Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review
Abstract
:1. Introduction
2. Search Strategy and Selection Criteria
3. Etiology of Type 2 Diabetes
4. Prickly Pear Cacti: General Information and Composition
5. Anti-Hyperglycemic Effect of the Prickly Pear Cladode
6. Potential Hypoglycemic Mechanism of Action
7. Prickly Pear Cladode as a Functional Ingredient for Hyperglycemia Management
8. Adverse Effects of Prickly Pear Consumption
9. Future Perspectives
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leitner, D.R.; Fruhbeck, G.; Yumuk, V.; Schindler, K.; Micic, D.; Woodward, E.; Toplak, H. Obesity and type 2 diabetes: Two diseases with a need for combined treatment strategies—Easo can lead the way. Obes. Facts 2017, 10, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, A.; Tsang, C.; Tiss, A.; Bahorun, T.; Arefanian, H.; Barake, R.; Khadir, A.; Tuomilehto, J. Functional foods and lifestyle approaches for diabetes prevention and management. Nutrients 2017, 9, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef]
- Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (dys)function and insulin resistance: From pathophysiological molecular mechanisms to the impact of diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Seo, H.I.; Cha, H.Y.; Yang, Y.J.; Kwon, S.H.; Yang, S.J. Diabetes and Alzheimer’s disease: Mechanisms and nutritional aspects. Clin. Nutr. Res. 2018, 7, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshareef, S.M.; Aldayel, A.Y.; AlKhathlan, M.A.; Alduaij, K.O.; Alshareef, F.G.; Al-Harthi, M.E.; Aldayel, A.A.; Shadid, A.M.; Dahmash, A.B. Diabetic patients in saudi arabia: The evaluation of glycemic control measures based on emergency department utilization and the percentages of adherence to the recommended follow-ups for microvascular complications. Saudi Med. J. 2019, 40, 271–276. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Zhang, B.; Li, X.; Liu, Y. Diabetes mellitus and cause-specific mortality: A population-based study. Diabetes Metab. J. 2019, 43, 319–341. [Google Scholar] [CrossRef]
- Lu, D.-Y.; Che, J.-Y.; Yarla, N.S.; Zhu, H.; Lu, T.-R.; Xu, B.; Putta, S. Type 2 diabetes study, introduction and perspective. Open Diabetes J. 2018, 8, 13–21. [Google Scholar] [CrossRef]
- Burstein, O.; Shamir, A.; Abramovitz, N.; Doron, R. Patients’ attitudes toward conventional and herbal treatments for depression and anxiety: A cross-sectional Israeli survey. Int. J. Soc. Psychiatry 2021, 20764021992385. [Google Scholar] [CrossRef]
- Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes 2016, 7, 354–395. [Google Scholar] [CrossRef] [PubMed]
- Dyson, P.A.; Twenefour, D.; Breen, C.; Duncan, A.; Elvin, E.; Goff, L.; Hill, A.; Kalsi, P.; Marsland, N.; McArdle, P.; et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabetic Med. 2018, 35, 541–547. [Google Scholar] [CrossRef]
- Gouws, C.; Mortazavi, R.; Mellor, D.; McKune, A.; Naumovski, N. The effects of prickly pear fruit and cladode (Opuntia spp.) consumption on blood lipids: A systematic review. Complement. Ther. Med. 2020, 50, 102384. [Google Scholar] [CrossRef] [PubMed]
- Georgousopoulou, E.N.; Panagiotakos, D.B.; Mellor, D.D.; Naumovski, N. Tocotrienols, health and ageing: A systematic review. Maturitas 2017, 95, 55–60. [Google Scholar] [CrossRef] [Green Version]
- D’Cunha, N.M.; McKune, A.J.; Panagiotakos, D.B.; Georgousopoulou, E.N.; Thomas, J.; Mellor, D.D.; Naumovski, N. Evaluation of dietary and lifestyle changes as modifiers of S100β levels in Alzheimer’s disease. Nutr. Neurosci. 2019, 22, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Cunha, N.M.; Georgousopoulou, E.N.; Dadigamuwage, L.; Kellett, J.; Panagiotakos, D.B.; Thomas, J.; McKune, A.J.; Mellor, D.D.; Naumovski, N. Effect of long-term nutraceutical and dietary supplement use on cognition in the elderly: A 10-year systematic review of randomised controlled trials. Br. J. Nutr. 2018, 119, 280–298. [Google Scholar] [CrossRef]
- Gouws, C.A.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the consumption of prickly pear cacti (Opuntia spp.) and its products on blood glucose levels and insulin: A systematic review. Med. Kaunas 2019, 55, 138. [Google Scholar] [CrossRef] [Green Version]
- Frati, A.C.; Gordillo, B.E.; Altamirano, P.; Ariza, C.R.; Cortés-Franco, R.; Chávez-Negrete, A.; Islas-Andrade, S. Influence of nopal intake upon fasting glycemia in type ii diabetics and healthy subjects. Arch. Investig. Med. Mex. 1991, 22, 51–56. [Google Scholar]
- Frati, A.C.; Jiménez, E.; Ariza, C.R. Hypoglycemic effect of Opuntia ficus indica in non insulin-dependent diabetes mellitus patients. Phytother. Res. 1990, 4, 195–197. [Google Scholar] [CrossRef]
- Frati-Munari, A.C.; Yever-Garcés, A.; Islas-Andrade, S.; Ariza-Andráca, C.R.; Chávez-Negrete, A. Studies on the mechanism of “hypoglycemic” effect of nopal (Opuntia sp.). Arch. Investig. Med. Mex. 1987, 18, 7–12. [Google Scholar]
- Guevara-Cruz, M.; Tovar, A.R.; Aguilar-Salinas, C.A.; Medina-Vera, I.; Gil-Zenteno, L.; Hernandez-Viveros, I.; Lopez-Romero, P.; Ordaz-Nava, G.; Canizales-Quinteros, S.; Guillen Pineda, L.E.; et al. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J. Nutr. 2012, 142, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Trejo-Gonzalez, A.; Gabriel-Ortiz, G.; Puebla-Perez, A.M.; Huizar-Contreras, M.D.; Munguia-Mazariegos, M.R.; Mejia-Arreguin, S.; Calva, E. A purified extract from prickly pear cactus (Opuntia fuliginosa) controls experimentally induced diabetes in rats. J. Ethnopharmacol. 1996, 55, 27–33. [Google Scholar] [CrossRef]
- Silva, M.A.; Albuquerque, T.G.; Pereira, P.; Ramalho, R.; Vicente, F.; Oliveira, M.B.P.P.; Costa, H.S. Opuntia ficus-indica (L.) Mill.: A multi-benefit potential to be exploited. Molecules 2021, 26, 951. [Google Scholar] [CrossRef] [PubMed]
- Speer, H.; D’Cunha, N.M.; Davies, M.J.; McKune, A.J.; Naumovski, N. The physiological effects of amino acids arginine and citrulline: Is there a basis for development of a beverage to promote endurance performance? A narrative review of orally administered supplements. Beverages 2020, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Slimen, I.B.; Najar, T.; Abderrabba, M. Opuntia ficus-indica as a source of bioactive and nutritional phytochemicals. J. Food Nutr. Sci. 2016, 4, 162. [Google Scholar]
- Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015, 6, 296. [Google Scholar] [CrossRef]
- Javeed, N.; Matveyenko, A.V. Circadian etiology of type 2 diabetes mellitus. Physiol. Bethesda 2018, 33, 138–150. [Google Scholar] [CrossRef]
- Trouwborst, I.; Bowser, S.M.; Goossens, G.H.; Blaak, E.E. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Front. Nutr. 2018, 5, 77. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and endoplasmic reticulum stress in obesity and diabetes. Int. J. Obes. 2008, 32, S52–S54. [Google Scholar] [CrossRef] [Green Version]
- Borén, J.; Taskinen, M.R.; Olofsson, S.O.; Levin, M. Ectopic lipid storage and insulin resistance: A harmful relationship. J. Intern. Med. 2013, 274, 25–40. [Google Scholar] [CrossRef]
- Spranger, J.; Kroke, A.; Möhlig, M.; Hoffmann, K.; Bergmann, M.M.; Ristow, M.; Boeing, H.; Pfeiffer, A.F.H. Inflammatory cytokines and the risk to develop type 2 diabetes. Diabetes 2003, 52, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, J.A.; Cushman, J.C. Nutritional and mineral content of prickly pear cactus: A highly water-use efficient forage, fodder and food species. J. Agron. Crop Sci. 2019, 205, 625–634. [Google Scholar] [CrossRef]
- Shackleton, R.T.; Witt, A.B.R.; Piroris, F.M.; van Wilgen, B.W. Distribution and socio-ecological impacts of the invasive alien cactus opuntia stricta in eastern africa. Biol. Invasions 2017, 19, 2427–2441. [Google Scholar] [CrossRef] [Green Version]
- Guevara, J.C.; Yahia, E.M.; Brito de la Fuente, E. Modified atmosphere packaging of prickly pear cactus stems (Opuntia spp.). LWT-Food Sci. Technol. 2001, 34, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Patel, S. Opuntia cladodes (nopal): Emerging functional food and dietary supplement. Mediterr. J. Nutr. Metab. 2014, 7, 11–19. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Marqués, C.; Sánchez-Mata, M.C.; Goñi, I. In vitro calcium bioaccessibility in raw and cooked cladodes of prickly pear cactus (Opuntia ficus-indica L. Miller). LWT-Food Sci. Technol. 2011, 44, 1611–1615. [Google Scholar] [CrossRef]
- Loretta, B.; Oliviero, M.; Vittorio, M.; Bojórquez-Quintal, E.; Franca, P.; Silvia, P.; Fabio, Z. Quality by design approach to optimize cladodes soluble fiber processing extraction in Opuntia ficus indica (L.) Miller. J. Food Sci. Technol. 2019, 56, 3627–3634. [Google Scholar] [CrossRef]
- Perucini-Avendaño, M.; Nicolás-García, M.; Jiménez-Martínez, C.; Perea-Flores, M.D.J.; Gómez-Patiño, M.B.; Arrieta-Báez, D.; Dávila-Ortiz, G. Cladodes: Chemical and structural properties, biological activity, and polyphenols profile. Food Sci. Nutr. 2021, 9, 4007–4017. [Google Scholar] [CrossRef]
- Patel, R.V.; Mistry, B.M.; Shinde, S.K.; Syed, R.; Singh, V.; Shin, H.-S. Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 2018, 155, 889–904. [Google Scholar] [CrossRef]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I.; et al. The effects of flavonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef]
- Gong, G.; Guan, Y.-Y.; Zhang, Z.-L.; Rahman, K.; Wang, S.-J.; Zhou, S.; Luan, X.; Zhang, H. Isorhamnetin: A review of pharmacological effects. Biomed. Pharmacother. 2020, 128, 110301. [Google Scholar] [CrossRef]
- Tangney, C.C.; Rasmussen, H.E. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Frati-Munari, A.C.; Gordillo, B.E.; Altamirano, P.; Ariza, C.R. Hypoglycemic effect of Opuntia streptacantha Lemaire in NIDDM. Diabetes Care 1988, 11, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Linarès, E.; Thimonier, C.; Degre, M. The effect of neopuntia on blood lipid parameters—Risk factors for the metabolic syndrome (Syndrome X). Adv. Ther. 2007, 24, 1115–1125. [Google Scholar] [CrossRef]
- Godard, M.P.; Ewing, B.A.; Pischel, I.; Ziegler, A.; Benedek, B.; Feistel, B. Acute blood glucose lowering effects and long-term safety of opundia™ supplementation in pre-diabetic males and females. J. Ethnopharmacol. 2010, 130, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Romero, P.; Pichardo-Ontiveros, E.; Avila-Nava, A.; Vazquez-Manjarrez, N.; Tovar, A.R.; Pedraza-Chaverri, J.; Torres, N. The effect of nopal (Opuntia ficus indica) on postprandial blood glucose, incretins, and antioxidant activity in mexican patients with type 2 diabetes after consumption of two different composition breakfasts. J. Acad. Nutr. Diet. 2014, 114, 1811–1818. [Google Scholar] [CrossRef]
- Leem, K.H.; Kim, M.G.; Hahm, Y.T.; Kim, H.K. Hypoglycemic effect of Opuntia ficus-indica var. Saboten is due to enhanced peripheral glucose uptake through activation of ampk/p38 mapk pathway. Nutrients 2016, 8, 800. [Google Scholar] [CrossRef]
- Vara-Ciruelos, D.; Russell, F.M.; Hardie, D.G. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? Open Biol. 2019, 9, 190099. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Qian, Q.; Ying, N.; Lai, J.; Feng, L.; Zheng, S.; Jiang, F.; Song, Q.; Chai, H.; Dou, X. Activation of the AMPK-SIRT1 pathway contributes to protective effects of Salvianolic acid A against lipotoxicity in hepatocytes and NAFLD in mice. Front. Pharmacol. 2020, 11, 1718. [Google Scholar] [CrossRef]
- Sanchez-Tapia, M.; Aguilar-Lopez, M.; Perez-Cruz, C.; Pichardo-Ontiveros, E.; Wang, M.; Donovan, S.M.; Tovar, A.R.; Torres, N. Nopal (Opuntia ficus indica) protects from metabolic endotoxemia by modifying gut microbiota in obese rats fed high fat/sucrose diet. Sci. Rep. 2017, 7, 4716. [Google Scholar] [CrossRef]
- Reeves, P.G. Components of the ain-93 diets as improvements in the ain-76a diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef] [PubMed]
- Kovatcheva-Datchary, P.; Nilsson, A.; Akrami, R.; Lee, Y.S.; de Vadder, F.; Arora, T.; Hallen, A.; Martens, E.; Björck, I.; Bäckhed, F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab. 2015, 22, 971–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, H.; Hussey, S.E.; Sanchez-Avila, A.; Tantiwong, P.; Musi, N. Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS ONE 2013, 8, e63983. [Google Scholar] [CrossRef] [PubMed]
- Aw, W.; Fukuda, S. Understanding the role of the gut ecosystem in diabetes mellitus. J. Diabetes Investig. 2018, 9, 5–12. [Google Scholar] [CrossRef] [Green Version]
- Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020, 51, 102590. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; et al. Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysaccharide production and inhibit atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Barba, F.J.; Garcia, C.; Fessard, A.; Munekata, P.E.S.; Lorenzo, J.M.; Aboudia, A.; Ouadia, A.; Remize, F. Opuntia ficus indica edible parts: A food and nutritional security perspective. Food Rev. Int. 2020, 1–23. [Google Scholar] [CrossRef]
- Diaz, M.D.S.; de la Rosa, A.P.B.; Helies-Toussaint, C.; Gueraud, F.; Negre-Salvayre, A. Opuntia spp.: Characterization and benefits in chronic diseases. Oxid. Med. Cell. Longev. 2017, 2017, 8634249. [Google Scholar]
- Chandalia, M.; Garg, A.; Lutjohann, D.; von Bergmann, K.; Grundy, S.M.; Brinkley, L.J. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. N. Engl. J. Med. 2000, 342, 1392–1398. [Google Scholar] [CrossRef]
- Hwang, S.H.; Kang, I.-J.; Lim, S.S. Antidiabetic effect of fresh nopal (Opuntia ficus-indica) in low-dose streptozotocin-induced diabetic rats fed a high-fat diet. Evid.-Based Complement. Altern. Med. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Kellett, J.; Roach, P.; McKune, A.; Mellor, D.; Thomas, J.; Naumovski, N. L-theanine as a functional food additive: Its role in disease prevention and health promotion. Beverages 2016, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Contor, L. Functional food science in europe. Nutr. Metab. Cardiovasc. Dis. 2001, 11, 20–23. [Google Scholar] [PubMed]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Rahut, D.B. Healthy foods as proxy for functional foods: Consumers’ awareness, perception, and demand for natural functional foods in pakistan. Int. J. Food Sci. 2019, 2019, 6390650. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, N.; Suardi, A.; Stefanoni, W.; Pari, L. Opuntia ficus-indica as an ingredient in new functional pasta: Consumer preferences in italy. Foods 2021, 10, 803. [Google Scholar] [CrossRef]
- Aiello, A.; di Bona, D.; Candore, G.; Carru, C.; Zinellu, A.; di Miceli, G.; Nicosia, A.; Gambino, C.M.; Ruisi, P.; Caruso, C.; et al. Targeting aging with functional food: Pasta with opuntia single-arm pilot study. Rejuvenation Res. 2018, 21, 249–256. [Google Scholar] [CrossRef]
- Dick, M.; Limberger, C.; Cruz Silveira Thys, R.; de Oliveira Rios, A.; Hickmann Flôres, S. Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. Food Chem. 2020, 314, 126178. [Google Scholar] [CrossRef]
- Aryaeian, N.; Khorshidi Sedehi, S.; Arablou, T. Polyphenols and their effects on diabetes management: A review. Med. J. Islam. Repub. Iran 2017, 31, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Msaddak, L.; Abdelhedi, O.; Kridene, A.; Rateb, M.; Belbahri, L.; Ammar, E.; Nasri, M.; Zouari, N. Opuntia ficus-indica cladodes as a functional ingredient: Bioactive compounds profile and their effect on antioxidant quality of bread. Lipids Health Dis. 2017, 16, 32. [Google Scholar] [CrossRef] [Green Version]
- El-Mostafa, K.; El Kharrassi, Y.; Badreddine, A.; Andreoletti, P.; Vamecq, J.; El Kebbaj, M.H.; Latruffe, N.; Lizard, G.; Nasser, B.; Cherkaoui-Malki, M. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 2014, 19, 14879–14901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulaiman Ambusaidi, F.M.; Al-Yaqoubi, M. Gastric bezoar. Int. J. Pediatr. Adolesc. Med. 2020, 7, 199–200. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.M.; Eitan, A. Prickly pear fruit bezoar presenting as rectal perforation in an elderly patient. Int. J. Colorectal Dis. 2003, 18, 365–367. [Google Scholar] [CrossRef] [PubMed]
Reference | Aim/s | Participants | Intervention/Design | Results | |
---|---|---|---|---|---|
Frati et al. [19] | To assess the effect of Opuntia ficus indica cladode on hyperglycemia in T2DM subjects. | T2DM participants (n = 8; 2 M and 6 F; mean age: 55 years) | Length: Acute (single consumption) Study design: Cross-over trial Treatment: 500 g of cladode given to fasted (12 h) subjects. Cladode prepared as broiled, blended, crude, and heated (60 °C) crude. Measurements: GLU at 40, 60, 120, 180 min following intervention. | Reductions in GLU (p < 0.01) reached at 120 and 180 min. Major hypoglycemic effects shown after cladode consumption ranged from 23.3 ± 4.4 to 25.4 ± 14.3 mg/dL. No difference in the hypoglycemic effects between cladode preparations (all p > 0.05). | |
Frati et al. [43] | To investigate the effect of Opuntia streptacantha cladode on hyperglycemia in T2DM subjects. | Group 1: T2DM participants (n = 16; 9 M and 7 F; mean age: 43.8 ± 11.4 years) Group 2: T2DM participants (n = 10; 6 M and 4 F; mean age: 46.2 ± 10.8 years) Group 3: T2DM participants (n = 6; 4 M and 2 F; mean age: 48.0 ± 11.7) | Length: Acute (single consumption) Study design: Randomized control-trial Treatment (fasted 12 h): Group 1: 500 g of broiled cladode. Group 2: 400 mL of water. Group 3: 500 g of broiled cladode (test 1), 400 mL of water (test 2), 500 g of broiled squash (zucchini) (test 3) Measurements: GLU at 0, 60, 120, 180 min following intervention. | Group 1: Reduction in GLU (p < 0.001) with mean reduction of 17.6 ± 2.2% of basal value at 180 min. Group 2: No change in GLU (p > 0.05). Group 3: Test 1—reduction in GLU (p < 0.001) with mean reduction of 16.2 ± 1.8% of basal value at 180 min; test 2, 3—no change in GLU (p > 0.05). | |
Frati et al. [18] | To evaluate the acute hypoglycemic effect of O. streptacantha Lem. intake in “healthy” and diabetic individuals. | Group 1: T2DM participants (n = 14; 9 M and 5 F; mean age: 43 years; age range: 36–65 years). Group 2: “Healthy” participants (n = 14; 9 MJ and 5 F; mean age: 33 years; age range: 15–45 years) | Length: Acute (single consumption) Study design: Randomized control trial Group 1 and 2 treatments: 500 g steamed cladode or 400 mL water (placebo) given to fasted subjects. Measurements: GLU, INS at 0, 60, 120, and 180 min following the intervention. | Group 1: Reduction in GLU (60 min: p < 0.005; 120 min: p < 0.005; 180 min: p < 0.005) reaching 40.8 + 4.6 mg/dL less than basal value. Reduction in INS (120 min: p < 0.005; 180 min: p < 0.005) reaching 7.8 + 1.5 µU/mL less than basal value. Group 2: No change in GLU and INS (p > 0.05). | |
Frati et al. [20] | To assess the acute hypoglycemic effect of O. streptacantha Lem. intake in “healthy” adults. | “Healthy” participants (n = 16) Group 1: (n = 5) Group 2: (n = 6) Group 3: (n = 5) | Length: Acute (single consumption) Group 1: 12 hr fasted + 100 g of cladode Group 2: OGTT (25 g GLU load), 100 g of cladode given after time 0, before GLU load. Group 3: OGTT (25 GLU load) + 100 g of cladode Measurements: GLU, INS at 0, 30, 60, 120 and 180 min following intervention. | Group 1: Attenuation of GLU at 60 min; 180 min (p < 0.025). No change in INS (p > 0.05). Group 2, 3: No change in GLU, INS (p > 0.05). | |
Guevara-Cruz et al. [21] | To investigate the effect of dietary patterns, featuring nopal cladode, on biochemical markers (GLU, INS). | MetS participants (n = 67; age: 20–60 years; satisfied 3 positive criteria for MetS). | 2 weeks prior to treatment: Participants were put on a reduced energy diet, low saturated fat, and low cholesterol diet (50–60% CH, 15% PRO and 25–35% fat). Treatment: Length: 2 months Study design: Single-center, randomized, placebo-controlled, double-blind, parallel-arm study. Group 1: Controlled dietary pattern Group 2: Placebo Dietary pattern: 100 g of cladode, 4 g of chia seeds, 22 g of oats, 32 g of soybean proteins, 0.02 g of sweetener, and 1 g of flavoring. Placebo: 30 g of calcium caseinate, 30 g of maltodextrin, 0.02 g of sweetener and 1 g of flavoring. Pre/post measurements: GLU, INS. | Group 1: Reductions in GLU AUC (from 388.8 ± 115.2 mg/dL to 351.0 ± 115.2 mg/dL), and in AUC INS (from 26.4 ± 14.4 ng/mL to 17.4 ± 10.4 ng/mL) (p < 0.0001). Group 2: No difference in GLU, INS (p > 0.05). | |
Linarès et al. [44] | The study aimed to evaluate “NeOpuntia” on blood lipid parameters and MetS, including glycemia | MetS participants (n = 59; 0 M and 59 F; age distribution: 10.29% <35, 27.94% 35 to 45, 41.18% 45 to 55 and 29.59% >55; mean age: 47.3 ± 10.1 years) Group 1: Treatment (n = 35) Group 2: Placebo (n = 33) | Length: 6-weeks Study design: Monocentric, randomized, double-blind, placebo-controlled study Group 1: balanced diet (45% CH, 17% PRO and 38% fats; 2000 kcal), 3 x “NeOpuntia” capsule after meals/day. Group 2: balanced diet (45% CH, 17% PRO and 38% fats; 2000 kcal), 3 x placebo capsule after meals/day. Measurements: GLU at day 1, day 14 and day 42. | Group 1: Treatment group remained at the same GLU level. Group 2: Increase in GLU. | |
Godard et al. [45] | To assess the acute and hypoglycemic effect of OpunDia™ (O. ficus indica) in obese and pre-diabetic individuals. | Pre-diabetic and obese participants (n = 29; age: 20–50 years) Group 1: Treatment (n = 15) Group 2: Placebo (n = 14) | Length: Acute phase (single consumption) and chronic phase (16-weeks) Acute phase: Group 1: 400 mg bolus of OpunDia™ 30 min before OGGT (75 g GLU load). Group 2: 400 mg of the placebo 30 min before OGGT (75 g GLU load). Pre/post measurements: GLU Chronic phase: Group 1: 16-week supply of 200 mg OpunDia™ Group 2: 16-week supply of the placebo Pre/post measurements: GLU | Acute phase: Reductions in GLU in the treatment compared to placebo at 60 (205.92 ± 36.90 and 188.84 ± 38.43 mg/dL respectively), 90 (184.55 ± 33.67 and 169.74 ± 35.16 mg/dL respectively) and 120 min (159.24 ± 17.85 and 148.89 ± 24.86 mg/dL respectively) (p < 0.05). Chronic phase: No difference in GLU (p > 0.05) | |
López-Romero et al. [46] | To investiage the effect of nopal in breakfast (2 compositions) upon metabolic markers in T2DM and “healthy” individuals | Study 1: “healthy” participants (n = 4; 3 M and 4 F; mean age: 20.6.3 ± 1.2 years; mean BMI: 23.05 ± 0.8). Study 2: T2DM participants (n = 14; 4 M and 10 F; mean age: 48.0 ± 2.1; mean BMI: 28.9 ± 1.0; glycosylated hemoglobin levels mean: 6.5 ± 0.2%) | Study 1: Length: Acute (single consumption) Group 1 (treatment): 50 g of dehydrated nopal. Group 2 (placebo): 50 g of available carbohydrates from GLU. Study 2: Length: Acute (single consumption) Group 1 (treatment): High CH breakfast (HCB) or high soy-protein breakfast (HSBP) with or without (random) 300 g steam nopal. Group 2 (placebo): HCB or HSBP. HCB: 300 kcal, 89% CH, 6% PRO, 5% fat in apple juice (240 mL), white bread (55.6 g) and strawberry jam (21 g). HSP: 344 kcal, 42.4% CH, 40.7% PRO, 16.9% fat in soy hamburger (61.5 g) and soymilk beverage (230 mL) Pre/post measurements: GLU, Glycemic index, insulinemic index, glucagon-like peptide 1 (GIP-1) index. | Study 1: Glycemic index is 32.5 ± 4.0, insulinemic, Gastric Inhibitory Polypeptide index 6.5 ± 3.0, and GLP-1 index was 25.9 ± 18.0. Study 2: Group 1: Reduction in GLU AUC of HCB + nopal compared to only HCB (287 ± 30 and 443 ± 49 respectively). Reduction in GLU peaks HSPB + nopal at 30 min and 45 min (p < 0.05). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashif, R.R.; D’Cunha, N.M.; Mellor, D.D.; Alexopoulos, N.I.; Sergi, D.; Naumovski, N. Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review. Medicina 2022, 58, 300. https://doi.org/10.3390/medicina58020300
Kashif RR, D’Cunha NM, Mellor DD, Alexopoulos NI, Sergi D, Naumovski N. Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review. Medicina. 2022; 58(2):300. https://doi.org/10.3390/medicina58020300
Chicago/Turabian StyleKashif, Rao Raahim, Nathan M. D’Cunha, Duane D. Mellor, Natalie I. Alexopoulos, Domenico Sergi, and Nenad Naumovski. 2022. "Prickly Pear Cacti (Opuntia spp.) Cladodes as a Functional Ingredient for Hyperglycemia Management: A Brief Narrative Review" Medicina 58, no. 2: 300. https://doi.org/10.3390/medicina58020300