No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone Concentrations in a Romanian Observational Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grassetto, G.; Rubello, D. Thyroid disorders and diabetes mellitus. Minerva Med. 2008, 99, 263–267. [Google Scholar]
- Kim, D. The Role of Vitamin D in Thyroid Diseases. Int. J. Mol. Sci. 2017, 18, 1949. [Google Scholar] [CrossRef] [PubMed]
- Pisarev, M.A. Interrelationships between the pancreas and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 437–439. [Google Scholar] [CrossRef] [PubMed]
- Tepper, S.; Shahar, D.R.; Geva, D.; Avizohar, O.; Nodelman, M.; Segal, E.; Ish-Shalom, S. Identifying the threshold for vitamin D insufficiency in relation to cardiometabolic markers. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; French, C.B.; Nguyen, S.; Ferreira, M.; Baggerly, L.L.; Brunel, L.; Veugelers, P. A novel approach localizes the association of vitamin D status with insulin resistance to one region of the 25-hydroxy vitamin D continuum. Adv. Nutr. 2013, 4, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Manickam, B.; Neagu, V.; Kukreja, S.; Barengolts, E. Relationship between HbA1c and circulating 25-hydroxyvitamin D concentration in African American and Caucasian American men. Endocr. Pract. J. Am. Coll. Endocrinol. 2013, 19, 73–80. [Google Scholar] [CrossRef]
- Dutta, D.; Maisnam, I.; Shrivastava, A.; Sinha, A.; Ghosh, S.; Mukhopadhyay, P.; Mukhopadhyay, S.; Chowdhury, S. Serum vitamin-D predicts insulin resistance in individuals with prediabetes. Indian J. Med. Res. 2013, 138, 853–860. [Google Scholar]
- Ganji, V.; Zhang, X.; Shaikh, N.; Tangpricha, V. Serum 25-hydroxy vitamin D concentrations are associated with prevalence of metabolic syndrome and various cardiometabolic risk factors in US children and adolescents based on assay-adjusted serum 25-hydroxyvitamin D data from NHANES 2001–2006. Am. J. Clin. Nutr. 2011, 94, 225–233. [Google Scholar] [CrossRef]
- Broder, A.R.; Tobin, J.N.; Putterman, C. Disease-specific definitions of vitamin D deficiency need to be established in autoimmune and non-autoimmune chronic diseases: A retrospective comparison of three chronic diseases. Arthritis Res. 2010, 12, R191. [Google Scholar] [CrossRef]
- Mousa, A.; Naderpoor, N.; de Courten, M.P.; Teede, H.; Kellow, N.; Walker, K.; Scragg, R.; de Courten, B. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: A randomized placebo-controlled trial. Am. J. Clin. Nutr. 2017, 105, 1372–1381. [Google Scholar] [CrossRef]
- Pittas, A.G.; Dawson-Hughes, B.; Sheehan, P.; Ware, J.H.; Knowler, W.C.; Aroda, V.R.; Brodsky, I.; Ceglia, L.; Chadha, C.; Chatterjee, R.; et al. Vitamin D Supplementation and Prevention of Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Tepper, S.; Shahar, D.R.; Geva, D.; Ish-Shalom, S. Diferences in homeostatic model assessment (HOMA)values and insulin levels after vitamin D supplementation in healthy men: A double-blind randomized controlled trial. Diabetes Obes. Metab. 2016, 18, 633–637. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Menon, R.K.; Sharp, S.J.; Mannan, N.; Timms, P.M.; Martineau, A.R.; Rickard, A.P.; Boucher, B.J.; Chowdhury, T.A.; Griffiths, C.J.; et al. Effects of vitamin D2 or D3 supplementation on glycaemic control and cardiometabolic risk among people at risk of type 2 diabetes: Results of a randomized double-blind placebo-controlled trial. Diabetes Obes. Metab. 2016, 18, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, U.; Mosekilde, L.; Juhl, C.; Moller, N.; Christensen, B.; Rejnmark, L.; Wamberg, L.; Orskov, L. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, beta cell function, and metabolic markers in patients with type 2 diabetes and vitamin D insuciency—A double-blind, randomized, placebo-controlled trial. Metabolism 2014, 63, 1115–1124. [Google Scholar] [CrossRef]
- Cefalo, C.M.A.; Conte, C.; Sorice, G.P.; Moffa, S.; Sun, V.A.; Cinti, F.; Salomone, E.; Muscogiuri, G.; Brocchi, A.A.G.; Pontecorvi, A.; et al. Effect of Vitamin D Supplementation on obesity-induced insulin resistance: A double-blind, randomized, placebo-controlled trial. Obesity 2018, 26, 651–657. [Google Scholar] [CrossRef]
- Lemieux, P.; Weisnagel, S.J.; Caron, A.Z.; Julien, A.-S.; Morisset, A.-S.; Poirier, J.; Carreau, A.-M.; Tchernof, A.; Robitaille, J.; Bergeron, J.; et al. Effects of 6-month vitamin D supplementation on insulin sensitivity and secretion: A randomized, placebo-controlled trial. Eur. J. Endocrinol. 2019, 181, 287–299. [Google Scholar] [CrossRef]
- Pittas, A.G.; Lau, J.; Hu, F.B.; Dawson-Hughes, B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007, 92, 2017–2029. [Google Scholar] [CrossRef]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef]
- Wallace, H.J.; Holmes, L.; Ennis, C.N.; Cardwell, C.R.; Woodside, J.V.; Young, I.S.; Bell, P.M.; Hunter, S.J.; McKinley, M.C. Effect of vitamin D3 supplementation on insulin resistance and β-cell function in prediabetes: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2019, 110, 1138–1147. [Google Scholar] [CrossRef]
- Rajabi-Naeeni, M.; Dolatian, M.; Qorbani, M.; Vaezi, A.A. The effect of omega-3 and vitamin D co-supplementation on glycemic control and lipid profiles in reproductive-aged women with prediabetes and hypovitaminosis D: A randomized controlled trial. Diabetol. Metab. Syndr. 2020, 12, 41. [Google Scholar] [CrossRef]
- Robinson, J.G.; Manson, J.E.; Larson, J.; Liu, S.; Song, Y.; Howard, B.V.; Phillips, L.; Shikany, J.M.; Allison, M.A.; Curb, J.D.; et al. Lack of association between 25(OH)D levels and incident type 2 diabetes in older women. Diabetes Care 2011, 34, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; van den Hurk, K.; Nijpels, G.; Stehouwer, C.D.A.; van’t Riet, E.; Kienreich, K.; Tomaschitz, A.; Dekker, J.M. Vitamin D status, incident diabetes and prospective changes in glucose metabolism in older subjects: The Hoorn study. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Yuan, Q.; Mao, L.; Chen, F.L.; Ji, F.; Cui, Z.H. Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes. Oncotarget 2017, 8, 67605–67613. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Śliwińska, A. Analysis of Association between vitamin D deficiency and insulin resistance. Nutrients 2019, 11, 794. [Google Scholar] [CrossRef] [PubMed]
- Wolden-Kirk, H.; Overbergh, L.; Gysemans, C.; Brusgaard, K.; Naamane, N.; Van Lommel, L.; Schuit, F.; Eizirik, D.L.; Christesen, H.T.; Mathieu, C. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J. Steroid Biochem. Mol. Biol. 2013, 136, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Reusch, J.E.; Begum, N.; Sussman, K.E.; Draznin, B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 1991, 129, 3269–3273. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Endocrine Society: Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Khan, H.A.; Sobki, S.H.; Ekhzaimy, A.; Khan, I.; Almusawi, M.A. Biomarker potential of C-peptide for screening of insulin resistance in diabetic and non-diabetic individuals. Saudi J. Biol. Sci. 2018, 25, 1729–1732. [Google Scholar] [CrossRef]
- Diabetes Trial Unit. Available online: https://www.dtu.ox.ac.uk/ToolsSoftware/ (accessed on 24 March 2020).
- Hrebícek, J.; Janout, V.; Malincíková, J.; Horáková, D.; Cízek, L. Detection of insulin resistance by simple quantitative insulin sensitivity check index QUICKI for epidemiological assessment and prevention. J. Clin. Endocrinol. Metab. 2002, 87, 144–147. [Google Scholar] [CrossRef] [PubMed]
- dlookr: Tools for Data Diagnosis, Exploration, Transformation. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- DataExplorer: Automate Data Exploration and Treatment. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- olsrr: Tools for Building OLS Regression Models. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- Tang, Y.; Horikoshi, M.; Li, W. ggfortify: Unified interface to visualize statistical result of popular R packages. R J. 2016, 8, 474–485. [Google Scholar] [CrossRef]
- skedastic: Heteroskedasticity Diagnostics for Linear Regression Models. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- di robustbase: Basic Robust Statistics. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- lm.beta: Add Standardized Regression Coefficients to lm-Objects. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- QuantPsyc: Quantitative Psychology Tools. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- quantreg: Quantile Regression. Available online: https://cran.r-project.org/ (accessed on 14 July 2020).
- Niculescu, D.A.; Capatina, C.A.M.; Dusceac, R.; Caragheorgheopol, A.; Ghemigian, A.; Poiana, C. Seasonal variation of serum vitamin D levels in Romania. Arch. Osteoporos. 2017, 12, 113. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.; Berne, C.; Svärdsudd, K.; Garmo, H.; Melhus, H.; Zethelius, B. Seasonal variations of insulin sensitivity from a euglycemic insulin clamp in elderly men. Upsala J. Med. Sci. 2012, 117, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Răcătăianu, N.; Leach, N.V.; Bolboacă, S.D.; Cozma, A.; Dronca, E.; Valea, A.; Silaghi, A.; Bîlc, A.M.; Ghervan, C. Vitamin D deficiency, insulin resistance and thyroid dysfunction in obese patients: Is inflammation the common link? Scand. J. Clin. Lab. Investig. 2018, 78, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Ceglia, L.; Diabetes Prevention Program Research Group; Nelson, J.; Ware, J.; Alysandratos, K.-D.; Bray, G.A.; Garganta, C.; Nathan, D.M.; Hu, F.B.; Dawson-Hughes, B.; et al. Association between body weight and composition and plasma 25-hydroxyvitamin D level in the Diabetes Prevention Program. Eur. J. Nutr. 2017, 56, 161–170. [Google Scholar] [CrossRef]
- Adiga, U.; Kathyayani, P.; Nandith, P.B. Comparison of different models of insulin resistence in T2DM: A cross-sectional study. BioMed. Res. 2019, 30, 175–178. [Google Scholar] [CrossRef]
- Nayak, V.; Raghurama Nayak, K.; Vidyasagar, S.; Kamath, A. Body composition analysis, anthropometric indices and lipid profile markers as predictors for prediabetes. PLoS ONE 2018, 13, e0200775. [Google Scholar] [CrossRef]
- Kieboom, B.; Ligthart, S.; Dehghan, A.; Kurstjens, S.; De Baaij, J.H.F.; Franco, O.H.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Serum magnesium and the risk of prediabetes: A population-based cohort study. Diabetologia 2017, 60, 843–853. [Google Scholar] [CrossRef]
- Peterlik, M.; Kállay, E.; Cross, H.S. Calcium nutrition and extracellular calcium sensing: Relevance for the pathogenesis of osteoporosis, cancer and cardiovascular diseases. Nutrients 2003, 5, 302–327. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Chen, G.; Gao, C.; He, J.; Zhong, H.; Xu, Y. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 2015, 7, 2485–2498. [Google Scholar] [CrossRef]
- Nur-Eke, R.; Özen, M.; Çekin, A.H. Pre-Diabetics with Hypovitaminosis D Have Higher Risk for Insulin Resistance. Clin. Lab. 2019, 65, 807–815. [Google Scholar] [CrossRef]
- Buhary, B.M.; Almohareb, O.; Aljohani, N.; Alrajhi, S.; Elkaissi, S.; Sherbeeni, S.; Almaghamsi, A.; Khan, S.A.; Almalki, M.H. Association of glycosylated hemoglobin levels with vitamin D status. J. Clin. Med. Res. 2017, 9, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Madar, A.A.; Knutsen, K.V.; Stene, L.C.; Brekke, M.; Meyer, H.E.; Lagerløv, P. Effect of vitamin D3 supplementation on glycated hemoglobin (HbA1c), fructosamine, serum lipids, and body mass index: A randomized, double-blinded, placebo-controlled trial among healthy immigrants living in Norway. BMJ Open Diabetes Res. Care 2014, 2, e000026. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, V.B.; Marchetti, C.M.; Krishnan, R.K.; Stetzer, B.P.; Gonzalez, F.; Kirwan, J.P. Exercise-induced reversal of insulin resistance in obese elderly is associated with reduced visceral fat. J. Appl. Physiol. 2004, 100, 1584–1589. [Google Scholar] [CrossRef] [PubMed]
- Vacek, J.L.; Vanga, S.R.; Good, M.; Lai, S.M.; Lakkireddy, D.; Howard, P.A. Vitamin D deficiency and supplementation and relation to cardiovascular health. Am. J. Cardiol. 2012, 109, 359–363. [Google Scholar] [CrossRef]
- Samefors, M.; Scragg, R.; Länne, T.; Nyström, F.H.; Östgren, C.J. Association between serum 25(OH)D3 and cardiovascular morbidity and mortality in people with Type 2 diabetes: A community-based cohort study. Diabet. Med. 2017, 34, 372–379. [Google Scholar] [CrossRef]
- Giovinazzo, S.; Alibrandi, A.; Campennì, A.; Trimarchi, F.; Ruggeri, R.M. Correlation of cardio-metabolic parameters with vitamin D status in healthy premenopausal women. J. Endocrinol. Investig. 2017, 40, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, X.; Bao, M.; Liu, L.; Xian, Y.; Wu, J.; Li, P. Effect of serum 25-hydroxyvitamin D3 on insulin resistance and β-cell function in newly diagnosed type 2 diabetes patients. J. Diabetes Investig. 2016, 7, 226–232. [Google Scholar] [CrossRef]
- de Boer, I.H.; Tinker, L.F.; Connelly, S.; Curb, J.D.; Howard, B.V.; Kestenbaum, B.; Larson, J.C.; Manson, J.E.; Margolis, K.L.; Siscovick, D.S.; et al. Calcium plus vitamin D supplementation and the risk of incident diabetes in the Women’s Health Initiative. Diabetes Care 2008, 31, 701–707. [Google Scholar] [CrossRef]
Blood Test | 25OHD < 30 ng/mL (n = 109) | 25OHD > 30 ng/mL (n = 244) |
---|---|---|
Age (years) | 61 ± 10.5 | 62 ± 19 |
BMI (kg/m−2) | 28.33 ± 5.03 | 26.92 ± 4.75 |
Glycemia (mg/dL) | 104.78 ± 14.97 | 102.71 ± 17.64 |
HbA1c (%) | 5.1 ± 0.9 | 5.2 ± 0.9 |
Total cholesterol (mg/dL) | 211.18 ± 43.89 | 196.03 ± 39.63 |
HDLc (mg/dL) | 66.00 ± 29.5 | 65.30 ± 24.0 |
LDLc (mg/dL) | 113.94 ± 38.44 | 105.84 ± 35.72 |
TG (mg/dL) | 97.61 ± 63.24 | 97.56 ± 55.72 |
TSH (μUI/mL) | 1.82 ± 2.02 | 1.68 ± 1.51 |
fT4 (ng/dL) | 1.15 ± 0.24 | 1.13 ± 0.21 |
PTH (ng/dL) | 40.33 ± 20.18 | 37.50 ± 19.50 |
Total calcium (mg/dL) | 9.49 ± 0.59 | 9.65 ± 0.55 |
Magnesium (mg/dL) | 2.04 ± 0.20 | 2.02 ± 0.31 |
Phosphorus (mg/dL) | 3.76 ± 0.96 | 3.72 ± 0.97 |
IR indices | ||
Insulin (μUI/mL) | 5.59 ± 6.62 | 6.68 ± 7.27 |
C-peptide (ng/dL) | 1.42 ± 1.21 | 1.83 ± 1.37 |
HOMA-IR1 (insulin) | 1.42 ± 1.93 | 1.61 ± 2.01 |
HOMA-IR2 (insulin) | 0.74 ± 0.89 | 0.88 ± 0.99 |
HOMA-IR1 (C-peptide) | 2.47 ± 0.9 | 2.63 ± 1.12 |
HOMA-IR2 (C-peptide) | 1.08 ± 0.86 | 1.33 ± 1.1 |
QUICKI | 0.36 ± 0.07 | 0.36 ± 0.06 |
Triglyceride/HDLc ratio | 1.46 ± 1.68 | 1.44 ± 1.11 |
Correlation of 25OHD with | Pearson/Spearman Coefficients | p-Value |
---|---|---|
Age (years) | 0.189 | <0.001 * |
BMI (kg/m−2) | −0.182 | 0.001 * |
Hba1c (%) | 0.121 | 0.024 * |
Insulin (μUI/mL) | 0.057 | 0.287 |
C-peptide (ng/dL) | 0.185 | <0.001 * |
HOMA-IR1 (insulin) | 0.041 | 0.442 |
HOMA–IR2 (insulin) | 0.051 | 0.336 |
HOMA-IR1 (C-peptide) | 0.154 | 0.004 * |
HOMA-IR2 (C-peptide) | 0.174 | 0.001 * |
QUICKI | −0.041 | 0.442 |
Total cholesterol (TC) (mg/dL) LDLc (mg/dL) | −0.240 −0.180 | <0.001 * 0.001 * |
TSH (μUI/mL) | −0.127 | 0.017 * |
Calcium (mg/dL) Magnesium (mg/dL) | 0.138 −0.05 | 0.01 * 0.355 |
Term | Coeff. | Std. Coeff. | S.E. | t. Value | p-Value |
---|---|---|---|---|---|
(Intercept) | 70.4367 | −0.133 | 11.155 | 6.314 | 1.00 × 10−9 |
25OHD | −0.092 | −0.086 | 0.051 | −1.780 | 0.076 |
BMI | 0.511 | 0.147 | 0.174 | 2.932 | 0.003 *** |
LDLc | 0.004 | 0.008 | 0.021 | 0.186 | 0.852 |
HDLc | −0.019 | −0.021 | 0.042 | −0.446 | 0.655 |
TG | −0.006 | −0.023 | 0.013 | −0.493 | 0.622 |
fT4 | 0.399 | 0.004 | 3.899 | 0.102 | 0.918 |
TSH | 0.072 | 0.010 | 0.194 | 0.372 | 0.709 |
Mg | 3.709 | 0.063 | 2.389 | 1.552 | 0.121 |
Age | 0.235 | 0.191 | 0.058 | 4.048 | 6.59 × 10−5 |
Term | Coeff. | Std. coeff. | S.E. | t. Value | p-Value |
---|---|---|---|---|---|
(Intercept) | 3.910 | 0 | 0.479 | 8.156 | 1.09 × 10−14 *** |
25OHD | 0.005 | 0.139 | 0.002 | 2.420 | 0.016 * |
BMI | 0.030 | 0.244 | 0.007 | 4.172 | 3.99 × 10−5 *** |
LDLc | −0.001 | −0.076 | 0.0009 | −1.343 | 0.180 |
HDLc | 0.007 | 0.243 | 0.001 | 4.078 | 5.88× 10−5 *** |
TG | 0.0008 | 0.072 | 0.0006 | 1.218 | 0.224 |
fT4 | −0.326 | −0.1006 | 0.178 | −1.831 | 0.068 |
TSH | −0.015 | −0.066 | 0.012 | −1.216 | 0.224 |
Mg | −0.258 | −0.122 | 0.111 | −2.319 | 0.021 * |
Age | 0.009 | 0.204 | 0.002 | 3.645 | 0.0003 *** |
Term | Coeff | Std. coeff | S.E. | t. value | p-value |
---|---|---|---|---|---|
(Intercept) | −0.431 | −0.245 | 0.522 | −0.825 | 0.409 |
25OHD | 0.002 | 0.042 | 0.002 | 1.177 | 0.239 |
BMI | 0.048 | 0.266 | 0.008 | 5.666 | 3.48 × 10−8 *** |
LDLc | −0.002 | −0.092 | 0.0009 | −2.424 | 0.015 * |
HDLc | −0.001 | −0.027 | 0.001 | −0.671 | 0.502 |
TG | 0.001 | 0.085 | 0.0008 | 1.532 | 0.126 |
fT4 | −0.219 | −0.046 | 0.145 | −1.507 | 0.132 |
TSH | 0.014 | 0.041 | 0.017 | 0.834 | 0.404 |
Mg | 0.110 | 0.036 | 0.120 | 0.915 | 0.360 |
Age | 0.001 | 0.024 | 0.002 | 0.724 | 0.469 |
Term | Coeff. | Std Coeff. | S.E. | t. Value | p-Value |
---|---|---|---|---|---|
(Intercept) | 0.483 | 0.001 | 0.041 | 11.727 | 2.67 × 10−26 *** |
25OHD | −0.0003 | −0.120 | 0.0001 | −2.191 | 0.029 * |
BMI | −0.004 | −0.436 | 0.0005 | −7.000 | 1.74 × 10−11 *** |
LDLc | 0.0001 | 0.095 | 6.45 × 10−5 | 1.830 | 0.068 |
HDLc | 3.37 × 10−5 | 0.014 | 0.0001 | 0.251 | 0.801 |
TG | −0.0001 | −0.149 | 4.57 × 10−5 | −2.531 | 0.011 * |
fT4 | 0.021 | 0.089 | 0.016 | 1.326 | 0.185 |
TSH | −0.0004 | −0.025 | 0.0008 | −0.552 | 0.581 |
Mg | −0.005 | −0.037 | 0.007 | −0.784 | 0.433 |
Age | −0.0001 | −0.056 | 0.0002 | −0.895 | 0.371 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, R.A.; Guja, C.; Pantea-Stoian, A.; Staden, R.I.Ș.-v.; Popa-Tudor, I.; Ștefan, S.D.; Ancuceanu, R.; Serafinceanu, C.; Ionescu Tîrgoviște, C. No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone Concentrations in a Romanian Observational Study. Medicina 2021, 57, 25. https://doi.org/10.3390/medicina57010025
Stoica RA, Guja C, Pantea-Stoian A, Staden RIȘ-v, Popa-Tudor I, Ștefan SD, Ancuceanu R, Serafinceanu C, Ionescu Tîrgoviște C. No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone Concentrations in a Romanian Observational Study. Medicina. 2021; 57(1):25. https://doi.org/10.3390/medicina57010025
Chicago/Turabian StyleStoica, Roxana Adriana, Cristian Guja, Anca Pantea-Stoian, Raluca Ioana Ștefan-van Staden, Ioana Popa-Tudor, Simona Diana Ștefan, Robert Ancuceanu, Cristian Serafinceanu, and Constantin Ionescu Tîrgoviște. 2021. "No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone Concentrations in a Romanian Observational Study" Medicina 57, no. 1: 25. https://doi.org/10.3390/medicina57010025
APA StyleStoica, R. A., Guja, C., Pantea-Stoian, A., Staden, R. I. Ș.-v., Popa-Tudor, I., Ștefan, S. D., Ancuceanu, R., Serafinceanu, C., & Ionescu Tîrgoviște, C. (2021). No Association between 25-Hydroxyvitamin D and Insulin Resistance or Thyroid Hormone Concentrations in a Romanian Observational Study. Medicina, 57(1), 25. https://doi.org/10.3390/medicina57010025