Decreased Monocyte HLA-DR Expression in Patients with Sepsis and Acute Kidney Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Definitions
2.3. Preparation of Plasma and Peripheral Blood Mononuclear Cell (PBMC)
2.4. Plasma Cytokine Level Measurement
2.5. Detection of Monocyte HLA-DR Expression
2.6. Statistical Analysis
3. Results
3.1. HLA-DR Expression in Monocytes and Plasma AGE, sRAGE, HMGB1 and S100A12 Levels in Controls and Septic Patients
3.2. HLA-DR Expression in Monocytes and Plasma AGE, sRAGE, HMGB1 and S100A12 Levels in Patients with No AKI, AKI, and ESRD
3.3. Effect of AKI on HLA-DR Expression in Monocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef]
- Nakano, D. Septic acute kidney injury: A review of basic research. Clin. Exp. Nephrol. 2020, 24, 1091–1102. [Google Scholar] [CrossRef]
- Rossaint, J.; Zarbock, A. Acute kidney injury: Definition, diagnosis and epidemiology. Minerva Urol. Nephrol. 2016, 68, 49–57. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Lukaszewicz, A.C.; Grienay, M.; Resche-Rigon, M.; Pirracchio, R.; Faivre, V.; Boval, B.; Payen, D. Monocytic HLA-DR expression in intensive care patients: Interest for prognosis and secondary infection prediction. Crit. Care Med. 2009, 37, 2746–2752. [Google Scholar]
- Wu, H.P.; Shih, C.C.; Lin, C.Y.; Hua, C.C.; Chuang, D.Y. Serial increase of IL-12 response and human leukocyte antigen-DR expression in severe sepsis survivors. Crit. Care 2011, 15, R224. [Google Scholar] [CrossRef]
- Leijte, G.P.; Rimmele, T.; Kox, M.; Bruse, N.; Monard, C.; Gossez, M.; Monneret, G.; Pickkers, P.; Venet, F. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit. Care 2020, 24, 110. [Google Scholar] [CrossRef]
- Ahlstrom, A.; Hynninen, M.; Tallgren, M.; Kuusela, P.; Valtonen, M.; Orko, R.; Siitonen, S.; Takkunen, O.; Pettila, V. Predictive value of interleukins 6, 8 and 10, and low HLA-DR expression in acute renal failure. Clin. Nephrol. 2004, 61, 103–110. [Google Scholar] [CrossRef]
- Fukami, K.; Taguchi, K.; Yamagishi, S.; Okuda, S. Receptor for advanced glycation endproducts and progressive kidney disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 54–60. [Google Scholar] [CrossRef]
- Leclerc, E.; Fritz, G.; Vetter, S.W.; Heizmann, C.W. Binding of S100 proteins to RAGE: An update. Biochim. Biophys. Acta 2009, 1793, 993–1007. [Google Scholar] [CrossRef]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.P.; Lin, Y.K. Effect of Eucommia ulmoides Oliv., Gynostemma pentaphyllum (Thunb.) Makino, and Curcuma longa L. on Th1- and Th2-cytokine responses and human leukocyte antigen-DR expression in peripheral blood mononuclear cells of septic patients. J. Ethnopharmacol. 2018, 217, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Peng, H.; Chen, Y.; Zhou, S.; Chen, Y. Dynamic monitoring of monocyte HLA-DR expression for the diagnosis, prognosis, and prediction of sepsis. Front. Biosci. Landmark 2017, 22, 1344–1354. [Google Scholar] [CrossRef]
- Wu, J.F.; Ma, J.; Chen, J.; Ou-Yang, B.; Chen, M.Y.; Li, L.F.; Liu, Y.J.; Lin, A.H.; Guan, X.D. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. Crit. Care 2011, 15, R220. [Google Scholar] [CrossRef]
- Heyman, S.N.; Rosen, S.; Rosenberger, C. A role for oxidative stress. Contrib. Nephrol. 2011, 174, 138–148. [Google Scholar] [CrossRef]
- Silva, S.; de Cal, M.; Cruz, D.; Lentini, P.; Corradi, V.; Gallo, G.; Salvatori, G.; Verbine, A.; Pogoshyan, L.; Nalesso, F.; et al. Oxidative stress and ‘monocyte reprogramming’ in septic patients with acute kidney injury requiring CRRT. Blood Purif. 2008, 26, 188–192. [Google Scholar] [CrossRef]
- Brodska, H.; Malickova, K.; Valenta, J.; Fabio, A.; Drabek, T. Soluble receptor for advanced glycation end products predicts 28-day mortality in critically ill patients with sepsis. Scand. J. Clin. Lab. Investig. 2013, 73, 650–660. [Google Scholar] [CrossRef]
- Miyagawa, T.; Iwata, Y.; Oshima, M.; Ogura, H.; Sato, K.; Nakagawa, S.; Yamamura, Y.; Kamikawa, Y.; Miyake, T.; Kitajima, S.; et al. Soluble receptor for advanced glycation end products protects from ischemia- and reperfusion-induced acute kidney injury. Biol. Open 2021, 11, bio058852. [Google Scholar] [CrossRef]
- Prasad, K. Is there any evidence that AGE/sRAGE is a universal biomarker/risk marker for diseases? Mol. Cell Biochem. 2019, 451, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Zakiyanov, O.; Kriha, V.; Vachek, J.; Zima, T.; Tesar, V.; Kalousova, M. Placental growth factor, pregnancy-associated plasma protein-A, soluble receptor for advanced glycation end products, extracellular newly identified receptor for receptor for advanced glycation end products binding protein and high mobility group box 1 levels in patients with acute kidney injury: A cross sectional study. BMC Nephrol. 2013, 14, 245. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulou, Z.; Hector, L.R.; Creagh-Brown, B.C.; Evans, T.W.; Quinlan, G.J.; Burke-Gaffney, A. Plasma S100A8/A9 heterodimer is an early prognostic marker of acute kidney injury associated with cardiac surgery. Biomark. Med. 2019, 13, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Ludes, P.O.; de Roquetaillade, C.; Chousterman, B.G.; Pottecher, J.; Mebazaa, A. Role of Damage-Associated Molecular Patterns in Septic Acute Kidney Injury, from Injury to Recovery. Front. Immunol. 2021, 12, 606622. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Gao, Y.; Dai, X.; Fu, W.; Cai, S.; Fang, H.; Zeng, Z.; Chen, Z. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am. J. Physiol. Renal Physiol. 2019, 316, F20–F31. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.M.; Pai, M.H.; Yeh, C.L.; Hou, Y.C.; Yeh, S.L. Glutamine administration ameliorates sepsis-induced kidney injury by downregulating the high-mobility group box protein-1-mediated pathway in mice. Am. J. Physiol. Renal Physiol. 2012, 302, F150–F158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No AKI (n = 19) | AKI (n = 17) | ESRD (n = 8) | All Patients (n = 44) | Controls (n = 27) | |
---|---|---|---|---|---|
Age (years) | 76.3 ± 2.6 | 73.9 ± 2.5 | 77.0 ± 3.6 | 75.5 ± 1.6 | 60.3 ± 1.3 * |
Male (%) | 14 (73.7) | 10 (58.8) | 2 (25.0) | 26 (59.1) | 17 (63.0) |
APACHE II score | 18.0 ± 0.9 | 26.9 ± 1.0 † | 27.8 ± 3.3 † | 23.2 ± 1.1 | |
SOFA score | 8.5 ± 0.7 | 11.9 ± 0.9 † | 12.3 ± 0.8 † | 10.5 ± 0.6 | |
History (%) | |||||
COPD | 1 (5.3) | 1 (5.9) | 0 (0.0) | 2 (4.5) | |
Heart failure | 3 (15.8) | 2 (11.8) | 0 (0.0) | 5 (11.4) | |
Hypertension | 14 (73.7) | 9 (52.9) | 7 (87.5) | 30 (68.2) | |
Diabetes mellitus | 7 (36.8) | 6 (35.3) | 6 (75.0) | 19 (43.2) | |
Old CVA | 5 (26.3) | 4 (23.5) | 1 (12.5) | 10 (22.7) | |
Liver cirrhosis | 2 (10.5) | 3 (17.6) | 0 (0.0) | 5 (11.4) | |
Active malignancy | 1 (5.3) | 1 (5.9) | 0 (0.0) | 2 (4.5) | |
Infection source | |||||
Pneumonia | 13 (68.4) | 13 (76.5) | 3 (37.5) | 29 (65.9) | |
UTI | 3 (15.8) | 0 (0.0) | 2 (25.0) | 5 (11.4) | |
Others | 3 (15.8) | 4 (23.5) | 3 (37.5) | 10 (22.7) | |
Adverse event | |||||
New arrhythmia | 3 (15.8) | 1 (5.9) | 0 (0.0) | 4 (9.1) | |
GI bleeding | 1 (5.3) | 3 (17.6) | 0 (0.0) | 4 (9.1) | |
Shock | 8 (42.1) | 11 (64.7) | 6 (75.0) | 25 (56.8) | |
Thrombocytopenia | 5 (26.3) | 7 (41.2) | 3 (37.5) | 15 (34.1) | |
Jaundice | 3 (15.8) | 5 (29.4) | 0 (0.0) | 8 (18.2) | |
Bacteremia | 3 (15.8) | 2 (11.8) | 2 (25.0) | 7 (15.9) | |
Body weight, kg | 62.5 ± 3.6 | 60.6 ± 3.7 | 52.0 ± 4.3 | 59.9 ± 2.3 | 65.5 ± 1.9 |
Serum creatinine, mg/dL | 1.25 ± 0.18 | 3.32 ± 0.36 † | 6.25 ± 1.31† | 2.96 ± 0.39 | 0.88 ± 0.05 * |
Urine output, mL/kg/h | 0.97 ± 0.14 | 0.72 ± 0.17 | 0.05 ± 0.03 †,‡ | 0.70 ± 0.10 | |
28-day mortality | 1 (5.3) | 9 (52.9) † | 4 (50.0) † | 14 (31.8) |
Variables | Univariable B (95% CI) | p Value | Multivariable B (95% CI) | p Value |
---|---|---|---|---|
28-day mortality | −17.018 (−32.141 to −1.894) | 0.028 | −5.689 (−22.953 to 11.575) | 0.509 |
AKI | −23.289 (−38.329 to −8.248) | 0.003 | −18.425 (−35.278 to −1.573) | 0.033 |
ESRD | −9.862 (−28.850 to 9.126) | 0.300 | −8.231 (−28.692 to 12.229) | 0.421 |
GI bleeding | −25.795 (−50.484 to −1.106) | 0.041 | −17.369 (−42.396 to 7.658) | 0.168 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-P.; Chuang, L.-P.; Liu, P.-H.; Chu, C.-M.; Yu, C.-C.; Lin, S.-W.; Kao, K.-C.; Li, L.-F.; Chuang, D.-Y. Decreased Monocyte HLA-DR Expression in Patients with Sepsis and Acute Kidney Injury. Medicina 2022, 58, 1198. https://doi.org/10.3390/medicina58091198
Wu H-P, Chuang L-P, Liu P-H, Chu C-M, Yu C-C, Lin S-W, Kao K-C, Li L-F, Chuang D-Y. Decreased Monocyte HLA-DR Expression in Patients with Sepsis and Acute Kidney Injury. Medicina. 2022; 58(9):1198. https://doi.org/10.3390/medicina58091198
Chicago/Turabian StyleWu, Huang-Pin, Li-Pang Chuang, Pi-Hua Liu, Chien-Ming Chu, Chung-Chieh Yu, Shih-Wei Lin, Kuo-Chin Kao, Li-Fu Li, and Duen-Yau Chuang. 2022. "Decreased Monocyte HLA-DR Expression in Patients with Sepsis and Acute Kidney Injury" Medicina 58, no. 9: 1198. https://doi.org/10.3390/medicina58091198