The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood Pressure Regulation in Pregnancies with Hypertensive Disorders
Abstract
:1. Introduction
2. Materials and Methods
- Normal blood pressure before pregnancy.
- No general diseases (patients with diabetes, thyroid, kidney diseases or connective tissue disorders were excluded).
- A physiological single pregnancy (pregnant women with threatened premature delivery, gestational diabetes or thrombocytopenia were excluded).
- No fetal structural or chromosomal abnormalities detected in prenatal tests and after pregnancy.
- The occurrence of hypertension ≥ 140/90 mmHg after the 20th week of pregnancy.
- A proteinuria of 1+ or higher in a single urine sample, or ≥300 mg in a 24-h urine collection.
- No history of hypertensive disorders during previous pregnancies.
- Body mass index calculation was defined as the body mass divided by the square of the body height, in units of kg/m2.
- Hypertension was first diagnosed after the 20th week of pregnancy.
- Proteinuria was found.
- The presence of other systemic or fetal abnormalities was excluded.
- Pre-gravid BMI < 25.
- Hypertension was first diagnosed after the 20th week of pregnancy.
- The presence of other systemic or fetal abnormalities was excluded.
- Absence of significant proteinuria.
- Normal blood pressure before pregnancy.
- 9.
- No systemic diseases.
- 10.
- The current correct course of a single pregnancy.
- 11.
- No fetal structural or chromosomal abnormalities detected in prenatal tests and after pregnancy.
- 12.
- No history of hypertensive disorders during previous pregnancies.
- 13.
- Pre-gravid BMI < 25.
2.1. DNA Preparation
2.2. CffDNA Genotyping
2.3. Genotyping STR
2.4. Statistical Analysis
3. Results
- Control group—67 patients (39.88%);
- Patients with PE—66 patients (39.29%): including obese patients (PE + O) (pre-gravid BMI > 30)—23 patients (34.85%)—and lean with PE—43 patients (65.15%);
- Patients with GH—35 patients (20.83%).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
PE | preeclampsia |
PE + O | preeclampsia and obesity |
GH | gestational hypertension, |
FGR | fetal growth restriction |
GDM | gestational diabetes |
cffDNA | cell-free fetal DNA |
cfDNA | cell-free DNA (mothers) |
STR | short tandem repeat |
SRY | sex-determining region Y |
References
- Ballesta-Castillejos, A.; Gómez-Salgado, J.; Rodríguez-Almagro, J.; Ortiz-Esquinas, I.; Hernández-Martínez, A. Relationship between Maternal Body Mass Index and Obstetric and Perinatal Complications. J. Clin. Med. 2020, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Tatemoto, K.; Hosoya, M.; Habata, Y.; Fujii, R.; Kakegawa, T.; Zou, M.X.; Kawamata, Y.; Fukusumi, S.; Hinuma, S.; Kitada, C.; et al. Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem. Biophys. Res. Commun. 1998, 251, 471–476. [Google Scholar] [CrossRef]
- Cobellis, L.; De Falco, M.; Mastrogiacomo, A.; Giraldi, D.; Dattilo, D.; Scaffa, C.; Colacurci, N.; De Luca, A. Modulation of apelin and APJ receptor in normal and preeclampsia-complicated placentas. Histol. Histopathol. 2007, 22, 1–8. [Google Scholar] [PubMed]
- Bortoff, K.D.; Qiu, C.; Runyon, S.; Williams, M.A.; Maitra, R. Decreased maternal plasma apelin concentrations in preeclampsia Hypertens. Pregnancy 2012, 31, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Farid, R.M.; Abu-Zeid, R.M.; El-Tawil, A. Emerging role of adipokine apelin in hepatic remodelling and initiation of carcinogensis in chronic hepatitis C patients. Int. J. Clin. Exp. Pathol. 2014, 7, 2707–2717. [Google Scholar] [PubMed]
- Shichiri, M.; Ishimaru, S.; Ota, T.; Nishikawa, T.; Isogai, T.; Hirata, Y. Salusins: Newly identified bioactive peptides with hemodynamic and mitogenic activities. Nat. Med. 2003, 9, 1166–1172. [Google Scholar] [CrossRef]
- Watanabe, T.; Suguro, T.; Sato, K.; Koyama, T.; Nagashima, M.; Kodate, S.; Hirano, T.; Adachi, M.; Shichiri, M.; Miyazaki, A. Serum salusin-alpha levels are decreased and correlated negatively with carotid atherosclerosis in essential hypertensive patients. Hypertens. Res. 2008, 31, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, K.H.; Syngelaki, A.; Birdir, C.; Touzet, G. Noninvasive prenatal testing for fetal trisomies in an average-risk population. Am. J. Obstet. Gynecol. 2012, 207, 374.e1-e6. [Google Scholar] [CrossRef]
- Martin, A.; Krishna, I.; Martina, B.; Samuel, A. Can the quantity of cell-free fetal DNA predict preeclampsia: A systematic review. Prenat. Diagn. 2014, 34, 685–691. [Google Scholar] [CrossRef]
- Rolnik, D.L.; O’Gorman, N.; Fiolna, M.; Boom, D.V.D.; Nicolaides, K.H.; Poon, L.C. Maternal Plasma Cell-Free DNA in the Prediction of Pre-Eclampsia. Obstet. Gynecol. Surv. 2015, 70, 377–378. [Google Scholar] [CrossRef]
- Wilson, R.D. Cell-Free Fetal DNA in the Maternal Circulation and its Future Uses in Obstetrics. J. Obstet. Gynaecol. Can. 2005, 27, 54–57. [Google Scholar] [CrossRef]
- Zeybek, Y.G.; Günel, T.; Benian, A.; Aydınli, K.; Kaleli, S. Clinical evaluations of cell-free fetal DNA quantities in pre-eclamptic pregnancies. J. Obstet. Gynaecol. Res. 2013, 39, 632–640. [Google Scholar] [CrossRef]
- Yu, H.; Shen, Y.; Ge, Q.; He, Y.; Qiao, D.; Ren, M.; Zhang, J. Quantification of Maternal Serum Cell-Free Fetal DNA in Early-Onset Preeclampsia. Int. J. Mol. Sci. 2013, 14, 7571–7582. [Google Scholar] [CrossRef]
- Gamill, H.S.; Nelson, J.L. Naturally acquired microchimerism. Int. J. Dev. Biol. 2010, 54, 531–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taglauer, E.S.; Wilkins-Haug, L.; Bianchi, D.W. Review: Cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2014, 35, S64–S68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S.; Rusterholz, C.; Hösli, I.; Lapaire, O. Cell-free Nucleic Acids as Potential Markers for Preeclampsia. Placenta 2011, 32, S17–S20. [Google Scholar] [CrossRef]
- Francès, F.; Portolés, O.; González, J.I.; Coltell, O.; Verdu, F.; Castelló, A.; Corella, D. Amelogenin test: From forensics to quality control in clinical and biochemical genomics. Clin. Chim. Acta 2007, 386, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Nakahori, Y.; Takenaka, O.; Nakagome, Y. A human X-Y homologous region encodes “amelogenin”. Genomics 1991, 9, 264–269. [Google Scholar] [CrossRef]
- WHO. Obesity and Overweight; WHO, 2018; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 11 September 2021).
- Juul, L.A.; Hartwig, T.S.; Ambye, L.; Sørensen, S.; Jørgensen, F.S. Noninvasive prenatal testing and maternal obesity: A review. Acta Obstet. Gynecol. Scand. 2020, 99, 744–750. [Google Scholar] [CrossRef]
- Robillard, P.Y.; Dekker, G.; Scioscia, M.; Bonsante, F.; Iacobelli, S.; Boukerrou, M.; Hulsey, T.C. Increased BMI has a linear association with late-onset preeclampsia: A population-based study. PLoS ONE 2019, 14, e0223888. [Google Scholar] [CrossRef] [Green Version]
- EURO-PERISTAT Project. European Perinatal Health Report. Helath and Care of Pregnant Women and Babies in Europe in 2010. Available online: https://www.europeristat.com/ (accessed on 28 February 2019).
- Barnes, G.; Japp, A.G.; Newby, D.E. Translational promise of the apelin-APJ system. Heart 2010, 96, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Simsek, Y.; Celik, O.; Yilmaz, E.; Karaer, A.; Dogan, C.; Aydin, S.; Ozer, A. Serum levels of apelin, salusin-alpha and salusin-beta in normal pregnancy and preeclampsia. J. Matern. Neonatal Med. 2012, 25, 1705–1708. [Google Scholar] [CrossRef]
- Inuzuka, H.; Nishizawa, H.; Inagaki, A.; Suzuki, M.; Ota, S.; Miyamura, H.; Miyazaki, J.; Sekiya, T.; Kurahashi, H.; Udagawa, Y. Decreased expression of apelin in placentas from severe pre-eclampsia patients. Hypertens. Pregnancy 2013, 32, 410–421. [Google Scholar] [CrossRef] [PubMed]
- Kucur, M.; Tuten, A.; Oncul, M.; Acikgoz, A.S.; Yuksel, M.A.; Imamoglu, M.; Balci Ekmekci, O.; Yilmaz, N.; Madazli, R. Maternal serum apelin and YKL-40 levels in early and late-onset pre-eclampsia. Hypertens. Pregnancy 2014, 33, 467–475. [Google Scholar] [CrossRef]
- Yamaleyeva, L.M.; Chappell, M.C.; Brosnihan, K.B.; Anton, L.; Caudell, D.L.; Shi, S.; McGee, C.; Pirro, N.; Gallagher, P.E.; Taylor, R.N.; et al. Downregulation of apelin in the human placental chorionic villi from preeclamptic pregnancies. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E852–E860. [Google Scholar] [CrossRef] [Green Version]
- Kaufmann, P.; Black, S.; Huppertz, B. Endovascular Trophoblast Invasion: Implications for the Pathogenesis of Intrauterine Growth Retardation and Preeclampsia. Biol. Reprod. 2003, 69, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Van Mieghem, T.; Doherty, A.; Baczyk, D.; Drewlo, S.; Baud, D.; Carvalho, J.; Kingdom, J. Apelin in Normal Pregnancy and Pregnancies Complicated by Placental Insufficiency. Reprod. Sci. 2016, 23, 1037–1043. [Google Scholar] [CrossRef] [PubMed]
- Estienne, A.; Bongrani, A.; Reverchon, M.; Ramé, C.; Ducluzeau, P.H.; Froment, P.; Dupont, J. Involvement of Novel Adipokines, Chemerin, Visfatin, Resistin and Apelin in Reproductive Functions in Normal and Pathological Conditions in Humans and Animal Models. Int. J. Mol. Sci. 2019, 20, 4431. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, J.S. From apelin to exercise: Emerging therapies for management of hypertension in pregnancy. Hypertens. Res. 2017, 40, 519–525. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Kong, D.; Qin, X.; Li, Y.; Teng, X.; Huang, X. Apelin as a novel drug for treating preeclampsia. Exp. Ther. Med. 2017, 14, 5917–5923. [Google Scholar] [CrossRef]
- Motawi, T.M.K.; Mahdy, S.G.; El-Sawalhi, M.M.; Ali, E.N.; El-Telbany, R.F.A. Serum Levels of Chemerin, Apelin, Vaspin, and omentin-1 in Obese Type 2 Diabetic Egyptian Patients with Coronary Artery Stenosis. Can. J. Physiol. Pharmacol. 2018, 96, 38–44. [Google Scholar] [CrossRef]
- Shimada, K.; Murakami, K.; Shozu, M.; Segawa, T.; Sumitani, H.; Inoue, M. Sex-determining region Y levels in maternal plasma: Evaluation in abnormal pregnancy. J. Obstet. Gynaecol. Res. 2004, 30, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Koelper, N.C.; Sammel, M.D.; Dugoff, L.; Bender, W.R. Association of Fetal Fraction of Cell-Free DNA and Hypertensive Disorders of Pregnancy. Am. J. Perinatol. 2018, 36, 311–316. [Google Scholar] [CrossRef]
- Leung, T.N.; Zhang, J.; Lau, T.K.; Chan, L.Y.; Lo, Y.D. Increased maternal plasma fetal DNA concentrations in women who eventually develop preeclampsia. Clin. Chem. 2001, 47, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Sifakis, S.; Koukou, Z.; Spandidos, D. Cell-free fetal DNA and pregnancy-related complications (Review). Mol. Med. Rep. 2014, 11, 2367–2372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, R.J.; Qian, C.; LeShane, E.S.; Kai, F.Y.; England, L.J.; Schisterman, E.F.; Wataganara, T.; Romero, R.; Bianchi, D.W. Two-stage elevation of cell-free fetal DNA in maternal sera before onset of preeclampsia. Am. J. Obstet. Gynecol. 2004, 190, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Rafaeli-Yehudai, T.; Imterat, M.; Douvdevani, A.; Tirosh, D.; Benshalom-Tirosh, N.; Mastrolia, S.A.; Beer-Weisel, R.; Klaitman, V.; Riff, R.; Greenbaum, S.; et al. Maternal total cell-free DNA in preeclampsia and fetal growth restriction: Evidence of differences in maternal response to abnormal implantation. PLoS ONE 2018, 13, e0200360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mhatre, M.; Adeli, S.; Norwitz, E.; Craigo, S.; Phillippe, M.; Edlow, A. The Effect of Maternal Obesity on Placental Cell-Free DNA Release in a Mouse Model. Reprod. Sci. 2019, 26, 1218–1224. [Google Scholar] [CrossRef] [PubMed]
- Konečná, B.; Lauková, L.; Vlková, B. Immune activation by nucleic acids: A role in pregnancy complications. Scand. J. Immunol. 2018, 87, e12651. [Google Scholar] [CrossRef]
- Hopkins, M.K.; Koelper, N.; Bender, W. Association between cell-free DNA fetal fraction and gestational diabetes. Prenat. Diagn. 2020, 40, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Thangaraj, K.; Reddy, A.G.; Singh, L. Is the amelogenin gene reliable for gender identification in forensic casework and prenatal diagnosis? Int. J. Legal Med. 2002, 116, 121–123. [Google Scholar] [CrossRef] [PubMed]
Mild Preeclampsia | Severe Preeclampsia | |
---|---|---|
Systolic pressure | 140 mmHg | 160 mmHg |
Diastolic pressure | 90 mmHg | 110 mmHg |
Proteinuria | ≥300 mg/24 h or ≤+2 | ≥5 g/24 h or >+2 |
General symptoms (pulmonary oedema, oliguria, headache, etc.): rise in creatinine (90 micromol/liter or more, 1.1 mg/100 mL or more) or rise in alanine transaminase (over 70 IU/liter, or twice upper limit of normal range) or fall in platelet count (under 100,000/microliter) | None | Present |
Maternal Age (Years), Mean ± SD | Delivery in Weeks, Mean ± SD | Vaginal Delivery/C-Section | Fetal Weight (Grams), Mean ± SD | |
---|---|---|---|---|
C | 18–42, 29.09 ± 5.08 | 37–42, 39.32 ± 2.37 | 62.69%/32.84% | 2230–4330, 3422.62 ± 406.24 |
GH | 21–38, 30.51 ± 4.09 | 29–42, 37 ± 3.32 | 25.71%/74.29% | 1140–5440, 3317.14 ± 791.13 |
PE | 19–42, 30.59 ± 4.94 | 25–41, 36.97 ± 3.15 | 19.40%/80.60% | 780–4480, 2897.16 ± 816.56 |
PE + O | 19–40, 29.7 ± 5.11 | 31–41, 37.95 ± 2.44 | 21,73/78.26% | 2630–4500, 3496.13 ± 506.60 |
Name and Presents of Substances | Range (ng/mL) | Median | Mann–Whitney Test Z Score | p Value |
---|---|---|---|---|
Prosalusin in sera with cffDNA | 0.11–8.51 | 0.14 | −2.26 | 0.008 |
Prosalusin without cffDNA | 0.11–27.75 | 0.28 | ||
Salusin in sera with cffDNA | 0.47–3.98 | 1.65 | 1.11 | 0.27 |
Salusin without cffDNA | 0.012–2.98 | 0.64 | ||
Apelin in sera with cffDNA | 0.80–2.60 | 1.53 | 2.76 | 0.006 |
Apelin without cffDNA | 0.009–32.54 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stupak, A.; Kwaśniewski, W.; Goździcka-Józefiak, A.; Kwaśniewska, A. The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood Pressure Regulation in Pregnancies with Hypertensive Disorders. Medicina 2021, 57, 962. https://doi.org/10.3390/medicina57090962
Stupak A, Kwaśniewski W, Goździcka-Józefiak A, Kwaśniewska A. The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood Pressure Regulation in Pregnancies with Hypertensive Disorders. Medicina. 2021; 57(9):962. https://doi.org/10.3390/medicina57090962
Chicago/Turabian StyleStupak, Aleksandra, Wojciech Kwaśniewski, Anna Goździcka-Józefiak, and Anna Kwaśniewska. 2021. "The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood Pressure Regulation in Pregnancies with Hypertensive Disorders" Medicina 57, no. 9: 962. https://doi.org/10.3390/medicina57090962
APA StyleStupak, A., Kwaśniewski, W., Goździcka-Józefiak, A., & Kwaśniewska, A. (2021). The Influence of Maternal Obesity on Cell-Free Fetal DNA and Blood Pressure Regulation in Pregnancies with Hypertensive Disorders. Medicina, 57(9), 962. https://doi.org/10.3390/medicina57090962