaVac–Sinovac
3.8. Bivalent Vaccines
Author | Year | Study Type | Age | N of pts | Vaccine | Adverse Reaction | Efficacy Rate |
---|---|---|---|---|---|---|---|
Frenck et al. [55] | 2021 | Phase 2–3 placebo-controlled trial | 12–15 y | 2260 | Comirnaty | 79–86% injection-site pain 60% fatigue 55–65% headache | 100% |
Han et al. [74] | 2021 | Phase 1–2 controlled trial | 3–17 y | 550 | CoronaVac | 13% injection-site pain | NA |
Walter et al. [59] | 2021 | Phase 2–3 placebo-controlled trial | 5–11 y | 2268 | Comirnaty | 71–74% injection-site pain 34% fatigue 22% headache | 90.7% |
Ali et al. [73] | 2021 | Phase 2–3 placebo-controlled trial | 12–17 y | 3732 | Spikevax | 92.4% injection-site pain 70.2% headache 67.8% fatigue | 93.3% after 14 days of two doses |
Creech et al. [62] | 2022 | Phase 2–3 placebo-controlled trial | 6–11 y | 4016 | Spikevax | 93–95% injection-site pain 65% fatigue 54% headache | 88% after first administration |
Anderson et al. [61] | 2022 | Phase 2 placebo-controlled trial | 6 m–5 y | 1762 (6 m-2y) 3040 (2–5 y) | Spikevax | 6m-2yo 73% injection site-pain 48% fatigue 6–23 m 46% injection-site pain 59–64% irritability 33–35% sleepiness 25–32% loss of appetite | 6m–2y 50.6%, 2–5 yo 36.8% with CDC definition case |
Muñoz et al. [72] | 2023 | Phase 2–3 placebo-controlled trial | 6 m–4 y | 1776 (6 m–2 y) 2750 (2–4 y) | Comirnaty | 6m–2yo irritability 2–4 yo fatigue | 6m-2y 71.8% 2–4 y 75.8% |
Anez et al. [65] | 2023 | Phase 3 placebo-controlled trial | 12–17 y | 2232 | Novavax | 61% injection-site pain 58% headache 50% fatigue 40–50% muscle pain | 79.5% |
3.9. Surveillance Data (Post-Authorization Monitoring)
3.10. SARS-CoV-2 Vaccine-Associated Myocarditis
3.11. SARS-CoV-2 Vaccination-Related MIS-C
3.12. SARS-COV-2 Vaccinaton and MIS-C Prevention
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2 |
COVID 19 | coronavirus disease 2019 |
MIS-C | multisystem inflammatory syndrome in children |
CDC | Centers for Disease Control and Prevention |
RCPCH | Royal College of Pediatrics and Child Health |
PICU | pediatric intensive care unit |
LVSD | left ventricular systolic disfunction |
CRP | C-reactive protein |
ESR | erythrocyte sedimentation rate |
NT pro-BNP | N-terminal pro-brain natriuretic peptide |
LMWH | low-molecular-weight heparin |
ASA | acetylsalicylic acid |
IVIG | intravenous immunoglobulins |
IL | interleukin |
TNF alpha | tumor necrosis factor alpha |
FDA | Food and Drug Administration |
EMA | European Medicine Agency |
LNP | lipid nanoparticle |
S protein | spike protein |
mRNA | messenger ribonucleic acid |
VAM | vaccine-associated myocarditis |
MIS-V | multisystem inflammatory syndrome after SARS-CoV-2 vaccination |
VAERS | Vaccine Adverse Event Reporting System |
References
- Ladhani, S.N.; Amin-Chowdhury, Z.; Davies, H.G.; Aiano, F.; Hayden, I.; Lacy, J.; Sinnathamby, M.; de Lusignan, S.; Demirjian, A.; Whittaker, H.; et al. COVID-19 in children: Analysis of the first pandemic peak in England. Arch. Dis. Child. 2020, 105, 1180–1185. [Google Scholar] [CrossRef]
- Parri, N.; Lenge, M.; Buonsenso, D. Coronavirus Infection in Pediatric Emergency Departments (CONFIDENCE) Research Group. Children with COVID-19 in Pediatric Emergency Departments in Italy. N. Engl. J. Med. 2020, 383, 187–190. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, X.; Su, H.; Cai, J.; Liu, X.; Li, J.; Wang, Y.; Zhang, Z.; Zhu, M.; Zhao, L.; et al. Epidemiological characteristics of paediatric Omicron infection during the outbreak of SARS-CoV-2 infection during March–May in 2022 in Shanghai, China. Epidemiol. Infect. 2023, 151, e81. [Google Scholar] [CrossRef]
- Children and COVID-19: State-Level Data Report. Available online: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19infections/children-and-covid-19-state-level-data-report/ (accessed on 15 June 2023).
- Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020, 395, 1607–1608. [Google Scholar] [CrossRef] [PubMed]
- Centre for Disease Prevention and Control (ECDC). Paediatric Inflammatory Multisystem Syndrome and SARS-CoV-2 Infection in Children; ECDC: Stockholm, Sweden, 2020. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/covid-19-risk-assessmentpaediatric-inflammatory-multisystem-syndrome-15-May-2020.pdf (accessed on 15 May 2023).
- World Health Organization. Multisystem Inflammatory Syndrome in Children and Adolescents Temporally Related to COVID-19: Scientific Brief. World Health Organization. Available online: https://www.who.int/publications/i/item/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 15 May 2023).
- Information for Healthcare Providers about Multisystem Inflammatory Syndrome in Children (MIS-C). Available online: https://www.cdc.gov/mis/misc/hcp/idex.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fmis%2Fc-p%2Findex.html% (accessed on 15 May 2023).
- Royal College of Paediatrics and Child Health. Paediatric Multisystem Inflammatory Syndrome Temporally Associated with COVID-19 (PIMS)—Guidance for Clinicians. Royal College of Paediatrics and Child Health. Available online: https://www.rcpch.ac.uk/resources/guidance-paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19 (accessed on 15 May 2023).
- Payne, A.B.; Gilani, Z.; Godfred-Cato, S.; Belay, E.D.; Feldstein, L.R.; Patel, M.M.; Randolph, A.G.; Newhams, M.; Thomas, D.; Magleby, R.; et al. Incidence of Multisystem Inflammatory Syndrome in Children Among US Persons Infected With SARS-CoV-2. JAMA Netw. Open 2021, 4, e2116420. [Google Scholar] [CrossRef] [PubMed]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020, 383, 347–358. [Google Scholar] [CrossRef]
- Price, A.M.; Olson, S.M.; Newhams, M.M.; Halasa, N.B.; Boom, J.A.; Sahni, L.C.; Pannaraj, P.S.; Irby, K.; Bline, K.E.; Maddux, A.B.; et al. BNT162b2 Protection against the Omicron Variant in Children and Adolescents. N. Engl. J. Med. 2022, 386, 1899–1909. [Google Scholar] [CrossRef]
- Coronavirus Disease 2019 Case Surveillance—United States, 22 January–30 May 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6924e2.htm?s_cid=mm6924e2_w (accessed on 15 May 2023).
- Badal, S.; Thapa Bajgain, K.; Badal, S.; Thapa, R.; Bajgain, B.B.; Santana, M.J. Prevalence, clinical characteristics, and outcomes of pediatric COVID-19: A systematic review and meta-analysis. J. Clin. Virol. 2021, 135, 104715. [Google Scholar] [CrossRef] [PubMed]
- Tunç, E.M.; Koid Jia Shin, C.; Usoro, E.; Thomas-Smith, S.E.; Trehan, I.; Migita, R.T.; Keilman, A.E. Croup during the Coronavirus Disease 2019 Omicron Variant Surge. J. Pediatr. 2022, 247, 147–149. [Google Scholar] [CrossRef]
- Setiabudi, D.; Sribudiani, Y.; Hermawan, K.; Andriyoko, B.; Nataprawira, H.M. The Omicron variant of concern: The genomics, diagnostics, and clinical characteristics in children. Front Pediatr. 2022, 10, 898463. [Google Scholar] [CrossRef]
- Forrest, C.B.; Burrows, E.K.; Mejias, A.; Razzaghi, H.; Christakis, D.; Jhaveri, R.; Lee, G.M.; Pajor, N.M.; Rao, S.; Thacker, D.; et al. Severity of Acute COVID-19 in Children <18 Years Old March 2020 to December 2021. Pediatrics 2022, 149, e2021055765. [Google Scholar] [CrossRef]
- Antoon, J.W.; Hall, M.; Howard, L.M.; Herndon, A.; Freundlich, K.L.; Grijalva, C.G.; Williams, D.J. COVID-19 and Acute Neurologic Complications in Children. Pediatrics 2022, 150, e2022058167. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.; Friedman, R.A.; Sharma, C.; Ganigara, M.; Mitchell, E.; Schleien, C.; Blaufox, A.D. Incidence of arrhythmias and electrocardiographic abnormalities in symptomatic pediatric patients with PCR-positive SARS-CoV-2 infection, including drug-induced changes in the corrected QT interval. Heart Rhythm 2020, 17, 1960–1966. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulou, D.; Spyridis, N.; Dasoula, F.; Krepis, P.; Eleftheriou, E.; Liaska, M.; Servos, G.; Maritsi, D.; Tsolia, M. Pericarditis as the Main Clinical Manifestation of COVID-19 in Adolescents. Pediatr. Infect. Dis. J. 2021, 40, e197–e199. [Google Scholar] [CrossRef]
- Stewart, D.J.; Hartley, J.C.; Johnson, M.; Marks, S.D.; du Pré, P.; Stojanovic, J. Renal dysfunction in hospitalised children with COVID-19. Lancet Child. Adolesc. Health 2020, 4, e28–e29. [Google Scholar] [CrossRef]
- Mark, E.G.; Golden, W.C.; Gilmore, M.M.; Sick-Samuels, A.; Curless, M.S.; Nogee, L.M.; Milstone, A.M.; Johnson, J. Community-Onset Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Young Infants: A Systematic Review. J. Pediatr. 2021, 228, 94–100.e3. [Google Scholar] [CrossRef]
- Scottoni, F.; Giobbe, G.G.; Zambaiti, E.; Khalaf, S.; Sebire, N.J.; Curry, J.; De Coppi, P.; Gennari, F. Intussusception and COVID-19 in Infants: Evidence for an Etiopathologic Correlation. Pediatrics 2022, 149, e2021054644. [Google Scholar] [CrossRef]
- Grimaud, E.; Challiol, M.; Guilbaud, C.; Delestrain, C.; Madhi, F.; Ngo, J.; Epaud, R.; Nattes, E. Delayed acute bronchiolitis in infants hospitalized for COVID-19. Pediatr. Pulmonol. 2020, 9, 2211–2212. [Google Scholar] [CrossRef]
- Verma, S.; Lumba, R.; Dapul, H.M.; Gold-von Simson, G.; Phoon, C.K.; Lighter, J.L.; Farkas, J.S.; Vinci, A.; Noor, A.; Raabe, V.N.; et al. Characteristics of Hospitalized Children With SARS-CoV-2 in the New York City Metropolitan Area. Hosp. Pediatr. 2020, 11, 71–78. [Google Scholar] [CrossRef]
- Götzinger, F.; Santiago-García, B.; Noguera-Julián, A.; Lanaspa, M.; Lancella, L.; Calò Carducci, F.I.; Gabrovska, N.; Velizarova, S.; Prunk, P.; Osterman, V.; et al. COVID-19 in children and adolescents in Europe: A multinational, multicentre cohort study. Lancet Child. Adolesc. Health. 2020, 4, 653–661. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Lavergne, V.; Baden, L.; Cheng, V.C.; Edwards, K.M.; Gandhi, R.; Muller, W.J.; O’Horo, J.C.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2020, 20, ciaa478. [Google Scholar] [CrossRef]
- Khemiri, H.; Ayouni, K.; Triki, H.; Haddad-Boubaker, S. SARS-CoV-2 infection in pediatric population before and during the Delta (B.1.617.2) and Omicron (B.1.1.529) variants era. Virol. J. 2022, 19, 144. [Google Scholar] [CrossRef]
- Marks, K.J.; Whitaker, M.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Kirley, P.D.; Armistead, I.; McLafferty, S.; et al. Hospitalizations of Children and Adolescents with Laboratory-Confirmed COVID-19—COVID-NET, 14 States, July 2021–January 2022. MMWR Morb. Mortal. Wkly Rep. 2022, 71, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Butt, A.A.; Dargham, S.R.; Loka, S.; Shaik, R.M.; Chemaitelly, H.; Tang, P.; Hasan, M.R.; Coyle, P.V.; Yassine, H.M.; Al-Khatib, H.A.; et al. Coronavirus Disease 2019 Disease Severity in Children Infected with the Omicron Variant. Clin. Infect. Dis. 2022, 75, e361–e367. [Google Scholar] [CrossRef]
- Study of Remdesivir in Participants 18 Years Old and Younger with COVID-19 (CARAVAN). Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04431453 (accessed on 10 July 2023).
- Kabeerdoss, J.; Pilania, R.K.; Karkhele, R.; Kumar, T.S.; Danda, D.; Singh, S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: Immunological mechanisms, clinical manifestations and management. Rheumatol. Int. 2021, 41, 19–32. [Google Scholar] [CrossRef]
- A Study Evaluating Tocilizumab in Pediatric Patients Hospitalized with COVID-19. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05164133?term=children%2C+tocilizumab&cond=COVID-19&draw=2&rank=1 (accessed on 15 July 2023).
- Zar, H.J.; Dawa, J.; Fischer, G.B.; Castro-Rodriguez, J.A. Challenges of COVID-19 in children in low- and middle-income countries. Paediatr. Respir. Rev. 2020, 35, 70–74. [Google Scholar] [CrossRef]
- Kitano, T.; Kitano, M.; Krueger, C.; Jamal, H.; Al Rawahi, H.; Lee-Krueger, R.; Sun, R.D.; Isabel, S.; García-Ascaso, M.T.; Hibino, H.; et al. The differential impact of pediatric COVID-19 between high-income countries and low- and middle-income countries: A systematic review of fatality and ICU admission in children worldwide. PLoS ONE 2021, 16, e0246326. [Google Scholar] [CrossRef]
- Murthy, S.; Leligdowicz, A.; Adhikari, N.K.J. Intensive Care Unit Capacity in Low-Income Countries: A Systematic Review. PLoS ONE 2022, 10, e0116949. [Google Scholar] [CrossRef] [PubMed]
- Haslak, F.; Gunalp, A.; Kasapcopur, O. A cursed goodbye kiss from severe acute respiratory syndrome-coronavirus-2 to its pediatric hosts: Multisystem inflammatory syndrome in children. Curr. Opin. Rheumatol. 2023, 35, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Kernan, K.F.; Schulert, G.S.; Seo, P.; et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 3. Arthritis Rheumatol. 2022, 74, e1–e20. [Google Scholar] [CrossRef]
- Cattalini, M.; Taddio, A.; Bracaglia, C.; Cimaz, R.; Paolera, S.D.; Filocamo, G.; La Torre, F.; Lattanzi, B.; Marchesi, A.; Simonini, G.; et al. Childhood multisystem inflammatory syndrome associated with COVID-19 (MIS-C): A diagnostic and treatment guidance from the Rheumatology Study Group of the Italian Society of Pediatrics. Ital. J. Pediatr. 2021, 47, 24. [Google Scholar] [CrossRef]
- American Academy of Pediatrics. Multisystem Inflammatory Syndrome in Children (MIS-C) Interim Guidance. Available online: https://services.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/multisystem-inflammatory-syndrome-in-children-mis-c-interim-guidance/ (accessed on 15 May 2023).
- Patel, J.M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr. Allergy Asthma Rep. 2022, 22, 53–60. [Google Scholar] [CrossRef]
- U.S. Department of Health & Human Services. Health Department-Reported Cases of Multisystem Inflammatory Syndrome in Children (MIS-C) in the United States. Available online: https://covid.cdc.gov/covid-data-tracker/#mis-national-surveillance (accessed on 15 May 2023).
- Encinosa., W.; Moon, K.; Figueroa, J.; Elias, Y. Complications, Adverse Drug Events, High Costs, and Disparities in Multisystem Inflammatory Syndrome in Children vs COVID-19. JAMA Netw. Open 2023, 6, e2244975. [Google Scholar] [CrossRef]
- Migowa, A.; Samia, P.; Del Rossi, S.; Malande, O.O.; Shah, J.; Kenei, C.; Ayaya, J.; Jeruto, D.; Oyiengo, L.; Lewandowski, L. Management of Multisystem Inflammatory Syndrome in Children (MIS-C) in resource limited settings: The Kenyan Experience. Pediatr. Rheumatol. Online J. 2022, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, M.; Aziz, O.A.; Kazmi, U.; Hyder, N.; Sarwar, M.; Sultana, N.; Bari, A.; Rashid, J. Multisystem inflammatory syndrome associated with COVID-19 in children in Pakistan. Lancet Child. Adolesc. Health 2020, 4, e36–e37. [Google Scholar] [CrossRef] [PubMed]
- Butters, C.; Abraham, D.R.; Stander, R.; Facey-Thomas, H.; Abrahams, D.; Faleye, A.; Allie, N.; Soni, K.; Rabie, H.; Scott, C.; et al. The clinical features and estimated incidence of MIS-C in Cape Town, South Africa. BMC Pediatr. 2022, 22, 241. [Google Scholar] [CrossRef]
- Mamishi, S.; Movahedi, Z.; Mohammadi, M.; Ziaee, V.; Khodabandeh, M.; Abdolsalehi, M.R.; Navaeian, A.; Heydari, H.; Mahmoudi, S.; Pourakbari, B. Multisystem inflammatory syndrome associated with SARS-CoV-2 infection in 45 children: A first report from Iran. Epidemiol. Infect. 2020, 148, e196. [Google Scholar] [CrossRef]
- Asghar, Z.; Sharaf, K.; Butt, F.A.; Shaikh, O.A.; Shekha, M.; Waris, A.; Ullah, I.; Nashwan, A.J. A global review of racial, ethnic and socio-economic disparities in multisystem inflammatory syndrome in children related to COVID-19. Front. Public Health 2022, 10, 996311. [Google Scholar] [CrossRef]
- Buonsenso, D.; Perramon, A.; Català, M.; Torres, J.P.; Camacho-Moreno, G.; Rojas-Solano, M.; Ulloa-Gutierrez, R.; Camacho-Badilla, K.; Pérez-Corrales, C.; Cotugno, N.; et al. Multisystem Inflammatory Syndrome in Children in Western Countries? Decreasing Incidence as the Pandemic Progresses?: An Observational Multicenter International Cross-sectional Study. Pediatr. Infect. Dis. J. 2022, 41, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Lopez, L.; Burgner, D.; Glover, C.; Carr, J.; Clark, J.; Boast, A.; Vasilunas, N.; McMullan, B.; Francis, J.R.; Bowen, A.C.; et al. Lower risk of Multi-system inflammatory syndrome in children (MIS-C) with the omicron variant. Lancet Reg. Health West Pac. 2022, 27, 100604. [Google Scholar] [CrossRef]
- McCrindle, B.W.; Harahsheh, A.S.; Handoko, R.; Raghuveer, G.; Portman, M.A.; Khoury, M.; Newburger, J.W.; Lee, S.; Jain, S.S.; Khare, M.; et al. SARS-CoV-2 variants and multisystem inflammatory syndrome in children. N. Engl. J. Med. 2023, 388, 1624–1626. [Google Scholar] [CrossRef] [PubMed]
- Molloy, M.J.; Auger, K.A.; Hall, M.; Shah, S.S.; Schondelmeyer, A.C.; Parikh, K.; Kazmier, K.M.; Katragadda, H.; Jacob, S.A.; Jerardi, K.E.; et al. Epidemiology and Severity of Illness of MIS-C and Kawasaki Disease During the COVID-19 Pandemic. Pediatrics 2023, 152, e2023062101. [Google Scholar] [CrossRef]
- Aygün, D.; Önal, P.; Apaydın, G.; Çokuğraş, H. Coronavirus infections in childhood and vaccine studies. Turk. Arch. Pediatr. 2021, 56, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Stultz, J.S.; Eiland, L.S. A Review of the Data Supporting Use of COVID-19 Vaccinations in the Pediatric Population. Ann. Pharmacother. 2023, 57, 1328–1340. [Google Scholar] [CrossRef]
- Frenck, R.W., Jr.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R.; et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Takes Key Action in Fight Against COVID-19 by Issuing Emergency Use Authorization for First COVID-19 Vaccine. US FDA. Available online: https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19%0A (accessed on 15 May 2023).
- FDA Authorizes Moderna and Pfizer-BioNTech COVID-19 Vaccines for Children Down to 6 Months of Age. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-moderna-and-pfizer-biontech-covid-19-vaccines-children (accessed on 15 May 2023).
- European Medicines Agency. EMA Recommends Approval of Comirnaty and Spikevax COVID-19 Vaccines for Children from 6 Months of Age. Published 2022. Available online: https://www.ema.europa.eu/en/news/ema-recommends-approval-comirnaty-spikevax-covid-19-vaccines-children-6-months-age (accessed on 15 May 2023).
- Walter, E.B.; Talaat, K.R.; Sabharwal, C.; Gurtman, A.; Lockhart, S.; Paulsen, G.C.; Barnett, E.D.; Muñoz, F.M.; Maldonado, Y.; Pahud, B.A.; et al. Evaluation of the BNT162b2 COVID-19 Vaccine in Children 5 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 35–46. [Google Scholar] [CrossRef] [PubMed]
- WHO. Status of COVID-19 Vaccines within WHO EUL/PQ Evaluation Process. WHO. 2023, 26 (December 2020): 2020–2022. Available online: https://extranet.who.int/prequal/sites/default/files/document_files/Status_COVID_VAX_08AUgust2023.pdf (accessed on 15 May 2023).
- Anderson, E.J.; Creech, C.B.; Berthaud, V.; Piramzadian, A.; Johnson, K.A.; Zervos, M.; Garner, F.; Griffin, C.; Palanpurwala, K.; Turner, M.; et al. Evaluation of mRNA-1273 Vaccine in Children 6 Months to 5 Years of Age. N. Engl. J. Med. 2022, 387, 1673–1687. [Google Scholar] [CrossRef]
- Creech, C.B.; Anderson, E.; Berthaud, V.; Yildirim, I.; Atz, A.M.; Melendez Baez, I.; Finkelstein, D.; Pickrell, P.; Kirstein, J.; Yut, C.; et al. Evaluation of mRNA-1273 COVID-19 Vaccine in Children 6 to 11 Years of Age. N. Engl. J. Med. 2022, 386, 2011–2023. [Google Scholar] [CrossRef]
- FDA Expands Novavax EUA to Include Children 12 and Older. Available online: https://www.aha.org/news/headline/2022-08-22-fda-expands-novavax-eua-include-children-12-and-older (accessed on 15 May 2023).
- EMA Recommends Authorisation of Nuvaxovid for Adolescents Aged 12 to 17. Available online: https://www.ema.europa.eu/en/news/ema-recommends-authorisation-nuvaxovid-adolescents-aged-12-17 (accessed on 15 May 2023).
- Áñez, G.; Dunkle, L.M.; Gay, C.L.; Kotloff, K.L.; Adelglass, J.M.; Essink, B.; Campbell, J.D.; Cloney-Clark, S.; Zhu, M.; Plested, J.S.; et al. Safety, Immunogenicity and Efficacy of NVX-CoV2373 in Adolescents in PREVENT-19: A Randomized, Phase 3 Trial. medRxiv 2020. [Google Scholar] [CrossRef]
- Hause, A.M.; Marquez, P.; Zhang, B.; Myers, T.R.; Gee, J.; Su, J.R.; Blanc, P.G.; Thomas, A.; Thompson, D.; Shimabukuro, T.T.; et al. Safety Monitoring of Bivalent COVID-19 mRNA Vaccine Booster Doses Among Persons Aged ≥12 Years—United States, 31 August–23 October 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1401–1406. [Google Scholar] [CrossRef]
- U.S. Food & Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Moderna and Pfizer-BioNTech COVID-19 Vaccines for Children Down to 6 Months of Age. FDA. Published 2022. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-updated-bivalent-covid-19-vaccines-children-down-6-months (accessed on 15 May 2023).
- European Medicines Agency. ETF Concludes that Bivalent Original/Omicron BA.4-5 mRNA Vaccines May be Used for Primary Vaccination. Published 2022. Available online: https://www.ema.europa.eu/en/news/etf-concludes-bivalent-original-omicron-ba4-5-mrna-vaccines-may-be-used-primary-vaccination (accessed on 15 May 2023).
- Hause, A.M.; Baggs, J.; Marquez, P.; Myers, T.R.; Gee, J.; Su, J.R.; Zhang, B.; Thompson, D.; Shimabukuro, T.T.; Shay, D.K. COVID-19 Vaccine Safety in Children Aged 5–11 Years—United States, November 3–December 19, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Hause, A.M.; Gee, J.; Baggs, J.; Abara, W.E.; Marquez, P.; Thompson, D.; Su, J.R.; Licata, C.; Rosenblum, H.G.; Myers, T.R.; et al. COVID-19 Vaccine Safety in Adolescents Aged 12–17 Years—United States, December 14, 2020–July 16, 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Vasudeva, R.; Bhatt, P.; Lilje, C.; Desai, P.; Amponsah, J.; Umscheid, J.; Parmar, N.; Bhatt, N.; Adupa, R.; Pagad, S.; et al. Trends in Acute Myocarditis Related Pediatric Hospitalizations in the United States, 2007–2016. Am. J. Cardiol. 2021, 149, 95–102. [Google Scholar] [CrossRef]
- Muñoz, F.M.; Sher, L.D.; Sabharwal, C.; Gurtman, A.; Xu, X.; Kitchin, N.; Lockhart, S.; Riesenberg, R.; Sexter, J.M.; Czajka, H.; et al. Evaluation of BNT162b2 COVID-19 Vaccine in Children Younger than 5 Years of Age. N. Engl. J. Med. 2023, 388, 621–634. [Google Scholar] [CrossRef]
- Ali, K.; Berman, G.; Zhou, H.; Deng, W.; Faughnan, V.; Coronado-Voges, M.; Ding, B.; Dooley, J.; Girard, B.; Hillebrand, W.; et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 2241–2251. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Song, Y.; Li, C.; Yang, W.; Ma, Q.; Jiang, Z.; Li, M.; Lian, X.; Jiao, W.; Wang, L.; et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: A double-blind, randomised, controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 2021, 21, 1645–1653. [Google Scholar] [CrossRef] [PubMed]
- Florentino, P.T.V.; Alves, F.J.O.; Cerqueira-Silva, T.; Oliveira, V.A.; Júnior, J.B.S.; Jantsch, A.G.; Penna, G.O.; Boaventura, V.; Werneck, G.L.; Rodrigues, L.C.; et al. Vaccine effectiveness of CoronaVac against COVID-19 among children in Brazil during the Omicron period. Nat. Commun. 2022, 13, 4756. [Google Scholar] [CrossRef]
- Jara, A.; Undurraga, E.A.; Zubizarreta, J.R.; González, C.; Acevedo, J.; Pizarro, A.; Vergara, V.; Soto-Marchant, M.; Gilabert, R.; Flores, J.C.; et al. Effectiveness of CoronaVac in children 3–5 years of age during the SARS-CoV-2 Omicron outbreak in Chile. Nat. Med. 2022, 28, 1377–1380. [Google Scholar] [CrossRef]
- Lauring, A.S.; Tenforde, M.W.; Chappell, J.D.; Gaglani, M.; Ginde, A.A.; McNeal, T.; Ghamande, S.; Douin, D.J.; Talbot, H.K.; Casey, J.D.; et al. Clinical severity of, and effectiveness of mRNA vaccines against, COVID-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: Prospective observational study. BMJ 2022, 376, e069761. [Google Scholar] [CrossRef]
- Piechotta, V.; Siemens, W.; Thielemann, I.; Toews, M.; Koch, J.; Vygen-Bonnet, S.; Kothari, K.; Grummich, K.; Braun, C.; Kapp, P.; et al. Safety and effectiveness of vaccines against COVID-19 in children aged 5–11 years: A systematic review and meta-analysis. Lancet Child. Adolesc. Health 2023, 7, 379–391. [Google Scholar] [CrossRef]
- Link-Gelles, R.; Ciesla, A.A.; Rowley, E.A.K.; Klein, N.P.; Naleway, A.L.; Payne, A.B.; Kharbanda, A.; Natarajan, K.; DeSilva, M.B.; Dascomb, K.; et al. Effectiveness of Monovalent and Bivalent mRNA Vaccines in Preventing COVID-19-Associated Emergency Department and Urgent Care Encounters Among Children Aged 6 Months-5 Years—VISION Network, United States, July 2022–June 2023. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 886–892. [Google Scholar] [CrossRef]
- Hause, A.M.; Marquez, P.; Zhang, B.; Myers, T.R.; Gee, J.; Su, J.R.; Parker, C.; Thompson, D.; Panchanathan, S.S.; Shimabukuro, T.T.; et al. COVID-19 mRNA Vaccine Safety Among Children Aged 6 Months-5 Years—United States, June 18, 2022–August 21, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Ahmadizar, F.; Luxi, N.; Raethke, M.; Schmikli, S.; Riefolo, F.; Saraswati, P.W.; Bucsa, C.; Osman, A.; Liddiard, M.; Maques, F.B.; et al. Safety of COVID-19 Vaccines Among the Paediatric Population: Analysis of the European Surveillance Systems and Pivotal Clinical Trials. Drug Saf. 2023, 46, 575–585. [Google Scholar] [CrossRef]
- Block, J.P.; Boehmer, T.K.; Forrest, C.B.; Carton, T.W.; Lee, G.M.; Ajani, U.A.; Christakis, D.A.; Cowell, L.G.; Draper, C.; Ghildayal, N.; et al. Cardiac Complications After SARS-CoV-2 Infection and mRNA COVID-19 Vaccination—PCORnet, United States, January 2021–January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Halsell, J.S.; Riddle, J.R.; Atwood, J.E.; Gardner, P.; Shope, R.; Poland, G.A.; Gray, G.C.; Ostroff, S.; Eckart, R.E.; Hospenthal, D.R.; et al. Myopericarditis following smallpox vaccination among vaccinia-naive US military personnel. JAMA 2003, 289, 3283–3289. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, J.; Ryoo, S.M.; Kim, W.Y. Acute fulminant myocarditis following influenza vaccination requiring extracorporeal membrane oxygenation. Acute Crit. Care 2019, 34, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Alami, A.; Krewski, D.; Farhat, N.; Mattison, D.; Wilson, K.; Gravel, C.A.; Farrell, P.J.; Crispo, J.A.G.; Haddad, N.; Perez-Lloret, S.; et al. Risk of myocarditis and pericarditis in mRNA COVID-19-vaccinated and unvaccinated populations: A systematic review and meta-analysis. BMJ Open 2023, 13, e065687. [Google Scholar] [CrossRef]
- Mevorach, D.; Anis, E.; Cedar, N.; Hasin, T.; Bromberg, M.; Goldberg, L.; Parnasa, E.; Dichtiar, R.; Hershkovitz, Y.; Ash, N.; et al. Myocarditis after BNT162b2 Vaccination in Israeli Adolescents. N. Engl. J. Med. 2022, 386, 998–999. [Google Scholar] [CrossRef] [PubMed]
- Gargano, J.W.; Wallace, M.; Hadler, S.C.; Langley, G.; Su, J.R.; Oster, M.E.; Broder, K.R.; Gee, J.; Weintraub, E.; Shimabukuro, T.; et al. Use of mRNA COVID-19 Vaccine After Reports of Myocarditis Among Vaccine Recipients: Update from the Advisory Committee on Immunization Practices—United States, June 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 977–982. [Google Scholar] [CrossRef]
- Dionne, A.; Sperotto, F.; Chamberlain, S.; Baker, A.L.; Powell, A.J.; Prakash, A.; Castellanos, D.A.; Saleeb, S.F.; de Ferranti, S.D.; Newburger, J.W.; et al. Association of Myocarditis with BNT162b2 Messenger RNA COVID-19 Vaccine in a Case Series of Children. JAMA Cardiol. 2021, 6, 1446–1450. [Google Scholar] [CrossRef]
- Patel, T.; Kelleman, M.; West, Z.; Peter, A.; Dove, M.; Butto, A.; Oster, M.E. Comparison of Multisystem Inflammatory Syndrome in Children-Related Myocarditis, Classic Viral Myocarditis, and COVID-19 Vaccine-Related Myocarditis in Children. J. Am. Heart Assoc. 2022, 11, e024393. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.S.; Steele, J.M.; Fonseca, B.; Huang, S.; Shah, S.; Maskatia, S.A.; Buddhe, S.; Misra, N.; Ramachandran, P.; Gaur, L.; et al. COVID-19 Vaccination-Associated Myocarditis in Adolescents. Pediatrics 2021, 148, e2021053427. [Google Scholar] [CrossRef] [PubMed]
- Marshall, M.; Ferguson, I.D.; Lewis, P.; Jaggi, P.; Gagliardo, C.; Collins, J.S.; Shaughnessy, R.; Caron, R.; Fuss, C.; Corbin, K.J.E.; et al. Symptomatic Acute Myocarditis in 7 Adolescents After Pfizer-BioNTech COVID-19 Vaccination. Pediatrics 2021, 148, e2021052478. [Google Scholar] [CrossRef] [PubMed]
- Tano, E.; San Martin, S.; Girgis, S.; Martinez-Fernandez, Y.; Sanchez Vegas, C. Perimyocarditis in Adolescents After Pfizer-BioNTech COVID-19 Vaccine. J. Pediatric Infect. Dis. Soc. 2021, 10, 962–966. [Google Scholar] [CrossRef]
- Truong, D.T.; Dionne, A.; Muniz, J.C.; McHugh, K.E.; Portman, M.A.; Lambert, L.M.; Thacker, D.; Elias, M.D.; Li, J.S.; Toro-Salazar, O.H.; et al. Clinically Suspected Myocarditis Temporally Related to COVID-19 Vaccination in Adolescents and Young Adults: Suspected Myocarditis after COVID-19 Vaccination. Circulation 2022, 145, 345–356. [Google Scholar] [CrossRef]
- Aljohani, O.A.; Arcilla, L.; Kaushik, N.; Cresalia, N.M.; Li, B.; Edwell, A.A.; Ramirez, A.M.; Anwar, S. Myocarditis in children after COVID-19 vaccine. Ann. Pediatr. Cardiol. 2022, 15, 280–283. [Google Scholar] [CrossRef]
- Butbul Aviel, Y.; Hashkes, P.J.; Dizitzer, Y.; Inbar, K.; Berkun, Y.; Eisenstein, E.M.; Hamad Saied, M.; Goldzweig, O.; Heshin-Bekenstein, M.; Ling, E.; et al. Case Series of Myocarditis Following mRNA COVID Vaccine Compared to Pediatric Multisystem Inflammatory Syndrome: Multicenter Retrospective Study. Vaccines 2022, 10, 1207. [Google Scholar] [CrossRef]
- Murase, H.; Zhu, Y.; Sakaida, K.; Mizuno, H.; Mori, H.; Iwayama, H.; Suzuki, N.; Nagai, N.; Okumura, A. Case report: Five patients with myocarditis after mRNA COVID-19 vaccination. Front. Pediatr. 2022, 10, 977476. [Google Scholar] [CrossRef]
- Oster, M.E.; Shay, D.K.; Su, J.R.; Gee, J.; Creech, C.B.; Broder, K.R.; Edwards, K.; Soslow, J.H.; Dendy, J.M.; Schlaudecker, E.; et al. Myocarditis Cases Reported After mRNA-Based COVID-19 Vaccination in the US From December 2020 to August 2021. JAMA 2022, 327, 331–340. [Google Scholar] [CrossRef]
- Ghelani, S.J.; Spaeder, M.C.; Pastor, W.; Spurney, C.F.; Klugman, D. Demographics, trends, and outcomes in pediatric acute myocarditis in the United States, 2006 to 2011. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 622–627. [Google Scholar] [CrossRef]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef]
- Vogel, T.P.; Top, K.A.; Karatzios, C.; Hilmers, D.C.; Tapia, L.I.; Moceri, P.; Giovannini-Chami, L.; Wood, N.; Chandler, R.E.; Klein, N.P.; et al. Multisystem inflammatory syndrome in children and adults (MIS-C/A): Case definition & guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 2021, 39, 3037–3049. [Google Scholar] [CrossRef]
- Karatzios, C.; Scuccimarri, R.; Chédeville, G.; Basfar, W.; Bullard, J.; Stein, D.R. Multisystem Inflammatory Syndrome Following SARS-CoV-2 Vaccination in Two Children. Pediatrics 2022, 150, e2021055956. [Google Scholar] [CrossRef]
- Abdelgalil, A.A.; Saeedi, F.A. Multisystem Inflammatory Syndrome in a 12-Year-old Boy after mRNA-SARS-CoV-2 Vaccination. Pediatr. Infect. Dis. J. 2022, 41, E93–E94. [Google Scholar] [CrossRef] [PubMed]
- Consolini, R.; Costagliola, G.; Spada, E.; Colombatto, P.; Orsini, A.; Bonuccelli, A.; Brunetto, M.R.; Peroni, D.G. Case Report: MIS-C With Prominent Hepatic and Pancreatic Involvement in a Vaccinated Adolescent—A Critical Reasoning. Front. Pediatr. 2022, 10, 896903. [Google Scholar] [CrossRef] [PubMed]
- DeJong, J.; Sainato, R.; Forouhar, M.; Robinson, D.; Kunz, A. Multisystem Inflammatory Syndrome in a Previously Vaccinated Adolescent Female with Sickle Cell Disease. Pediatr. Infect. Dis. J. 2022, 41, e104–e105. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.R.; Chiang, S.S.; Ibrahim, O.; Yalcindag, A. Multisystem Inflammatory Syndrome in an Adolescent Following SARS-CoV-2 Exposure Despite Three Doses of a COVID-19 Vaccine. R. I. Med. J. 2022, 105, 41–45. [Google Scholar]
- Liu, A.; Love, A.; Katz, S.; Patrick, A.; Parra, D.; Halasa, N.; Miller, M.R. Multisystem inflammatory syndrome in a fully vaccinated 18-year-old without known SARS-CoV-2 infection. Pediatr. Rheumatol. Online J. 2022, 20, 74. [Google Scholar] [CrossRef]
- Nygaard, U.; Holm, M.; Hartling, U.B.; Glenthøj, J.; Schmidt, L.S.; Nordly, S.B.; Matthesen, A.T.; von Linstow, M.L.; Espenhain, L. Incidence and clinical phenotype of multisystem inflammatory syndrome in children after infection with the SARS-CoV-2 delta variant by vaccination status: A Danish nationwide prospective cohort study. Lancet Child Adolesc. Health 2022, 6, 459–465. [Google Scholar] [CrossRef]
- Varghese, M.; Alsoub, H.; Koleri, J.; El Ajez, R.H.M.; Alsehli, Z.M.; Alkailani, Y.I.G.; Al Maslamani, M.A.R.S. Multisystem inflammatory syndrome in children (MIS-C) secondary to COVID-19 mRNA vaccination—A case report from Qatar. IDCases 2022, 30, e01606. [Google Scholar] [CrossRef]
- Yalçinkaya, R.; Öz, F.N.; Polat, M.; Uçan, B.; Teke, T.A.; Kaman, A.; Özdem, S.; Savaş Şen, Z.; Cinni, R.G.; Tanir, G. A Case of Multisystem Inflammatory Syndrome in a 12-Year-old Male After COVID-19 mRNA Vaccine. Pediatr. Infect. Dis. J. 2022, 41, e87–e89. [Google Scholar] [CrossRef]
- Wangu, Z.; Swartz, H.; Doherty, M. Multisystem inflammatory syndrome in children (MIS-C) possibly secondary to COVID-19 mRNA vaccination. BMJ Case Rep. 2022, 15, e247176. [Google Scholar] [CrossRef]
- Haq, K.; Anyalechi, E.G.; Schlaudecker, E.P.; McKay, R.; Kamidani, S.; Manos, C.K.; Oster, M.E. Multiple MIS-C Readmissions and Giant Coronary Aneurysm After COVID-19 Illness and Vaccination: A Case Report. Pediatr. Infect. Dis. J. 2023, 42, e64–e69. [Google Scholar] [CrossRef] [PubMed]
- Acholonu, C.; Cohen, E.; Afzal, S.Y.; Jani, P.; Tesher, M. Multisystem Inflammatory Syndrome in Children. Pediatr. Ann. 2023, 52, e114–e121. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, A.R.; Cortese, M.M.; Taylor, A.W.; Broder, K.R.; Oster, M.E.; Wong, J.M.; Guh, A.Y.; McCormick, D.W.; Kamidani, S.; Schlaudecker, E.P.; et al. Reported cases of multisystem inflammatory syndrome in children aged 12–20 years in the USA who received a COVID-19 vaccine, December, 2020, through August, 2021: A surveillance investigation. Lancet Child Adolesc. Health 2022, 6, 303–312. [Google Scholar] [CrossRef]
- Chai, Q.; Nygaard, U.; Schmidt, R.C.; Zaremba, T.; Møller, A.M.; Thorvig, C.M. Multisystem inflammatory syndrome in a male adolescent after his second Pfizer-BioNTech COVID-19 vaccine. Acta Paediatr. 2022, 111, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.D.; Newhams, M.M.; Olson, S.M.; Halasa, N.B.; Price, A.M.; Boom, J.A.; Sahni, L.C.; Kamidani, S.; Tarquinio, K.M.; Maddux, A.B.; et al. Effectiveness of BNT162b2 (Pfizer-BioNTech) mRNA Vaccination Against Multisystem Inflammatory Syndrome in Children Among Persons Aged 12–18 Years—United States, July–December 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 52–58. [Google Scholar] [CrossRef]
- Levy, M.; Recher, M.; Hubert, H.; Javouhey, E.; Fléchelles, O.; Leteurtre, S.; Angoulvant, F. Multisystem Inflammatory Syndrome in Children by COVID-19 Vaccination Status of Adolescents in France. JAMA 2022, 327, 281–283. [Google Scholar] [CrossRef]
- Ouldali, N.; Bagheri, H.; Salvo, F.; Antona, D.; Pariente, A.; Leblanc, C.; Tebacher, M.; Micallef, J.; Levy, C.; Cohen, R.; et al. Hyper inflammatory syndrome following COVID-19 mRNA vaccine in children: A national post-authorization pharmacovigilance study. Lancet Reg. Health Eur. 2022, 17, 100393. [Google Scholar] [CrossRef]
Vaccine | Type | Age | Primary Schedule and Dosage | Booster |
---|---|---|---|---|
Cominarty/Pfizer BNT162b2 or monovalent Cominarty/Pfizer bivalent | mRNA | >6 m | Three doses (dose 1 to 2: 21–56 days apart; dose 2 to 3: at least 56 days) - 6 m to 4 y: 3 μg, third dose replaced with bivalent Two doses (21–56 days apart) * - 5–11 y: 10 µg - >12 y: 30 µg * Third primary series dose for ≥ 5 years moderately or severely immunocompromised; at least 28 days after the second dose | Bivalent only - ≥ 5 y as a single booster at least 2 months after primary series or last monovalent booster - 6 m to 4 y: 3 μg only as third dose in primary series - 5–11 years: 10 μg - ≥ 12 years: 30 μg |
Spikevax/Moderna mRNA-1273 or monovalent Spikevax/Moderna bivalent | mRNA | >6 m | Two doses (28–56 months apart) * - 6 m to 5 y: 25 μg - 6–11 years: 50 μg - ≥12 y: 100 μg * Third primary series dose for ≥ 6 months moderately to severely immunocompromised at least 28 days after second dose | Bivalent only ≥6 y as a single booster at least 2 months after primary series or last monovalent booster - 6 m to 5 y: 10 μg after second dose of primary series - 6–11 y: 25 μg - ≥12 y: 50 μg |
Novavax–Nuvaxovid/NVX- CoV2373 | Protein subunit with adjuvant | >12 y | Two doses (21 days apart): 5 μg rS and 50 μg of Matrix-M adjuvant, Novavax, Gaithersburg, MD, USA) | Monovalent only. Pfizer-BioNTech or Moderna bivalent booster recommended (FDA) for 12–17 y |
CoronaVac–Sinovac | Inactivated | >3 y | Two doses (28 days apart): 3 μg | NA |
Centers For Disease Control and Prevention Case Definition for Probable and Confirmed Cases Of COVID-19 Vaccine-Associated-Myocardiits | |
---|---|
Probable Case | Confirmed Case |
new or worsening symptom | new or worsening symptom |
Chest pain, pressure, or discomfort Dyspnea or shortness of breath Palpitations Syncope | Chest pain, pressure, or discomfort Dyspnea or shortness of breath Palpitations Syncope |
new finding of: | AND |
Elevated troponin Abnormal ECG or rhythm monitoring consistent with myocarditis. Abnormal ventricular systolic function or wall motion abnormality on echocardiogram Cardiac MRI finding consistent with the original of revised Lake Louise criteria for myocarditis | Histological confirmation of myocarditis |
OR | |
Elevated troponin AND cardiac MRI finding consistent with the original of revised Lake Louise criteria for myocarditis | |
AND | |
AND | No other identifiable causes of the symptoms and findings |
No other identifiable causes of the symptoms and findings |
Study Design | N of pts | Age (y) | Vaccine | Days from Vaccination (R) | Outcome | |
---|---|---|---|---|---|---|
Dionne et al. 2021 [88] | Case series | 15 | 12–18 | mRNA-based (Comirnaty) | 3 (1–6) | 73% complete recovery |
Jain et al. 2021 [90] | Retrospective study | 63 | 12–20 | mRNA-based (94% Comirnaty, 6% Spikevax) | 2.1 (0–7) | 5% NSVT 2% complete heart block 43% PICU admission 87% complete recovery |
Marshall et al. 2021 [91] | Case series | 7 | 14–19 | mRNA-based (Comirnaty) | 2 (2–4) | 1 complete heart block 71% PICU admission |
Tano et al. 2021 [92] | Case series | 8 | 15–17 | mRNA-based (Comirnaty) | 2.5 (1–4) | 100% complete recovery |
Truong et al. 2021 [93] | Retrospective study | 139 | 12–20 | mRNA-based (94% Comirnaty, 3% Spikevax) | 2 (0–22) | 5% NSVT 0.7% complete heart block 18.7% PICU admission 1.4% inotropic support |
Aljohani et al. 2022 [94] | Case series | 3 | 16–17 | mRNA-based (Comirnaty) | 2 (2–3) | 100% complete recovery |
Butbul Aviel et al. 2022 [95] | Case series | 9 | 16–21 | mRNA-based (Comirnaty) | 1 (1–5) | 66.6% PICU admission |
Mevorach et al. 2022 [86] | Case series | 9 | 12–15 | mRNA-based (Comirnaty) | N/A | 100% complete recovery |
Murase et al. 2022 [96] | Case series | 5 | 12–16 | mRNA-based (Comirnaty) | 3 (2–3) | 100% complete recovery |
Oster et al. 2022 [89] | Retrospective study | 543 | 12–18 | mRNA-based (Pfizer-BioNTech) | 3 (1–8) | 87% complete recovery |
Patel et al. 2022 [89] | Retrospective study | 9 | 12–21 | mRNA-based | 5.4 | 100% complete recovery |
Age | Sex | N of Doses | Vaccine Type | Interval from Last Dose | SARS-CoV2 Swab | COVID-19 Infection/Contact | Clinical Manifestations | Treatment | |
---|---|---|---|---|---|---|---|---|---|
Karatzios et al. 2021 [101] | 12 | M | 1 | Comirnaty | 35 days | Negative | None | Fever Lymphadenopathy Conjunctivitis Gastrointestinal symptoms Hypotensive shock | IVIG Steroids ASA |
14 | M | 1 | Comirnaty | 28 days | Negative | None | Fever Gastrointestinal symptoms Pharyngodinia Rash | IVIG Steroids | |
Abdelgalil et al. 2022 [102] | 12 | M | 2 | 1° Comirnaty 2° Spikevax | 5 weeks | Negative | None | Fever Mild left ventricular disfunction | IVIG |
Consolini et al. 2022 [103] | 17 | F | 2 | Comirnaty | 4 months | Negative | Contact 10 days before | Fever Hepatitis Pancreatitis | IVIG Steroids Heparin |
DeJong et al. 2022 [104] | 14 | F | 2 | Comirnaty | 2 months | Negative | None | Fever Coronary artery dilatation | IVIG Steroids |
Goel et al. 2022 [105] | 16 | M | 3 | Comirnaty | 3 weeks | Negative | Contact 36 days before | Fever Hypotensive shock | IVIG Steroids |
Liu et al. 2022 [106] | 18 | F | 2 | Comirnaty | 6 months | Negative | None | Fever Lymphadenopathy Hypotensive shock Cardiac failure | Inotropes IVIG Steroids Anakinra |
Nygaard et al. 2022 [107] | 17 | M | 2 | Comirnaty | 5 days | Negative | None | Fever Myocarditis | IVIG Steroids Inotropes |
Varghese et al. 2022 [108] | 18 | M | 3 | Comirnaty | 3 weeks | Negative | None | Fever Left ventricular disfunction Headache photophobia CLOCC | IVIG Steroids |
Yalçınkaya et al. 2022 [109] | 12 | M | 1 | Comirnaty | 27 days | Negative | None | Fever Lymphadenopathy Conjunctivitis Diarrhoea | IVIG Steroids |
Wangu et al. 2022 [110] | / | F | 2 | Comirnaty | 12 weeks | Negative | None | Fever Gastrointestinal symptoms | IVIG Steroids ASA |
Haq et al. 2023 [111] | 5 | M | 1 | Comirnaty | 15 days | Positive | Infection 55 days before | Fever Coronary artery giant aneurism | IVIG Steroids Infliximab ASA |
Jain et al. 2023 [90] | 15 | F | 1 | Comirnaty | 6 days | Negative | No | Fever Headache Vomiting | IVIG |
17 | F | 1 | Comirnaty | 7 days | Negative | No | Fever Coronary artery dilation | IVIG ASA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mastrolia, M.V.; De Cillia, C.; Orlandi, M.; Abu-Rumeileh, S.; Maccora, I.; Maniscalco, V.; Marrani, E.; Pagnini, I.; Simonini, G. Clinical Syndromes Related to SARS-CoV-2 Infection and Vaccination in Pediatric Age: A Narrative Review. Medicina 2023, 59, 2027. https://doi.org/10.3390/medicina59112027
Mastrolia MV, De Cillia C, Orlandi M, Abu-Rumeileh S, Maccora I, Maniscalco V, Marrani E, Pagnini I, Simonini G. Clinical Syndromes Related to SARS-CoV-2 Infection and Vaccination in Pediatric Age: A Narrative Review. Medicina. 2023; 59(11):2027. https://doi.org/10.3390/medicina59112027
Chicago/Turabian StyleMastrolia, Maria Vincenza, Camilla De Cillia, Michela Orlandi, Sarah Abu-Rumeileh, Ilaria Maccora, Valerio Maniscalco, Edoardo Marrani, Ilaria Pagnini, and Gabriele Simonini. 2023. "Clinical Syndromes Related to SARS-CoV-2 Infection and Vaccination in Pediatric Age: A Narrative Review" Medicina 59, no. 11: 2027. https://doi.org/10.3390/medicina59112027
APA StyleMastrolia, M. V., De Cillia, C., Orlandi, M., Abu-Rumeileh, S., Maccora, I., Maniscalco, V., Marrani, E., Pagnini, I., & Simonini, G. (2023). Clinical Syndromes Related to SARS-CoV-2 Infection and Vaccination in Pediatric Age: A Narrative Review. Medicina, 59(11), 2027. https://doi.org/10.3390/medicina59112027