Determination of the Predictors with the Greatest Influence on Walking in the Elderly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.2.1. Lower Extremity Muscle Strength Test
2.2.2. The 6-Minute Walk Test
2.2.3. Static Balance Test
2.2.4. Body Composition Measurement
2.3. Data Analysis
3. Results
3.1. Prediction of Walking Speed from the Lower Extremity Strength, Posture Control, Body Composition Factors
3.2. Prediction of Temporal Gait Parameters of Gait from the Lower Extremity Strength, Static Balance, and Body Composition Factors
3.3. Prediction of Spatial Gait Parameters from the Lower Extremity Strength, Static Balance, and Body Composition Factors
4. Discussion
Imitation of Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- JudgeRoy, J.O.; Davis, I.I.I.B.; Õunpuu, S. Step length reductions in advanced age: The role of ankle and hip kinetics. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51, M303–M312. [Google Scholar] [CrossRef] [PubMed]
- Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. [Google Scholar] [CrossRef]
- Barak, Y.; Wagenaar, R.C.; Holt, K.G. Gait characteristics of elderly people with a history of falls: A dynamic approach. Phys. Ther. 2006, 86, 1501–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brach, J.S.; Studenski, S.; Perera, S.; VanSwearingen, J.M.; Newman, A.B. Stance time and step width variability have unique contributing impairments in older persons. Gait Posture 2008, 27, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M. Gait dynamics in Parkinson’s disease: Common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos Interdiscip. J. Nonlinear Sci. 2009, 19, 026113. [Google Scholar] [CrossRef] [Green Version]
- MacAulay, R.K.; Allaire, T.D.; Brouillette, R.M.; Foil, H.C.; Bruce-Keller, A.J.; Han, H.; Johnson, W.D.; Keller, J.N. Longitudinal assessment of neuropsychological and temporal/spatial gait characteristics of elderly fallers: Taking it all in stride. Front. Aging Neurosci. 2015, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Valentine, R.J.; Evans, E.M.; Sosnoff, J.J. Lower extremity muscle quality and gait variability in older adults. Age Ageing 2012, 41, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Hausdorff, J.M. Gait variability: Methods, modeling and meaning. J. Neuroeng. Rehabil. 2005, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Alexander, N.B. Gait disorders in older adults. J. Am. Geriatr. Soc. 1996, 44, 434–451. [Google Scholar] [CrossRef] [Green Version]
- Brach, J.S.; Berthold, R.; Craik, R.; VanSwearingen, J.M.; Newman, A.B. Gait variability in community-dwelling older adults. J. Am. Geriatr. Soc. 2001, 49, 1646–1650. [Google Scholar] [CrossRef]
- Callisaya, M.L.; Blizzard, L.; Schmidt, M.D.; McGinley, J.L.; Srikanth, V.K. Ageing and gait variability—A population-based study of older people. Age Ageing 2010, 39, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Toebes, M.J.; Hoozemans, M.J.; Furrer, R.; Dekker, J.; van Dieën, J.H. Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait Posture 2012, 36, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Kyrdalen, I.L.; Thingstad, P.; Sandvik, L.; Ormstad, H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother. Res. Int. J. Res. Clin. Phys. Ther. 2019, 24, e1743. [Google Scholar] [CrossRef] [Green Version]
- Verghese, J.; Holtzer, R.; Lipton, R.B.; Wang, C. Quantitative gait markers and incident fall risk in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 896–901. [Google Scholar] [CrossRef] [Green Version]
- Rochat, S.; Büla, C.J.; Martin, E.; Seematter-Bagnoud, L.; Karmaniola, A.; Aminian, K.; Piot-Ziegler, C.; Santos-Eggimann, B. What is the relationship between fear of falling and gait in well-functioning older persons aged 65 to 70 years? Arch. Phys. Med. Rehabil. 2010, 91, 879–884. [Google Scholar] [CrossRef]
- Oh-Park, M.; Holtzer, R.; Xue, X.; Verghese, J. Conventional and robust quantitative gait norms in community-dwelling older adults. J. Am. Geriatr. Soc. 2010, 58, 1512–1518. [Google Scholar] [CrossRef] [Green Version]
- Jerome, G.J.; Ko, S.U.; Kauffman, D.; Studenski, S.A.; Ferrucci, L.; Simonsick, E.M. Gait characteristics associated with walking speed decline in older adults: Results from the Baltimore Longitudinal Study of Aging. Arch. Gerontol. Geriatr. 2015, 60, 239–243. [Google Scholar] [CrossRef] [Green Version]
- De Almeida Busch, T.; Duarte, Y.A.; Nunes, D.P.; Lebrão, M.L.; Naslavsky, M.S.; dos Santos Rodrigues, A.; Amaro, E., Jr. Factors associated with lower gait speed among the elderly living in a developing country: A cross-sectional population-based study. BMC Geriatr. 2015, 15, 35. [Google Scholar]
- Brach, J.S.; Berlin, J.E.; VanSwearingen, J.M.; Newman, A.B.; Studenski, S.A. Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J. Neuroeng. Rehabil. 2005, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture 2009, 29, 392–397. [Google Scholar] [CrossRef]
- Watelain, E.; Barbier, F.; Allard, P.; Thevenon, A.; Angué, J.-C. Gait pattern classification of healthy elderly men based on biomechanical data. Arch. Phys. Med. Rehabil. 2000, 81, 579–586. [Google Scholar] [CrossRef]
- Cristopoliski, F.; Barela, J.A.; Leite, N.; Fowler, N.E.; Rodacki, A.L.F. Stretching exercise program improves gait in the elderly. Gerontology 2009, 55, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.L.; Rodgers, M.M.; Macko, R.F.; Forrester, L.W. Effect of treadmill exercise training on spatial and temporal gait parameters in subjects with chronic stroke: A preliminary report. J. Rehabil. Res. Dev. 2008, 45, 221. [Google Scholar] [CrossRef] [PubMed]
- Persch, L.N.; Ugrinowitsch, C.; Pereira, G.; Rodacki, A.L. Strength training improves fall-related gait kinematics in the elderly: A randomized controlled trial. Clin. Biomech. 2009, 24, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-S.; An, D.-H. The effect of motor dual-task balance training on balance and gait of elderly women. J. Phys. Ther. Sci. 2014, 26, 359–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cebolla, E.C.; Rodacki, A.L.; Bento, P.C. Balance, gait, functionality and strength: Comparison between elderly fallers and non-fallers. Braz. J. Phys. Ther. 2015, 19, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.E.; Madigan, M.L. Healthy older adults have insufficient hip range of motion and plantar flexor strength to walk like healthy young adults. J. Biomech. 2014, 47, 1104–1109. [Google Scholar] [CrossRef] [Green Version]
- Correa-de-Araujo, R.; Harris-Love, M.O.; Miljkovic, I.; Fragala, M.S.; Anthony, B.W.; Manini, T.M. The need for standardized assessment of muscle quality in skeletal muscle function deficit and other aging-related muscle dysfunctions: A symposium report. Front. Physiol. 2017, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Muehlbauer, T.; Granacher, U.; Borde, R.; Hortobagyi, T. Non-discriminant relationships between leg muscle strength, mass and gait performance in healthy young and old adults. Gerontology 2018, 64, 11–18. [Google Scholar] [CrossRef]
- Burnfield, J.M.; Josephson, K.R.; Powers, C.M.; Rubenstein, L.Z. The influence of lower extremity joint torque on gait characteristics in elderly men. Arch. Phys. Med. Rehabil. 2000, 81, 1153–1157. [Google Scholar] [CrossRef]
- Bachasson, D.; Moraux, A.; Ollivier, G.; Decostre, V.; Ledoux, I.; Gidaro, T.; Servais, L.; Béhin, A.; Stojkovic, T.; Hébert, L.J.; et al. Relationship between muscle impairments, postural stability, and gait parameters assessed with lower-trunk accelerometry in myotonic dystrophy type 1. Neuromuscul. Disord. 2016, 26, 428–435. [Google Scholar] [CrossRef]
- Hendrickson, J.; Patterson, K.K.; Inness, E.L.; McIlroy, W.E.; Mansfield, A. Relationship between asymmetry of quiet standing balance control and walking post-stroke. Gait Posture 2014, 39, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Shimada, H.; Obuchi, S.; Kamide, N.; Shiba, Y.; Okamoto, M.; Kakurai, S. Relationship with dynamic balance function during standing and walking. Am. J. Phys. Med. Rehabil. 2003, 82, 511–516. [Google Scholar] [CrossRef]
- Shin, H.; Panton, L.B.; Dutton, G.R.; Ilich, J.Z. Relationship of physical performance with body composition and bone mineral density in individuals over 60 years of age: A systematic review. J. Aging Res. 2011, 2011, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Mantel, A.; Trapuzzano, A.; Chizmar, S.; Haffke, L.; Dawson, N. An investigation of the predictors of comfortable and fast gait speed in community-dwelling older adults. J. Geriatr. Phys. Ther. 2019, 42, E62–E68. [Google Scholar] [CrossRef]
- Woo, J.; Leung, J.; Kwok, T. BMI, body composition, and physical functioning in older adults. Obesity 2007, 15, 1886–1894. [Google Scholar] [CrossRef]
- LaRoche, D.P.; Kralian, R.J.; Millett, E.D. Fat mass limits lower-extremity relative strength and maximal walking performance in older women. J. Electromyogr. Kinesiol. 2011, 21, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Ko, S.-U.; Stenholm, S.; Ferrucci, L. Characteristic gait patterns in older adults with obesity—Results from the Baltimore Longitudinal Study of Aging. J. Biomech. 2010, 43, 1104–1110. [Google Scholar] [CrossRef] [Green Version]
- De Kruijf, M.; Verlinden, V.J.; Huygen, F.J.; Hofman, A.; van der Geest, J.N.; Uitterlinden, A.G.; Bierma-Zeinstra, S.M.; Ikram, M.A.; van Meurs, J.B. Chronic joint pain in the lower body is associated with gait differences independent from radiographic osteoarthritis. Gait Posture 2015, 42, 354–359. [Google Scholar] [CrossRef]
- Kang, H.G.; Dingwell, J.B. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 2008, 41, 2899–2905. [Google Scholar] [CrossRef]
- Clarke, M.; DAMhuircheartaigh, N.; Walsh, G.; Walsh, J.; Meldrum, D. Intra-tester and inter-tester reliability of the MicroFET 3 hand-held dynamometer. Physiother. Pract. Res. 2011, 32, 13–18. [Google Scholar] [CrossRef]
- Harada, N.D.; Chiu, V.; Stewart, A.L. Mobility-related function in older adults: Assessment with a 6-min walk test. Arch. Phys. Med. Rehabil. 1999, 80, 837–841. [Google Scholar] [CrossRef]
- Hamilton, D.M.; Haennel, R. Validity and reliability of the 6-min walk test in a cardiac rehabilitation population. J. Cardiopulm. Rehabil. Prev. 2000, 20, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Ishac, M.; Gage, W.H. Motor mechanisms of balance during quiet standing. J. Electromyoraphy Kinesiol. Off. J. Int. Soc. Electrophysiol. Kinesiol. 2003, 13, 49–56. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, S.B.; Winters, K.P.; Dubbert, P.M. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Am. J. Med. Sci. 2006, 331, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Roubenoff, R.; Dallal, G.E.; Wilson, P. Predicting body fatness: The body mass index vs estimation by bioelectrical impedance. Am. J. Public Health 1995, 85, 726–728. [Google Scholar] [CrossRef] [Green Version]
- Dunsky, A.; Zeev, A.; Netz, Y. Predictors of Future Walking Speed: A 12-Month Monitoring Program. Int. J. Aging Hum. Dev. 2021, 95, 205–221. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Kang, H.G.; Dingwell, J.B. A direct comparison of local dynamic stability during unperturbed standing and walking. Exp. Brain Res. 2006, 172, 35. [Google Scholar] [CrossRef] [PubMed]
- Yiou, E.; Hamaoui, A.; Allali, G. The contribution of postural adjustments to body balance and motor performance. Front. Hum. Neurosci. 2018, 12, 487. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Schultz, A.B. Muscle function and mobility biomechanics in the elderly: An overview of some recent research. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, 60–63. [Google Scholar] [CrossRef]
- Moreland, J.D.; Richardson, J.A.; Goldsmith, C.H.; Clase, C.M. Muscle weakness and falls in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2004, 52, 1121–1129. [Google Scholar] [CrossRef]
- Tiedemann, A.; Sherrington, C.; Lord, S.R. Physiological and psychological predictors of walking speed in older community-dwelling people. Gerontology 2005, 51, 390–395. [Google Scholar] [CrossRef]
- Guadagnin, E.C.; Priario, L.A.; Carpes, F.P.; Vaz, M.A. Correlation between lower limb isometric strength and muscle structure with normal and challenged gait performance in older adults. Gait Posture 2019, 73, 101–107. [Google Scholar] [CrossRef]
- Suzuki, T.; Bean, J.F.; Fielding, R.A. Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J. Am. Geriatr. Soc. 2001, 49, 1161–1167. [Google Scholar] [CrossRef]
- Cofré Lizama, L.E.; Pijnappels, M.; Faber, G.H.; Reeves, P.N.; Verschueren, S.M.; van Dieen, J.H. Age effects on mediolateral balance control. PLoS ONE 2014, 9, e110757. [Google Scholar] [CrossRef] [Green Version]
- Lopes, P.G.; Lopes, J.A.F.; Brito, C.M.; Alfieri, F.M.; Rizzo Battistella, L. Relationships of balance, gait performance, and functional outcome in chronic stroke patients: A comparison of left and right lesions. BioMed Res. Int. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hurt, C.P.; Rosenblatt, N.; Crenshaw, J.R.; Grabiner, M.D. Variation in trunk kinematics influences variation in step width during treadmill walking by older and younger adults. Gait Posture 2010, 31, 461–464. [Google Scholar] [CrossRef]
- Pascot, A.; Lemieux, S.; Lemieux, I.; Prud’Homme, D.; Tremblay, A.; Bouchard, C.; Nadeau, A.; Couillard, C.; Tchernof, A.; Bergeron, J.; et al. Age-related increase in visceral adipose tissue and body fat and the metabolic risk profile of premenopausal women. Diabetes Care 1999, 22, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Davison, K.K.; Ford, E.S.; Cogswell, M.E.; Dietz, W.H. Percentage of body fat and body mass index are associated with mobility limitations in people aged 70 and older from NHANES III. J. Am. Geriatr. Soc. 2002, 50, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, C.E.; van der Schouw, Y.T.; de Jong, F.H.; Grobbee, D.E.; Lamberts, S.W. Fat mass rather than muscle strength is the major determinant of physical function and disability in postmenopausal women younger than 75 years of age. Menopause 2006, 13, 474–481. [Google Scholar] [CrossRef]
- Gonzalez, M.; Gates, D.H.; Rosenblatt, N.J. The impact of obesity on gait stability in older adults. J. Biomech. 2020, 100, 109585. [Google Scholar] [CrossRef]
- Wearing, S.; Hennig, E.; Byrne, N.; Steele, J.; Hills, A. The biomechanics of restricted movement in adult obesity. Obes. Rev. 2006, 7, 13–24. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Buckner, S.L.; Dankel, S.J.; Abe, T. Exercise-Induced Changes in Muscle Size do not Contribute to Exercise-Induced Changes in Muscle Strength. Sport. Med. 2019, 49, 987–991. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, D.R.; Héroux, M.; Janssen, I. Association between muscle mass, leg strength, and fat mass with physical function in older adults: Influence of age and sex. J. Aging Health 2011, 23, 313–328. [Google Scholar] [CrossRef]
- Lee, H.; Kim, I.-G.; Sung, C.; Jeon, T.-B.; Cho, K.; Ha, Y.-C.; Park, K.-S.; Yoo, J.-I.; Kang, G.H.; Kim, S.J.; et al. Exercise training increases skeletal muscle strength independent of hypertrophy in older adults aged 75 years and older. Geriatr. Gerontol. Int. 2019, 19, 265–270. [Google Scholar] [CrossRef]
- Wittert, G.A.; Chapman, I.M.; Haren, M.T.; Mackintosh, S.; Coates, P.; Morley, J.E. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low–normal gonadal status. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M618–M625. [Google Scholar] [CrossRef] [Green Version]
- Allet, L.; Armand, S.; De Bie, R.A.; Golay, A.; Pataky, Z.; Aminian, K.; De Bruin, E.D. Clinical factors associated with gait alterations in diabetic patients. Diabet. Med. 2009, 26, 1003–1009. [Google Scholar] [CrossRef]
- Milot, M.-H.; Nadeau, S.; Gravel, D.; Requião, L.F. Bilateral level of effort of the plantar flexors, hip flexors, and extensors during gait in hemiparetic and healthy individuals. Stroke 2006, 37, 2070–2075. [Google Scholar] [CrossRef]
Assessed for Eligibility (n = 101) |
---|
Excluded participants who did not meet the inclusion criteria (n = 18) |
Excluded participants who declined to participate in the experiment (n = 3) |
Did not receive allocated assessment in elderly male group (n = 2) |
Final analyzed (n = 78) |
The Elderly (n = 78) | ||||
---|---|---|---|---|
Parameters | Totals (n = 78) | Males (n = 40) | Females (n = 38) | p-Value |
Age (years) | 75.69 (5.95) | 74.73 (6.92) | 76.71 (4.59) | 0.14 |
Height (cm) | 160.95 (8.56) | 167.47 (5.67) | 154.09 (4.92) | <0.01 |
Weight (kg) | 64.66 (9.31) | 68.86 (8.45) | 60.24 (8.12) | <0.01 |
Body composition | ||||
Soft lean mass (kg) | 41.97 (7.40) | 47.66 (5.42) | 35.99 (3.37) | <0.01 |
Body fat mass (kg) | 20.22 (5.88) | 18.47 (5.05) | 22.08 (6.17) | 0.01 |
BMI (kg/m2) | 24.98 (3.12) | 24.57 (2.72) | 25.42 (3.47) | 0.23 |
Lower extremity strength | ||||
Flexion iliopsoas (N) | 189.33 (61.00) | 221.20 (61.20) | 155.77 (39.23) | <0.01 |
Extension gluteus (N) | 150.78 (67.14) | 188.74 (63.37) | 110.81 (44.17) | <0.01 |
Abduction gluteus (N) | 129.21 (42.51) | 151.69 (43.43) | 105.54 (25.50) | <0.01 |
Flexion hamstring (N) | 99.45 (41.34) | 115.32 (35.13) | 82.74 (41.18) | <0.01 |
Extension femoris/vastus (N) | 217.67 (60.94) | 242.34 (60.19) | 191.70 (50.59) | <0.01 |
Plantar flexion (N) | 168.36 (57.78) | 197.76 (53.80) | 137.42 (44.50) | <0.01 |
Dorsiflexion (N) | 139.33 (43.26) | 159.40 (40.91) | 118.20 (35.16) | <0.01 |
Static balance | ||||
RMS_AP (mm/s) | 4.70 (1.27) | 4.92 (1.34) | 4.47 (1.18) | 0.12 |
RMS_ML (mm/s) | 2.21 (0.90) | 2.13 (0.81) | 2.30 (0.98) | 0.40 |
MV_AP (mm/s2) | 9.30 (2.01) | 9.12 (2.12) | 9.48 (1.90) | 0.42 |
MV_ML (mm/s2) | 7.64 (2.18) | 7.01 (2.18) | 8.30 (1.20) | 0.01 |
Gait performance | ||||
Speed (m/s) | 1.22 (0.20) | 1.26 (0.19) | 1.18 (0.20) | 0.03 |
Stance duration (%) | 61.31 (2.71) | 61.19 (2.95) | 61.43 (2.47) | 0.41 |
Swing duration (%) | 38.69 (2.71) | 38.81 (2.95) | 38.57 (2.47) | 0.41 |
Double support duration (%) | 22.19 (4.49) | 21.94 (5.16) | 22.45 (3.70) | 0.24 |
Stride length (m) | 1.22 (0.18) | 1.29 (0.18) | 1.15 (0.16) | <0.01 |
Swing width (m) | 0.04 (0.02) | 0.04 (0.01) | 0.04 (0.02) | 0.35 |
Gait variability | ||||
Speed CV (%) | 4.74 (1.51) | 4.44 (1.39) | 5.06 (1.59) | 0.06 |
Stance duration CV (%) | 2.48 (1.00) | 2.43 (0.98) | 2.53 (1.04) | 0.64 |
Swing duration CV (%) | 3.94 (1.54) | 3.83 (1.50) | 4.06 (1.61) | 0.50 |
Double support duration CV (%) | 10.51 (4.57) | 11.02 (3.89) | 9.98 (5.19) | 0.31 |
Stride length CV (%) | 3.75 (1.25) | 3.49 (1.20) | 4.03 (1.26) | 0.56 |
Swing width CV (%) | 26.84 (16.87) | 28.48 (9.33) | 25.12 (22.25) | 0.38 |
Dependent Variables | Independent Variable | (95% CI) | |||
---|---|---|---|---|---|
R2 | β | Predictors | p Value | ||
Speed(s) | 0.291 | 0.311 −0.291 −0.216 | Dorsiflexion Body fat mass RMS_ML | 0.003 ** 0.005 ** 0.037 * | (0.112, 0.510) (−0.490, −0.092) (−0.418, 0.013) |
Stance duration (%) | 0.322 | 0.322 | RMS_ML | 0.004 ** | (0.106, 0.538) |
Swing duration (%) | 0.322 | −0.322 | RMS_ML | 0.004 ** | (−0.538, −0.106) |
Double support duration (%) | 0.438 | 0.226 −0.309 −0.263 | RMS_ML Dorsiflexion MV_ML | 0.038 * 0.007 ** 0.019 * | (0.013, 0.438) (−0.532, −0.087) (−0.482, −0.044) |
Stride length (m) | 0.653 | 0.283 −0.245 0.263 −0.228 | Height RMS_ML Plantar flexion Body fat mass | 0.009 ** 0.009 ** 0.013 * 0.018 √ | (0.072, 0.494) (−0.426, −0.063) (0.058, 0.469) (−0.415, −0.041) |
Swing width (m) | 0.516 | 0.308 0.359 0.320 0.296 | Dorsiflexion MV_ML Body fat mass Height | 0.010 ** 0.002 ** 0.005 ** 0.015 √ | (0.077, 0.540) (0.138, 0.581) (0.101, 0.539) (0.058, 0.533) |
Dependent Variables | Independent Variable | (95% CI) | |||
---|---|---|---|---|---|
R2 | β | Predictors | p Value | ||
Speed CV (%) | 0.426 | −0.396 0.233 | Plantar flexion RMS_AP | <0.001 *** 0.031 √ | (−0.607, −0.185) (0.022, 0.443) |
Stance duration CV (%) | n.s | ||||
Swing duration CV (%) | n.s | ||||
Double support duration CV (%) | n.s | ||||
Stride length CV (%) | 0.436 | −0.436 | Plantar flexion | <0.001 *** | (−0.642, −0.231) |
Swing width CV (%) | n.s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-M.; Shin, S.; Lee, Y.; Lee, D.-Y. Determination of the Predictors with the Greatest Influence on Walking in the Elderly. Medicina 2022, 58, 1640. https://doi.org/10.3390/medicina58111640
Chung C-M, Shin S, Lee Y, Lee D-Y. Determination of the Predictors with the Greatest Influence on Walking in the Elderly. Medicina. 2022; 58(11):1640. https://doi.org/10.3390/medicina58111640
Chicago/Turabian StyleChung, Chul-Min, Sunghoon Shin, Yungon Lee, and Do-Youn Lee. 2022. "Determination of the Predictors with the Greatest Influence on Walking in the Elderly" Medicina 58, no. 11: 1640. https://doi.org/10.3390/medicina58111640
APA StyleChung, C.-M., Shin, S., Lee, Y., & Lee, D.-Y. (2022). Determination of the Predictors with the Greatest Influence on Walking in the Elderly. Medicina, 58(11), 1640. https://doi.org/10.3390/medicina58111640