The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease
Abstract
:1. Introduction
2. Review Methods
3. Results
3.1. B Cell Co-Receptors (CD20)
3.2. B Cell Activating Factor/B Lymphocyte Stimulator
3.3. Tumor Necrosis Factor (TNF)-α
3.4. TNF-α Receptor
3.5. Co-Stimulatory Molecules of T Cells
3.6. Interleukin-6
3.7. Complements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pedchenko, V.; Vanacore, R.; Hudson, B. Goodpasture’s disease: Molecular architecture of the autoantigen provides clues to etiology and pathogenesis. Curr. Opin. Nephrol. Hypertens. 2011, 20, 290–296. [Google Scholar] [CrossRef]
- Pusey, C.D. Anti-glomerular basement membrane disease. Kidney Int. 2003, 64, 1535–1550. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- McAdoo, S.P.; Pusey, C.D. Anti-glomerular basement membrane disease. Clin. J. Am. Soc. Nephrol. 2017, 12, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Segelmark, M.; Hellmark, T. Anti-glomerular basement membrane disease: An update on subgroups, pathogenesis and therapies. Nephrol. Dial. Transplant. 2019, 34, 1826–1832. [Google Scholar] [CrossRef]
- Rovin, B.H.; Adler, S.G.; Barratt, J.; Bridoux, F.; Burdge, K.A.; Chan, T.M.; Cook, H.T.; Fervenza, F.C.; Gibson, K.L.; Glassock, R.J.; et al. Executive summary of the KDIGO 2021 Guideline for the Management of Glomerular Diseases. Kidney Int. 2021, 100, 753–779. [Google Scholar] [CrossRef]
- Benoit, F.L.; Rulon, D.B.; Theil, G.B.; Doolan, P.D.; Watten, R.H. Goodpasture’s syndrome: A clinicopathologic entity. Am. J. Med. 1963, 58, 424–444. [Google Scholar]
- Proskey, A.J.; Weatherbee, L.; Easterling, R.E.; Greene, J.A., Jr.; Weller, J.M. Goodpasture’s syndrome. A report of five cases and review of the literature. Am. J. Med. 1970, 48, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.B.; Dixon, F.J. Anti-glomerular basement membrane antibody-induced glomerulonephritis. Kidney Int. 1973, 3, 74–89. [Google Scholar] [CrossRef]
- Beirne, G.J.; Wagnild, J.P.; Zimmerman, S.W.; Macken, P.D.; Burkholder, P.M. Idiopathic crescentic glomerulonephritis. Medicine 1977, 56, 349–381. [Google Scholar] [CrossRef]
- Briggs, W.A.; Johnson, J.P.; Teichman, S.; Yeager, H.C.; Wilson, C.B. Antiglomerular basement membrane antibody-mediated glomerulonephritis and Goodpasture’s syndrome. Medicine 1979, 58, 348–361. [Google Scholar] [CrossRef]
- Peters, D.K.; Rees, A.J.; Lockwood, C.M.; Pusey, C.D. Treatment and prognosis in antibasement membrane antibody-mediated nephritis. Transplant. Proc. 1982, 14, 513–521. [Google Scholar]
- Simpson, I.J.; Doak, P.B.; Williams, L.C.; Blacklock, H.A.; Hill, R.S.; Teague, C.A.; Herdson, P.B.; Wilson, C.B. Plasma exchange in Goodpasture’s syndrome. Am. J. Nephrol. 1982, 2, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.P.; Moore, J., Jr.; Austin, H.A., 3rd; Balow, J.E.; Antonovych, T.T.; Wilson, C.B. Therapy of anti-glomerular basement membrane antibody disease: Analysis of prognostic significance of clinical, pathologic and treatment factors. Medicine 1985, 64, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Savage, C.O.S.; Pusey, C.D.; Bowman, C.; Rees, A.J.; Lockwood, C.M. Antiglomerular basement membrane antibody mediated disease in the British Isles 1980-4. Br. Med. J. 1986, 292, 301–304. [Google Scholar] [CrossRef]
- Williams, P.S.; Davenport, A.; McDicken, I.; Ashby, D.; Goldsmith, H.J.; Bone, J.M. Increased incidence of anti-glomerular basement membrane antibody (anti-GBM) nephritis in the Mersey Region, September 1984–October 1985. Quart. J. Med. 1988, 68, 727–733. [Google Scholar] [PubMed]
- Herody, M.; Bobrie, G.; Gouarin, C.; Grünfeld, J.P.; Noel, L.H. Anti-GBM disease: Predictive value of clinical, histological and serological data. Clin. Nephrol. 1993, 40, 249–255. [Google Scholar] [PubMed]
- Merkel, F.; Pullig, O.; Marx, M.; Netzer, K.O.; Weber, M. Course and prognosis of anti-basement membrane antibody (anti-BM-Ab)-mediated disease: Report of 35 cases. Nephrol. Dial. Transplant. 1994, 9, 372–376. [Google Scholar]
- Daly, C.; Conlon, P.J.; Medwar, W.; Walshe, J.J. Characteristics and outcome of anti-glomerular basement membrane disease: A single-center experience. Ren. Fail. 1996, 18, 105–112. [Google Scholar] [CrossRef]
- Levy, J.B.; Turner, A.N.; Rees, A.J.; Pusey, C.D. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann. Intern. Med. 2001, 134, 1033–1042. [Google Scholar] [CrossRef]
- Li, F.K.; Tse, K.C.; Lam, M.F.; Yip, T.P.; Lui, S.L.; Chan, G.S.; Chan, K.W.; Chan, E.Y.; Choy, B.Y.; Lo, W.K.; et al. Incidence and outcome of antiglomerular basement membrane disease in Chinese. Nephrology 2004, 9, 100–104. [Google Scholar]
- Cui, Z.; Zhao, M.H.; Xin, G.; Wang, H.Y. Characteristics and prognosis of Chinese patients with anti-glomerular basement membrane disease. Nephron Clin. Pract. 2005, 99, c49–c55. [Google Scholar] [CrossRef] [PubMed]
- Lazor, R.; Bigay-Gamé, L.; Cottin, V.; Cadranel, J.; Decaux, O.; Fellrath, J.M.; Cordier, J.F.; Groupe d’Etudes et de Recherche sur les Maladies Orphelines Pulmonaires (GERMOP); Swiss Group for Interstitial and Orphan Lung Diseases (SIOLD). Alveolar hemorrhage in anti-basement membrane antibody disease: A series of 28 cases. Medicine 2007, 86, 181–193. [Google Scholar]
- Hirayama, K.; Yamagata, K.; Kobayashi, M.; Koyama, A. Anti-glomerular basement membrane antibody disease in Japan: Part of the nationwide rapidly progressive glomerulonephritis survey in Japan. Clin. Exp. Nephrol. 2008, 12, 339–347. [Google Scholar] [PubMed]
- Cui, Z.; Zhao, J.; Jia, X.Y.; Zhu, S.N.; Jin, Q.Z.; Cheng, X.Y.; Zhao, M.H. Anti-glomerular basement membrane disease: Outcomes of different therapeutic regimens in a large single-center Chinese cohort study. Medicine 2011, 90, 303–311. [Google Scholar]
- Taylor, D.M.; Yehia, M.; Simpson, I.J.; Thein, H.; Chang, Y.; de Zoysa, J.R. Anti-glomerular basement membrane disease in Auckland. Intern. Med. J. 2012, 42, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, D.; Rathi, M.; Nada, R.; Minz, R.W.; Kumar, V.; Kohli, H.S.; Jha, V.; Gupta, K.L. Anti-glomerular basement membrane disease: Case series from a tertiary center in North India. Indian J. Nephrol. 2017, 27, 108–112. [Google Scholar]
- van Daalen, E.E.; Jennette, J.C.; McAdoo, S.P.; Pusey, C.D.; Alba, M.A.; Poulton, C.J.; Wolterbeek, R.; Nguyen, T.Q.; Goldschmeding, R.; Alchi, B.; et al. Predicting outcome in patients with anti-GBM glomerulonephritis. Clin. J. Am. Soc. Nephrol. 2018, 13, 63–72. [Google Scholar]
- Marques, C.; Carvelli, J.; Biard, L.; Faguer, S.; Provôt, F.; Matignon, M.; Boffa, J.J.; Plaisier, E.; Hertig, A.; Touzot, M.; et al. Prognostic factors in anti-glomerular basement membrane disease: A multicenter study of 119 patients. Front. Immunol. 2019, 10, 1665. [Google Scholar]
- Vavilapalli, S.; Madireddy, N.; Uppin, M.S.; Kalidindi, K.; Gudithi, S.; Taduri, G.; Raju, S.B. Anti-glomerular basement membrane disease: A clinicomorphological study of 16 cases. Indian J. Pathol. Microbiol. 2020, 63, 226–229. [Google Scholar]
- Zahir, Z.; Wani, A.S.; Prasad, N.; Jain, M. Clinicopathological characteristics and predictors of poor outcome in anti-glomerular basement membrane disease—A fifteen year single center experience. Ren. Fail. 2021, 43, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.B.; Tervaert, J.W.; Hauser, T.; Luqmani, R.; Morgan, M.D.; Peh, C.A.; Savage, C.O.; Segelmark, M.; Tesar, V.; van Paassen, P.; et al. European Vasculitis Study Group. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 2010, 363, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.H.; Merkel, P.A.; Spiera, R.; Seo, P.; Langford, C.A.; Hoffman, G.S.; Kallenberg, C.G.; St Clair, E.W.; Turkiewicz, A.; Tchao, N.K.; et al. RAVE-ITN Research Group. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 2010, 363, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.; Delgado Alves, J.; Fortuna, J.; Faria, R.; Almeida, I.; Alves, G.; Araújo Correia, J.; Campar, A.; Brandão, M.; Crespo, J.; et al. Biological therapy in systemic lupus erythematosus, antiphospholipid syndrome, and Sjögren’s syndrome: Evidence- and practice-based guidance. Front. Immunol. 2023, 14, 1117699. [Google Scholar] [CrossRef]
- Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108. [Google Scholar] [CrossRef]
- Arzoo, K.; Sadeghi, S.; Liebman, H.A. Treatment of refractory antibody mediated autoimmune disorders with an anti-CD20 monoclonal antibody (rituximab). Ann. Rheum. Dis. 2002, 61, 922–924. [Google Scholar] [CrossRef]
- Wechsler, E.; Yang, T.; Jordan, S.C.; Vo, A.; Nast, C.C. Anti-glomerular basement membrane disease in an HIV-infected patient. Nat. Clin. Pract. Nephrol. 2008, 4, 167–171. [Google Scholar] [CrossRef]
- Sauter, M.; Schmid, H.; Anders, H.J.; Heller, F.; Weiss, M.; Sitter, T. Loss of a renal graft due to recurrence of anti-GBM disease despite rituximab therapy. Clin. Transplant. 2009, 23, 132–136. [Google Scholar] [CrossRef]
- Schless, B.; Yildirim, S.; Beha, D.; Keller, F.; Czock, D. Rituximab in two cases of Goodpasture’s syndrome. NDT Plus 2009, 2, 225–227. [Google Scholar]
- Abenza-Abildua, M.J.; Fuentes, B.; Diaz, D.; Royo, A.; Olea, T.; Aguilar-Amat, M.J.; Diez-Tejedor, E. Cyclophosphamide-induced reversible posterior leukoencephalopathy syndrome. BMJ Case Rep. 2009, 2009, bcr07.2008.0467. [Google Scholar] [CrossRef]
- Shah, Y.; Mohiuddin, A.; Sluman, C.; Daryanani, I.; Ledson, T.; Banerjee, A.; Crowe, A.; McClelland, P. Rituximab in anti-glomerular basement membrane disease. QJM 2012, 105, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Vega-Cabrera, C.; Del Peso, G.; Bajo, A.; Picazo, M.L.; Rivas-Becerra, B.; Benitez, A.L.; Ara, J.M.; Olea, T.; Selgas, R. Goodpasture’s syndrome associated with thrombotic thrombocytopenic purpura secondary to an ADAMTS-13 deficit. Int. Urol. Nephrol. 2013, 45, 1785–1789. [Google Scholar] [CrossRef]
- Syeda, U.A.; Singer, N.G.; Magrey, M. Anti-glomerular basement membrane antibody disease treated with rituximab: A case-based review. Semin. Arthritis Rheum. 2013, 42, 567–572. [Google Scholar] [CrossRef]
- Bandak, G.; Jones, B.A.; Li, J.; Yee, J.; Umanath, K. Rituximab for the treatment of refractory simultaneous anti-glomerular basement membrane (anti-GBM) and membranous nephropathy. Clin. Kidney J. 2014, 7, 53–56. [Google Scholar] [CrossRef]
- Narayanan, M.; Casimiro, I.; Pichler, R. A unique way to treat Goodpasture’s disease. BMJ Case Rep. 2014, 2014, bcr2014206220. [Google Scholar] [CrossRef] [PubMed]
- Gray, P.E.; O’Brien, T.A.; Wagle, M.; Tangye, S.G.; Palendira, U.; Roscioli, T.; Choo, S.; Sutton, R.; Ziegler, J.B.; Frith, K. Cerebral vasculitis in X-linked lymphoproliferative disease cured by matched unrelated cord blood transplant. J. Clin. Immunol. 2015, 35, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wu, L.; Huang, X.; Xie, Y.; Yu, J.; Yang, J.; Fang, H.; Zhang, L. Successful treatment of dual-positive anti-myeloperoxidase and anti-glomerular basement membrane antibody vasculitis with pulmonary-renal syndrome. Case Rep. Nephrol. Dial. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Calabro, N.; Henriksen, K.; Lim, S.H.; Kerns, E. Successful use of rituximab in glomerular basement membrane nephritis associated with HIV interstitial nephritis secondary to Castleman disease. Clin. Nephrol. 2018, 89, 469–473. [Google Scholar] [CrossRef]
- Teixeira, A.C.; Pinto, H.; Oliveira, N.; Marinho, C. Proliferative glomerulonephritis with linear immunoglobulin deposition: Is this atypical antiglomerular basement membrane disease? BMJ Case Rep. 2018, 2018, bcr2017223198. [Google Scholar] [CrossRef]
- Lemahieu, W.; Ombelet, S.; Lerut, E.; Jamar, S.; Sprangers, B. Reversal of dialysis-dependent anti-glomerular basement membrane disease using plasma exchange, glucocorticosteroids, and rituximab. Kidney Int. Rep. 2018, 3, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Dgheim, H.; Bomback, A.S. Rituximab for anti-glomerular basement membrane disease. Kidney Int. Rep. 2018, 4, 614–618. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.; Church, D.; Ambasta, A. Disseminated cerebral aspergillosis complicated by thrombotic microangiopathy. Med. Mycol. Case Rep. 2019, 25, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Sprenger-Mähr, H.; Zitt, E.; Soleiman, A.; Lhotta, K. Successful pregnancy in a patient with pulmonary renal syndrome double-positive for anti-GBM antibodies and p-ANCA. Clin. Nephrol. 2019, 91, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Sporinova, B.; McRae, S.A.; Muruve, D.A.; Fritzler, M.J.; Nasr, S.H.; Chin, A.C.; Benediktsson, H. A case of aggressive atypical anti-GBM disease complicated by CMV pneumonitis. BMC Nephrol. 2019, 20, 29. [Google Scholar] [CrossRef] [PubMed]
- Mannemuddhu, S.S.; Clapp, W.; Modica, R.; Elder, M.E.; Upadhyay, K. End-stage renal disease secondary to anti-glomerular basement membrane disease in a child with common variable immunodeficiency. Clin. Nephrol. Case Stud. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Hanna, A.; Ross, J.; Heitor, F. Rare case of atypical crescentic glomerulonephritis and interstitial lung disease with negative anti-GBM antibody and positive anti-MPO antibody. BMJ Case Rep. 2019, 12, e229256. [Google Scholar] [CrossRef]
- Uematsu-Uchida, M.; Ohira, T.; Tomita, S.; Satonaka, H.; Tojo, A.; Ishimitsu, T. Rituximab in treatment of anti-GBM antibody glomerulonephritis: A case report and literature review. Medicine 2019, 98, e17801. [Google Scholar] [CrossRef]
- Isobe, S.; Tomosugi, T.; Futamura, K.; Okada, M.; Hiramitsu, T.; Tsujita, M.; Narumi, S.; Goto, N.; Takeda, A.; Watarai, Y. A case of recurrent atypical anti-glomerular basement membrane nephritis suspicion after renal transplantation. Nephron 2020, 144 (Suppl. S1), 49–53. [Google Scholar] [CrossRef]
- Helander, L.; Hanna, M.; Annen, K. Pediatric double positive anti-glomerular basement membrane antibody and anti-neutrophil cytoplasmic antibody glomerulonephritis—A case report with review of literature. J. Clin. Apher. 2021, 36, 505–510. [Google Scholar] [CrossRef]
- Winkler, A.; Zitt, E.; Sprenger-Mähr, H.; Soleiman, A.; Cejna, M.; Lhotta, K. SARS-CoV-2 infection and recurrence of anti-glomerular basement disease: A case report. BMC Nephrol. 2021, 22, 75. [Google Scholar] [CrossRef]
- Povey, J.; Rutherford, E.; Levy, J.; Muniraju, T. Relapse of treated anti-GBM disease following hair dye use. BMJ Case Rep. 2021, 14, e240543. [Google Scholar] [CrossRef] [PubMed]
- Jen, K.Y.; Auron, A. Atypical antiglomerular basement membrane disease in a pediatric patient successfully treated with rituximab. Case Rep. Nephrol. 2021, 2021, 2586693. [Google Scholar] [CrossRef] [PubMed]
- Al-Chalabi, S.; Wu, H.H.L.; Chinnadurai, R.; Ponnusamy, A. Etanercept-induced anti-glomerular basement membrane disease. Case Rep. Nephrol. Dial. 2021, 11, 292–300. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, D.; Wang, W.; Zhao, F.; Zhang, X.; Li, X. Pneumocystis pneumonia secondary to intensive immunosuppression treatment for anti-GBM disease complicated with IgA nephropathy: A case report and literature review. Medicine 2021, 100, e27728. [Google Scholar] [CrossRef] [PubMed]
- Goda, S.; Gando, S.; Berg, B.W. Veno-venous extracorporeal membrane oxygenation (VV-ECMO) for life-threatening isolated pulmonary anti-GBM disease. Respir Med. Case Rep. 2022, 38, 101680. [Google Scholar] [CrossRef]
- Qu, W.; Liu, N.; Xu, T.; Tian, B.; Wang, M.; Li, Y.; Ma, J.; Yao, L. Case Report: Coexistence of anti-glomerular basement membrane disease, membranous nephropathy, and IgA nephropathy in a female patient with preserved renal function. Front. Pharmacol. 2022, 13, 876512. [Google Scholar] [CrossRef]
- McAllister, J.; Nagisetty, P.; Tyerman, K. A Case of paediatric anti-glomerular basement membrane disease associated with thrombotic thrombocytopenic purpura. Case Rep. Nephrol. 2022, 2022, 2676696. [Google Scholar] [CrossRef] [PubMed]
- Kanaoka, K.; Ihara, S.; Nakatani, T.; Minami, S. Rituximab for the treatment of anti-glomerular basement membrane disease with isolated diffuse alveolar hemorrhage: A case report. Intern. Med. 2023, 62, 1971–1975. [Google Scholar] [CrossRef]
- Honda, N.; Shigehara, R.; Furuhashi, K.; Nagai, Y.; Yokogawa, N. Anti-glomerular basement membrane diseases and thrombotic microangiopathy treated with rituximab. Mod. Rheumatol. Case Rep. 2023, 7, 422–425. [Google Scholar] [CrossRef]
- Touzot, M.; Poisson, J.; Faguer, S.; Ribes, D.; Cohen, P.; Geffray, L.; Anguel, N.; François, H.; Karras, A.; Cacoub, P.; et al. Rituximab in anti-GBM disease: A retrospective study of 8 patients. J. Autoimmun. 2015, 60, 74–79. [Google Scholar] [CrossRef]
- Heitz, M.; Carron, P.L.; Clavarino, G.; Jouve, T.; Pinel, N.; Guebre-Egziabher, F.; Rostaing, L. Use of rituximab as an induction therapy in anti-glomerular basement-membrane disease. BMC Nephrol. 2018, 19, 241. [Google Scholar] [CrossRef] [PubMed]
- Mayer, U.; Schmitz, J.; Bräsen, J.H.; Pape, L. Crescentic glomerulonephritis in children. Pediatr. Nephrol. 2020, 35, 829–842. [Google Scholar] [CrossRef]
- Ahmad, S.B.; Santoriello, D.; Canetta, P.; Bomback, A.S.; D’Agati, V.D.; Markowitz, G.; Ahn, W.; Radhakrishnan, J.; Appel, G.B. Concurrent anti-glomerular basement membrane antibody disease and membranous nephropathy: A case series. Am. J. Kidney Dis. 2021, 78, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Jia, X.Y.; Yu, X.J.; Cui, Z.; Zhao, M.H. Rituximab for the treatment of refractory anti-glomerular basement membrane disease. Ren. Fail. 2022, 44, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Jaryal, A.; Vikrant, S. Anti-glomerular basement membrane disease: Treatment outcome of cyclophosphamide vs. rituximab induction therapy regimen. Clin. Nephrol. 2022, 98, 280–287. [Google Scholar]
- Xin, G.; Cui, Z.; Su, Y.; Xu, L.X.; Zhao, M.H.; Li, K.S. Serum BAFF and APRIL might be associated with disease activity and kidney damage in patients with anti-glomerular basement membrane disease. Nephrology 2013, 18, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.B.; Terence Cook, H.; Bhangal, G.; Smith, J.; Tam, F.W.K.; Pusey, C.D. Antibody blockade of TNF-α reduces inflammation and scarring in experimental crescentic glomerulonephritis. Kidney Int. 2005, 67, 1812–1820. [Google Scholar] [CrossRef]
- Nishimura, K.; Saegusa, J.; Kawano, S.; Morinobu, A. Tumor necrosis factor-α inhibitor-induced antiglomerular basement membrane antibody disease in a patient with rheumatoid arthritis. J. Rheumatol. 2012, 39, 1904–1905. [Google Scholar] [CrossRef]
- Nishikawa, K.; Linsley, P.S.; Collins, A.B.; Stamenkovic, I.; McCluskey, R.T.; Andres, G. Effect of CTLA-4 chimeric protein on rat autoimmune anti-glomerular basement membrane glomerulonephritis. Eur. J. Immunol. 1994, 24, 1249–1254. [Google Scholar] [CrossRef]
- Reynolds, J.; Tam, F.W.; Chandraker, A.; Smith, J.; Karkar, A.M.; Cross, J.; Peach, R.; Sayegh, M.H.; Pusey, C.D. CD28-B7 blockade prevents the development of experimental autoimmune glomerulonephritis. J. Clin. Investig. 2000, 105, 643–651. [Google Scholar] [CrossRef]
- Kitching, A.R.; Huang, X.R.; Ruth, A.J.; Tipping, P.G.; Holdsworth, S.R. Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice. Clin. Exp. Immunol. 2002, 128, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Luig, M.; Kluger, M.A.; Goerke, B.; Meyer, M.; Nosko, A.; Yan, I.; Scheller, J.; Mittrücker, H.W.; Rose-John, S.; Stahl, R.A.; et al. Inflammation-induced IL-6 functions as a natural brake on macrophages and limits GN. J. Am. Soc. Nephrol. 2015, 26, 1597–1607. [Google Scholar] [CrossRef]
- Braun, G.S.; Nagayama, Y.; Maruta, Y.; Heymann, F.; van Roeyen, C.R.; Klinkhammer, B.M.; Boor, P.; Villa, L.; Salant, D.J.; Raffetseder, U.; et al. IL-6 trans-signaling drives murine crescentic GN. J. Am. Soc. Nephrol. 2016, 27, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Brede, K.M.; Schmid, J.; Steinmetz, O.M.; Panzer, U.; Klinge, S.; Mittrücker, H.W. Neutralization of IL-6 inhibits formation of autoreactive TH17 cells but does not prevent loss of renal function in experimental autoimmune glomerulonephritis. Immunol. Lett. 2021, 236, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Sobotta, M.; Moerer, O.; Gross, O. Case Report: Eculizumab and ECMO rescue therapy of severe ARDS in Goodpasture syndrome. Front. Med. 2021, 8, 720949. [Google Scholar] [CrossRef]
- Nithagon, P.; Cortazar, F.; Shah, S.I.; Weins, A.; Laliberte, K.; Jeyabalan, A.; Niles, J.; Zonozi, R. Eculizumab and complement activation in anti-glomerular basement membrane disease. Kidney Int. Rep. 2021, 6, 2713–2717. [Google Scholar] [CrossRef]
- Murphy, K.; Weaver, C. Lymphocyte receptor signaling. In Janeway’s Immunobiology, 9th ed.; Murphy, K., Weaver, C., Eds.; Garland Science: New York, NY, USA, 2017; pp. 257–293. [Google Scholar]
- Cragg, M.S.; Walshe, C.A.; Ivanov, A.O.; Glennie, M.J. The biology of CD20 and its potential as a target for mAb therapy. Curr. Dir. Autoimmun. 2005, 8, 140–174. [Google Scholar]
- Leget, G.A.; Czuczman, M.S. Use of rituximab, the new FDA-approved antibody. Curr. Opin. Oncol. 1998, 10, 548–551. [Google Scholar] [CrossRef]
- Tanaka, Y.; Takeuchi, T.; Miyasaka, N.; Sumida, T.; Mimori, T.; Koike, T.; Endo, K.; Mashino, N.; Yamamoto, K. Efficacy and safety of rituximab in Japanese patients with systemic lupus erythematosus and lupus nephritis who are refractory to conventional therapy. Mod. Rheumatol. 2016, 26, 80–86. [Google Scholar] [CrossRef]
- Wang, C.R.; Liu, M.F. Rituximab usage in systemic lupus erythematosus-associated antiphospholipid syndrome: A single-center experience. Semin. Arthritis Rheum. 2016, 46, 102–108. [Google Scholar] [CrossRef]
- Owattanapanich, W.; Wongprasert, C.; Rotchanapanya, W.; Owattanapanich, N.; Ruchutrakool, T. Comparison of the long-term remission of rituximab and conventional treatment for acquired thrombotic thrombocytopenic purpura: A systematic review and meta-analysis. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029618825309. [Google Scholar] [CrossRef] [PubMed]
- Mackay, F.; Schneider, P.; Rennert, P.; Browning, J. BAFF AND APRIL: A tutorial on B cell survival. Annu. Rev. Immunol. 2003, 21, 231–264. [Google Scholar] [CrossRef]
- Mackay, F.; Woodcock, S.A.; Lawton, P.; Ambrose, C.; Baetscher, M.; Schneider, P.; Tschopp, J.; Browning, J.L. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 1999, 190, 1697–1710. [Google Scholar] [CrossRef] [PubMed]
- Schiemann, B.; Gommerman, J.L.; Vora, K.; Cachero, T.G.; Shulga-Morskaya, S.; Dobles, M.; Frew, E.; Scott, M.L. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001, 293, 2111–2114. [Google Scholar] [CrossRef] [PubMed]
- Halpern, W.G.; Lappin, P.; Zanardi, T.; Cai, W.; Corcoran, M.; Zhong, J.; Baker, K.P. Chronic administration of belimumab, a BLyS antagonist, decreases tissue and peripheral blood B-lymphocyte populations in cynomolgus monkeys: Pharmacokinetic, pharmacodynamic, and toxicologic effects. Toxicol. Sci. 2006, 91, 586–599. [Google Scholar] [CrossRef]
- Munafo, A.; Priestley, A.; Nestorov, I.; Visich, J.; Rogge, M. Safety, pharmacokinetics and pharmacodynamics of atacicept in healthy volunteers. Eur. J. Clin. Pharmacol. 2007, 63, 647–656. [Google Scholar] [CrossRef]
- Stohl, W. Biologic differences between various inhibitors of the BLyS/BAFF pathway: Should we expect differences between belimumab and other inhibitors in development? Curr. Rheumatol. Rep. 2012, 14, 303–309. [Google Scholar] [CrossRef]
- Singh, J.A.; Shar, N.P.; Mudano, A.S. Belimimab for systemic lupus erythematosus. Cochrane Database Syst. Rev. 2021, 2, CD010668. [Google Scholar]
- Stohl, W.; Merrill, J.T.; McKay, J.D.; Lisse, J.R.; Zhong, Z.J.; Freimuth, W.W.; Genovese, M.C. Efficacy and safety of belimumab in patients with rheumatoid arthritis: A phase II, randomized, double-blind, placebo-controlled, dose-ranging Study. J. Rheumatol. 2013, 40, 579–589. [Google Scholar] [CrossRef]
- Mariette, X.; Seror, R.; Quartuccio, L.; Baron, G.; Salvin, S.; Fabris, M.; Desmoulins, F.; Nocturne, G.; Ravaud, P.; De Vita, S. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study. Ann. Rheum. Dis. 2015, 74, 526–531. [Google Scholar] [CrossRef]
- Jayne, D.; Blockmans, D.; Luqmani, R.; Moiseev, S.; Ji, B.; Green, Y.; Hall, L.; Roth, D.; Henderson, R.B.; Merkel, P.A.; et al. Efficacy and safety of belimumab and azathioprine for maintenance of remission in antineutrophil cytoplasmic antibody-associated vasculitis: A randomized controlled study. Arthritis Rheumatol. 2019, 71, 952–963. [Google Scholar] [CrossRef] [PubMed]
- van Vollenhoven, R.F.; Kinnman, N.; Vincent, E.; Wax, S.; Bathon, J. Atacicept in patients with rheumatoid arthritis and an inadequate response to methotrexate: Results of a phase II, randomized, placebo-controlled trial. Arthritis Rheum. 2011, 63, 1782–1792. [Google Scholar] [CrossRef]
- van Vollenhoven, R.F.; Wax, S.; Li, Y.; Tak, P.P. Safety and efficacy of atacicept in combination with rituximab for reducing the signs and symptoms of rheumatoid arthritis: A phase II, randomized, double-blind, placebo-controlled pilot trial. Arthritis Rheumatol. 2015, 67, 2828–2836. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.; Gordon, C.; Licu, D.; Copt, S.; Rossi, C.P.; Wofsy, D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomized trial). Ann. Rheum. Dis. 2015, 74, 2006–2015. [Google Scholar] [CrossRef]
- Ginzler, E.M.; Wax, S.; Rajeswaran, A.; Copt, S.; Hillson, J.; Ramos, E.; Singer, N.G. Atacicept in combination with MMF and corticosteroids in lupus nephritis: Results of a prematurely terminated trial. Arthritis Res. Ther. 2012, 14, R33. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.A.; Petri, M.; Kalunian, K.; Tanaka, Y.; Urowitz, M.B.; Hoffman, R.W.; Morgan-Cox, M.; Iikuni, N.; Silk, M.; Wallace, D.J. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: Results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2016, 75, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Merrill, J.T.; van Vollenhoven, R.F.; Buyon, J.P.; Furie, R.A.; Stohl, W.; Morgan-Cox, M.; Dickson, C.; Anderson, P.W.; Lee, C.; Berclaz, P.Y.; et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: Results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 2016, 75, 332–340. [Google Scholar]
- Merrill, J.T.; Shanahan, W.R.; Scheinberg, M.; Kalunian, K.C.; Wofsy, D.; Martin, R.S. Phase III trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE): Results from a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 2018, 77, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Ghorbaninezhad, F.; Leone, P.; Alemohammad, H.; Najafzadeh, B.; Nourbakhsh, N.S.; Prete, M.; Malerba, E.; Saeedi, H.; Tabrizi, N.J.; Racanelli, V.; et al. Tumor necrosis factor-α in systemic lupus erythematosus: Structure, function and therapeutic implications. Int. J. Mol. Med. 2022, 49, 43. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.A. How TNF was recognized as a key mechanism of disease. Cytokine Growth Factor Rev. 2007, 18, 335–343. [Google Scholar] [CrossRef]
- Knight, D.M.; Trinh, H.; Le, J.; Siegel, S.; Shealy, D.; McDonough, M.; Scallon, B.; Moore, M.A.; Vilcek, J.; Daddona, P.; et al. Construction and initial characterization of a mouse-human chimeric anti-TNF antibody. Mol. Immunol. 1993, 30, 1443–1453. [Google Scholar] [CrossRef] [PubMed]
- Kempeni, J. Update on D2E7: A fully human anti-tumor necrosis factor α monoclonal antibody. Ann. Rheum. Dis. 2000, 59 (Suppl. SI), i44–i45. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, S.; Greenwald, D. Golimumab. MAbs 2009, 1, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, A.; Fossati, G.; Bergin, M.; Stephens, P.; Stephens, S.; Foulkes, R.; Brown, D.; Robinson, M.; Bourne, T. Mechanism of action of certolizumab pegol (CDP870): In vitro comparison with other anti-tumor necrosis factor alpha agents. Inflamm. Bowel Dis. 2007, 13, 1323–1332. [Google Scholar] [CrossRef]
- Nam, J.L.; Ramiro, S.; Gaujoux-Viala, C.; Takase, K.; Leon-Garcia, M.; Emery, P.; Gossec, L.; Landewe, R.; Smolen, J.S.; Buch, M.H. Efficacy of biological disease-modifying antirheumatic drugs: A systematic literature review informing the 2013 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 516–528. [Google Scholar] [CrossRef]
- Cabrera, N.; Avila-Pedretti, G.; Belot, A.; Larbre, J.P.; Mainbourg, S.; Duquesne, A.; Janiaud, P.; Kassai, B.; Cucherat, M.; Lega, J.C. The benefit-risk balance for biological agents in juvenile idiopathic arthritis: A meta-analysis of randomized clinical trials. Rheumatology 2020, 59, 2226–2236. [Google Scholar] [CrossRef]
- Saad, A.A.; Symmons, D.P.; Noyce, P.R.; Ashcroft, D.M. Risks and benefits of tumor necrosis factor-alpha inhibitors in the management of psoriatic arthritis: Systematic review and metaanalysis of randomized controlled trials. J. Rheumatol. 2008, 35, 883–890. [Google Scholar]
- Webers, C.; Ortolan, A.; Sepriano, A.; Falzon, L.; Baraliakos, X.; Landewé, R.B.M.; Ramiro, S.; van der Heijde, D.; Nikiphorou, E. Efficacy and safety of biological DMARDs: A systematic literature review informing the 2022 update of the ASAS-EULAR recommendations for the management of axial spondyloarthritis. Ann. Rheum. Dis. 2023, 82, 130–141. [Google Scholar] [CrossRef]
- Lynch, K.D.; Keshav, S.; Chapman, R.W. The use of biologics in patients with inflammatory bowel disease and primary sclerosing cholangitis. Curr. Hepatol. Rep. 2019, 18, 115–126. [Google Scholar] [CrossRef]
- Le Hir, M.; Haas, C.; Marino, M.; Ryfeel, B. Prevention of crescentic glomerulonephritis induced by anti-glomerular membrane antibody in tumor necrosis factor-deficient mice. Lab. Investig. 1998, 78, 1625–1631. [Google Scholar]
- Rothe, J.; Gehr, G.; Loetscher, H.; Lesslauer, W. Tumor necrosis factor receptors –Structure and function. Immunol. Res. 1992, 11, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Mohler, K.M.; Torrance, D.S.; Smith, C.A.; Goodwin, R.G.; Stremler, K.E.; Fung, V.P.; Madani, H.; Widmer, M.B. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol. 1993, 151, 1548–1561. [Google Scholar] [CrossRef] [PubMed]
- Aaltonen, K.J.; Virkki, L.M.; Malmivaara, A.; Konttinen, Y.T.; Nordström, D.C.; Blom, M. Systematic review and meta-analysis of the efficacy and safety of existing TNF blocking agents in treatment of rheumatoid arthritis. PLoS ONE 2012, 7, e30275. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.K.; Taylor, P.S.; Norton, S.D.; Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 1991, 147, 2461–2466. [Google Scholar] [CrossRef]
- Karandikar, N.J.; Vanderlugt, C.L.; Walunas, T.L.; Miller, S.D.; Bluestone, J.A. CTLA-4: A negative regulator of autoimmune disease. J. Exp. Med. 1996, 184, 783–788. [Google Scholar] [CrossRef]
- Maxwell, L.; Singh, J.A. Abatacept for rheumatoid arthritis. Cochrane Database Syst. Rev. 2009, 2009, CD007277. [Google Scholar] [CrossRef]
- Ungprasert, P.; Thongprayoon, C.; Davis, J.M., 3rd. Indirect comparisons of the efficacy of subsequent biological agents in patients with psoriatic arthritis with an inadequate response to tumor necrosis factor inhibitors: A meta-analysis. Clin. Rheumatol. 2016, 35, 1795–1803. [Google Scholar] [CrossRef]
- Emery, P. The therapeutic potential of costimulatory blockade with CTLA4Ig in rheumatoid arthritis. Expert Opin. Investig. Drugs. 2003, 12, 673–681. [Google Scholar] [CrossRef]
- Nitta, K.; Horita, S.; Ogawa, S.; Matsumoto, M.; Hara, Y.; Okano, K.; Hayashi, T.; Abe, R.; Nihei, H. Resistance of CD28-deficient mice to autologous phase of anti-glomerular basement membrane glomerulonephritis. Clin. Exp. Nephrol. 2003, 7, 104–112. [Google Scholar] [CrossRef]
- Odobasic, D.; Kitching, A.R.; Tipping, P.G.; Holdsworth, S.R. CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int. 2005, 68, 584–594. [Google Scholar] [CrossRef]
- Odobasic, D.; Kitching, A.R.; Semple, T.J.; Timoshanko, J.R.; Tipping, P.G.; Holdsworth, S.R. Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. J. Am. Soc. Nephrol. 2005, 16, 2012–2022. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Hirano, T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002, 13, 357–368. [Google Scholar] [CrossRef]
- Venkiteshwaran, A. Tocilizumab. MAbs 2009, 1, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, M.G.; Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Des. Devel. Ther. 2017, 11, 1593–1603. [Google Scholar] [CrossRef]
- Singh, J.A.; Beg, S.; Lopez-Olivo, M.A. Tocilizumab for rheumatoid arthritis. Cochrane Database Syst. Rev. 2010, 7, CD008331. [Google Scholar]
- Frampton, J.E. Tocilizumab: A review of its use in the treatment of juvenile idiopathic arthritis. Paediatr. Drugs 2013, 15, 515–531. [Google Scholar] [CrossRef]
- Kaneko, Y. Interluekin-6 inhibitors for the treatment of adult-onset Still’s disease. Mod. Rheumatol. 2022, 32, 12–15. [Google Scholar] [CrossRef]
- Singh, A.; Danda, D.; Hussain, S.; Najmi, A.K.; Mathew, A.; Goel, R.; Lakhan, S.E.; Tajudheen, B.; Antony, B. Efficacy and safety of tocilizumab in treatment of Takayasu arteritis: A systematic review of randomized controlled trials. Mod. Rheumatol. 2021, 31, 197–204. [Google Scholar] [CrossRef]
- Antonio, A.A.; Santos, R.N.; Abariga, S.A. Tocilizumab for giant cell arteritis. Cochrane Database Syst. Rev. 2022, 5, CD013484. [Google Scholar] [CrossRef]
- Rehman, M.E.U.; Chattaraj, A.; Neupane, K.; Rafae, A.; Saeed, S.; Basit, J.; Ibrahim, A.; Khouri, J.; Mukherjee, S.; Answer, F. Efficacy and safety of regimens used for the treatment of multicentric Castleman disease: A systematic review. Eur. J. Haematol. 2022, 109, 309–320. [Google Scholar] [CrossRef]
- Yu, S.Y.; Koh, D.H.; Choi, M.; Ryoo, S.; Huh, K.; Yeom, J.S.; Yoon, Y.K. Clinical efficacy and safety of interleukin-6 receptor antagonists (tocilizumab and sarilumab) in patients with COVID-19: A systematic review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 1154–1165. [Google Scholar] [CrossRef]
- Kim, J.H.; Ha, I.S.; Hwang, C.I.; Lee, Y.J.; Kim, J.; Yang, S.H.; Kim, Y.S.; Cao, Y.A.; Choi, S.; Park, W.Y. Gene expression profiling of anti-GBM glomerulonephritis model: The role of NF-kappaB in immune complex kidney disease. Kidney Int. 2004, 66, 1826–1837. [Google Scholar] [CrossRef]
- Hochegger, K.; Jansky, G.L.; Soleiman, A.; Wolf, A.M.; Tagwerker, A.; Seger, C.; Griesmacher, A.; Mayer, G.; Rosenkranz, A.R. Differential effects of rapamycin in anti-GBM glomerulonephritis. J. Am. Soc. Nephrol. 2008, 19, 1520–1529. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Fukatsu, A.; Baba, M.; Mizuno, M.; Ichida, S.; Sado, Y.; Matsuo, S. Pathogenic significance of interleukin-6 in a patient with antiglomerular basement membrane antibody-induced glomerulonephritis with multinucleated giant cells. Am. J. Kidney Dis. 1995, 26, 72–79. [Google Scholar] [CrossRef]
- Karkar, A.M.; Smith, J.; Tam, F.W.; Pusey, C.D.; Rees, A.J. Abrogation of glomerular injury in nephrotoxic nephritis by continuous infusion of interleukin-6. Kidney Int. 1997, 52, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Weaver, C. Innate immunity: The first lines of defence. In Janeway’s Immunobiology, 9th ed.; Murphy, K., Weaver, C., Eds.; Garland Science: New York, NY, USA, 2017; pp. 37–76. [Google Scholar]
- Wooden, B.; Estebanez, B.T.; Navarro-Torres, M.; Bomback, A.S. Complement inhibitors for kidney disease. Nephrol. Dial. Transplant. 2023, 22, gfad079. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.C.; Rollins, S.A.; Rother, R.P.; Giannoni, M.A.; Hartman, S.L.; Elliott, E.A.; Nye, S.H.; Matis, L.A.; Squinto, S.P.; Evans, M.J. Inhibition of complement activity by humanized anti-C5 antibody and single-chain Fv. Mol. Immunol. 1996, 33, 1389–1401. [Google Scholar] [CrossRef]
- Sheridan, D.; Yu, Z.X.; Zhang, Y.; Patel, R.; Sun, F.; Lasaro, M.A.; Bouchard, K.; Andrien, B.; Marozsan, A.; Wang, Y.; et al. Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action. PLoS ONE 2018, 13, e0195909. [Google Scholar] [CrossRef]
- Martí-Carvajal, A.J.; Anand, V.; Cardona, A.F.; Solà, I. Eculizumab for treating patients with paroxysmal nocturnal hemoglobinuria. Cochrane Database Syst. Rev. 2014, 10, CD010340. [Google Scholar] [CrossRef]
- Pugh, D.; O’Sullivan, E.D.; Duthie, F.A.; Masson, P.; Kavanagh, D. Interventions for atypical haemolytic uraemic syndrome. Cochrane Database Syst. Rev. 2021, 3, CD012862. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, K.; Liang, X.; Li, R.; Lai, K.P. Clinical efficacy and safety of eculizumab for treating myasthenia gravis. Front. Immunol. 2021, 12, 715036. [Google Scholar] [CrossRef] [PubMed]
- Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 2019, 381, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.J.; Chonat, S. Evaluating ravulizumab for the treatment of children and adolescents with paroxysmal nocturnal hemoglobinuria. Expert Rev. Hematol. 2022, 15, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Ravulizumab: A review in atypical haemolytic uraemic syndrome. Drugs 2021, 81, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Adler, S.; Baker, P.J.; Pritzl, P.; Couser, W.G. Detection of terminal complement components in experimental immune glomerular injury. Kidney Int. 1984, 26, 830–837. [Google Scholar] [CrossRef]
- Shike, T.; Isome, M.; Mizuno, M.; Suzuki, J.; Matsuo, S.; Yamamoto, T.; Suzuki, H. Implication of the complement system in the induction of anti-glomerular basement membrane glomerulonephritis in WKY rats. Pathol. Int. 2003, 53, 757–761. [Google Scholar] [CrossRef]
- Schrijver, G.; Bogman, M.J.; Assmann, K.J.; de Waal, R.M.; Robben, H.C.; van Gasteren, H.; Koene, R.A. Anti-GBM nephritis in the mouse: Role of granulocytes in the heterologous phase. Kidney Int. 1990, 38, 86–95. [Google Scholar] [CrossRef]
- Sheerin, N.S.; Springall, T.; Carroll, M.C.; Hartley, B.; Sacks, S.H. Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice. Clin. Exp. Immunol. 1997, 110, 403–409. [Google Scholar] [CrossRef]
- Hébert, M.J.; Takano, T.; Papayianni, A.; Rennke, H.G.; Minto, A.; Salant, D.J.; Carroll, M.C.; Brady, H.R. Acute nephrotoxic serum nephritis in complement knockout mice: Relative roles of the classical and alternate pathways in neutrophil recruitment and proteinuria. Nephrol. Dial. Transplant. 1998, 13, 2799–2803. [Google Scholar] [CrossRef]
- Sheerin, N.S.; Abe, K.; Risley, P.; Sacks, S.H. Accumulation of immune complexes in glomerular disease is independent of locally synthesized C3. J. Am. Soc. Nephrol. 2006, 17, 686–696. [Google Scholar] [CrossRef]
- Otten, M.A.; Groeneveld, T.W.; Flierman, R.; Rastaldi, M.P.; Trouw, L.A.; Faber-Krol, M.C.; Visser, A.; Essers, M.C.; Claassens, J.; Verbeek, J.S.; et al. Both complement and IgG Fc receptors are required for development of attenuated antiglomerular basement membrane nephritis in mice. J. Immunol. 2009, 183, 3980–3988. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.G.; Lager, D.J. Anti-glomerular basement membrane glomerulonephritis: A morphologic study of 80 cases. Am. J. Clin. Pathol. 2006, 125, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Cui, Z.; Liao, Y.H.; Zhao, M.H. Complement activation contributes to the injury and outcome of kidney in human anti-glomerular basement membrane disease. J. Clin. Immunol. 2013, 33, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, J.; Le, W.; Xu, F.; Jin, Y.; Jiao, C.; Zhang, H. Relationship between serum complement C3 levels and outcomes among patients with anti-GBM disease. Front. Immunol. 2022, 13, 929155. [Google Scholar] [CrossRef]
- Kiykim, A.A.; Horoz, M.; Gok, E. Successful treatment of resistant antiglomerular basement membrane antibody positivity with mycophenolic acid. Intern. Med. 2010, 49, 577–580. [Google Scholar] [CrossRef]
- Malho, A.; Santos, V.; Cabrita, A.; Silva, A.P.; Pinto, I.; Bernardo, I.; Neves, P.L. Severe relapsing Goodpasture’s disease successfully treated with mycophenolate mofetil. Int. J. Nephrol. 2010, 2010, 383548. [Google Scholar] [CrossRef]
- Soveri, I.; Mölne, J.; Uhlin, F.; Nilsson, T.; Kjellman, C.; Sonesson, E.; Segelmark, M. The IgG-degrading enzyme of Streptococcus pyogenes causes rapid clearance of anti-glomerular basement membrane antibodies in patients with refractory anti-glomerular basement membrane disease. Kidney Int. 2019, 96, 1234–1238. [Google Scholar] [CrossRef]
- Uhlin, F.; Szpirt, W.; Kronbichler, A.; Bruchfeld, A.; Soveri, I.; Rostaing, L.; Daugas, E.; Lionet, A.; Kamar, N.; Rafat, C.; et al. Endopeptidase cleavage of anti-glomerular basement membrane antibodies in vivo in severe kidney disease: An open-label phase 2a Study. J. Am. Soc. Nephrol. 2022, 33, 829–838. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Age (years) | 43.7 (n = 63, range 2–91) |
Gender, male/female | 34/29 |
Kidney involvement (%) | 61/62 (98.4) |
Pulmonary involvement (%) | 26/53 (49.1) |
Clinical features at initial presentation | |
Serum creatinine level (mg/dL) | 6.95 (n = 59, range 0.34–46.6) |
End-stage kidney disease (%) | 30/49 (61.2) |
Positivity of serum anti-GBM antibody (%) | 56/61 (91.8) |
Serum anti-GBM antibody level (U/mL) | 267.8 (n = 47, range 0–3060) |
Performed renal biopsy (%) | 51/57 (89.5) |
More than 50% crescentic glomeruli (%) | 28/39 (71.8) |
Percentage of crescent formation (%) | 67.5 (n = 39, range 3–100) |
Other treatments | |
Oral corticosteroid (%) | 62/64 (96.9) |
Initial dose of corticosteroid (mg/day) | 52.6 (n = 58, range 0–100) |
Intravenous corticosteroid therapy (%) | 48/56 (85.7) |
Dose of intravenous corticosteroid (mg/day) | 679.8 (n = 53, range 0–1000) |
Times of intravenous corticosteroid | 2.8 (n = 51, range 0–6) |
Oral cyclophosphamide (%) | 25/58 (43.1) |
Intravenous cyclophosphamide (%) | 18/54 (33.3) |
Plasma exchange (%) | 54/62 (87.1) |
Times of plasma exchange | 12.7 (n = 50, 0–100) |
Authors [ref.] | Indication of RTX | From Onset to RTX | RTX Treatments | Follow-up | Outcome | ||
---|---|---|---|---|---|---|---|
Dose | Times | Death | ESKD | ||||
Arzoo K, et al. [36] | refractory | 1 years | 375 mg/m2 | 6 | 10 mo. | alive | no |
Wechsler E, et al. [37] | others | NA | 375 mg/m2 | 4 | 16 mo. | alive | no |
Sauter M, et al. [38] | refractory and relapse | 6 years | 375 mg/m2 | 3 | 6 yrs. | alive | HD |
Schless B, et al. [39] | refractory | 9 d | 1000 mg/m2 | 1 | 6 wks. | alive | HD |
refractory | 2 wks. | 1000 mg/m2 | 1 | 3 mo. | alive | no | |
Abenza-Abildua MJ, et al. [40] | tolerance | NA | NA | NA | NA | NA | NA |
Shah Y, et al. [41] | tolerance | NA | 375 mg/m2 | 4 | 49 mo. | alive | HD |
tolerance | 7 d | 375 mg/m2 | 4 | 37 mo. | alive | no | |
NA | NA | 375 mg/m2 | 2 | 33 mo. | alive | no | |
Vega-Cabrera C, et al. [42] | tolerance | 50 d | 375 mg/m2 | 4 | 14 mo. | alive | PD |
Syeda UA, et al. [43] | tolerance | 28 d | 375 mg/m2 | 4 | 24 mo. | alive | HD |
Bandak G, et al. [44] | refractory | 2 mo. | 1000 mg | 1 | 6 mo. | alive | no |
Narayanan M, et al. [45] | tolerance | NA | NA | 2 | 4 mo. | alive | HD |
Gray PE, et al. [46] | NA | NA | NA | NA | NA | alive | no |
Huang J, et al. [47] | refractory | 3 wks. | 700 mg | NA | 4.5 mo. | alive | no |
Calabro N, et al. [48] | tolerance | 9 wks. | 375 mg/m2 | 8 | 6 mo. | alive | no |
Teixeira AC, et al. [49] | refractory | 6 mo. | 375 mg/m2 | 4 | 6 mo. | alive | no |
Lemahieu W, et al. [50] | NA | 5 d | 1000 mg | 2 | 6 mo. | alive | no |
Jain R, et al. [51] | refractory | 1 mo. | 1000 mg | 2 | 2 yrs. | alive | HD |
Lester R, et al. [52] | NA | NA | NA | NA | NA | alive | no |
Sprenger-Mähr H, et al. [53] | others | 2 wks. | 1000 mg | 2 | 25 wks. | alive | no |
Sporinova B, et al. [54] | refractory | NA | NA | NA | NA | alive | HD |
Mannemuddhu SS, et al. [55] | NA | NA | 750 mg/m2 | 2 | NA | death | HD |
Hanna A, et al. [56] | tolerance | NA | 1000 mg | NA | 2 mo. | alive | NA |
Uematsu-Uchida M, et al. [57] | refractory | 2 wks. | 375 mg/m2 | 2 | 23 wks. | alive | HD |
Isobe S, et al. [58] | NA | NA | 200 mg | 1 | 15 mo. | alive | no |
Helander L, et al. [59] | NA | 7 d | NA | 4 | 17 mo. | alive | PD |
Winkler A, et al. [60] | tolerance | NA | 1000 mg | 2 | NA | alive | HD |
Povey J, et al. [61] | relapse | 2 wks. | 1000 mg | 2 | 12 mo. | alive | no |
Jen KY, et al. [62] | others | NA | 375 mg/m2 | 4 | 15 mo. | alive | no |
Al-Chalabi S, et al. [63] | tolerance | 90 d | 1000 mg | 2 | 5 mo. | alive | no |
Zhang M, et al. [64] | relapse | 3 d | 500 mg | NA | 28 wks. | alive | no |
Goda S, et al. [65] | NA | 8 d | 375 mg/m2 | NA | 45 d | alive | no |
Qu W, et al. [66] | NA | NA | 200 mg/m2 | 1 | 5 mo. | alive | no |
McAllister J, et al. [67] | tolerance | NA | NA | 1 | 1 yr. | alive | HD |
Kanaoka K, et al. [68] | relapse | 41 d | 375 mg/m2 | 4 | 2 mo. | alive | no |
Honda N, et al. [69] | tolerance | 10 d | 375 mg/m2 | 4 | 1 yr. | alive | HD |
Touzot M, et al. [70] | 6 refractory, 2 relapse | 2 mo (0.5–36) | 375 mg/m2 | 4 | 28.9 ± 31.8 mo. (3–93) | 0 (0%) | 2 (25%) |
Heitz M, et al. [71] | all 5 initial treatment | 0 | 375 mg/m2 | 4 | 17.8 ± 13.8 mo. (4–39) | 0 (0%) | 4 (80%) |
Marques C, et al. [72] | NA | NA | NA | NA | NA | NA | NA |
Mayer U, et al. [73] | NA | NA | NA | 1 | NA | 0 (0%) | 1 (100%) |
Ahmad SB, et al. [74] | NA | NA | NA | NA | NA | 0 (0%) | 1 (50%) |
Yang XF, et al. [75] | 4 refractory, 2 relapse, 3 tolerance | 198 ± 254 d (30–780) | 375 mg/m2 (100–600) | 3.0 (1–7) | 40.6 ± 21.4 mo. (15–184) | 0 (0%) | 3 (38%) |
Jaryal A, Vikrant S. [76] | all 3 initial treatment | 0 | 375 mg/m2 | 4 | 90 mo. | 0 (0%) | 1 (33%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamashita, M.; Takayasu, M.; Maruyama, H.; Hirayama, K. The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease. Medicina 2023, 59, 2014. https://doi.org/10.3390/medicina59112014
Yamashita M, Takayasu M, Maruyama H, Hirayama K. The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease. Medicina. 2023; 59(11):2014. https://doi.org/10.3390/medicina59112014
Chicago/Turabian StyleYamashita, Marina, Mamiko Takayasu, Hiroshi Maruyama, and Kouichi Hirayama. 2023. "The Immunobiological Agents for Treatment of Antiglomerular Basement Membrane Disease" Medicina 59, no. 11: 2014. https://doi.org/10.3390/medicina59112014