Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports
Abstract
1. Introduction
2. Materials and Methods
2.1. Procedures, Ethics Statement and Participants
2.2. Anthropometry
2.3. Air Displacement Plethysmography (ADP)
2.4. Dual-Energy X-ray Absorptiometry (DXA)
2.5. Wingate Anaerobic Test (WAnT)
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Green, S.A. Definition and systems view of anaerobic capacity. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 69, 168–173. [Google Scholar] [CrossRef]
- Winter, E.M.; MacLaren, D.P. Assessment of maximal-intensity exercise. In Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data; Eston, R.G., Reilly, T., Eds.; Routledge: London, UK, 2001; Volume 2, pp. 319–352. [Google Scholar]
- Khanna, G.L.; Manna, I. Study of physiological profile of Indian boxers. J. Sports Sci. Med. 2006, 5, 90–98. [Google Scholar] [PubMed]
- Gacesa, J.Z.P.; Barak, O.F.; Grujic, N.G. Maximal anaerobic power test in athletes of different sport disciplines. J. Strength Cond. Res. 2009, 23, 751–755. [Google Scholar] [CrossRef]
- Bridge, C.A.; da Silva Santos, J.F.; Chaabene, H.; Pieter, W.; Franchini, E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014, 44, 713–733. [Google Scholar] [CrossRef]
- Ayalon, A.; Inbar, O.; Bar-Or, O. Relationships among measurements of explosive strength and anaerobic power. In Biomechanics IV; International Series on Sport Sciences; Nelson, R.C., Morehouse, C.A., Eds.; University Press: Baltimore, MD, USA, 1974; Volume 1, pp. 572–577. [Google Scholar]
- Bar-Or, O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Inbar, O.; Bar-Or, O.; Skinner, J.S. The Wingate Anaerobic Test; Human Kinetics: Champaign, IL, USA, 1996. [Google Scholar]
- Van Praagh, E.; Dore, E. Short-term muscle power during growth and maturation. Sports Med. 2012, 32, 701–728. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J. Appl. Physiol. 1949, 2, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Ramsbottom, R.; Williams, C. Scaling physiological measurements for individuals of different body size. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.M.; Coelho-e-Silva, M.J.; Figueiredo, A.J.; Gonçalves, C.E.; Phillippaerts, R.M.; Castagna, C.; Malina, R.M. Predictors of maximal short-term power outputs in basketball players 14–16 years. Eur. J. Appl. Physiol. 2011, 111, 789–796. [Google Scholar] [CrossRef] [PubMed]
- Nevill, A.M.; Holder, R.L. Modelling maximum oxygen uptake: A case-study in non-linear regression model formulation and comparison. J. R. Stat. Soc. Ser. C Appl. Stat. 1994, 43, 653–666. [Google Scholar] [CrossRef]
- Nevill, A.M.; Stewart, A.D.; Olds, T.; Holder, R. Are adult physiques geometrically similar? The dangers of allometric scaling using body mass power laws. Am. J. Phys. Anthrop. 2004, 124, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Castanheira, J.; Machado-Rodrigues, A.M.; Cyrino, E.S.; Sherar, L.B.; Esliger, D.W.; Elferink-Gemser, M.T.; Malina, R.M. The effects of sports participation on the development of left ventricular mass in adolescent boys. Am. J. Hum. Biol. 2015, 27, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Lohmann, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Coelho-e-Silva, M.J.; Rebelo-Gonçalves, R.; Martinho, D.; Ahmed, A.; Luz, L.G.O.; Duarte, J.P.; Severino, V.; Baptista, R.C.; Valente-dos-Santos, J.; Vaz, V.; et al. Reproducibility of estimated optimal peak output using a force-velocity test on a cycle ergometer. PLoS ONE 2018, 13, e0193234. [Google Scholar] [CrossRef] [PubMed]
- Siri, W.E. Body composition from fluid spaces and density: Analysis of methods. Nutrition 1993, 9, 480–491. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, A.J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Sardinha, L.B.; Santos, D.A.; Silva, A.M.; Coelho-e-Silva, M.J.; Raimundo, A.M.; Moreira, H.; Santos, R.; Vale, S.; Baptista, F.; Mota, J. Prevalence of overweight, obesity, and abdominal obesity in a representative sample of Portuguese adults. PLoS ONE 2012, 7, e47883. [Google Scholar] [CrossRef]
- Doria, C.; Veicsteinas, A.; Limonta, E.; Maggioni, M.A.; Aschieri, P.; Eusebi, F.; Fanò, G.; Pietrangelo, T. Energetics of karate (kata and kumite techniques) in top-level athletes. Eur. J. Appl. Physiol. 2009, 107, 603–610. [Google Scholar] [CrossRef]
- Sbriccoli, P.; Bazzucchi, I.; Di Mario, A.; Marzattinocci, G.; Felici, F. Assessment of maximal cardiorespiratory performance and muscle power in the Italian Olympic judoka. J. Strength Cond. Res. 2007, 21, 738–744. [Google Scholar]
- Taaffe, D.; Pieter, W. Physical and physiological characteristics of elite taekwondo athletes. In Commonwealth and International Conference Proceedings; Sport Science Part 1; New Zealand Association of Health, Physical Education, and Recreation: Auckland, New Zealand, 1990; Volume 3, pp. 80–88. [Google Scholar]
- Zabukovec, R.; Tiidus, P.M. Physiological and anthropometric profile of elite kickboxers. J. Strength Cond. Res. 1995, 9, 240–242. [Google Scholar]
- Yoon, J. Physiological profiles of elite senior wrestlers. Sports Med. 2002, 32, 225–233. [Google Scholar] [CrossRef]
- Lovell, D.I.; Bousson, M.; McLellan, C.A. The Use of Performance Tests for the Physiological Monitoring of Training in Combat Sports: A Case Study of a World Ranked Mixed Martial Arts Fighter. J. Athl. Enhanc. 2013, 2, 2–6. [Google Scholar] [CrossRef]
- Jaafar, H. Allometric scaling of power-force-velocity ergometry profiles in men. Ann. Hum. Biol. 2017, 44, 648–651. [Google Scholar] [CrossRef] [PubMed]
- Lolli, L.; Batterham, A.M.; Weston, K.L.; Atkinson, G. Size Exponents for scaling maximal oxygen uptake in over 6500 humans: A systematic review and meta-analysis. Sports Med. 2017, 47, 1405–1419. [Google Scholar] [CrossRef] [PubMed]
- Hubner-Wozniak, E.; Kosmol, A.; Lutoslawska, G.; Bem, E.Z. Anaerobic performance of arms and legs in male and female free style wrestlers. J. Sci. Med. Sport 2004, 7, 473–480. [Google Scholar] [CrossRef]
- Demirkan, E.; Koz, M.; Kutlu, M.; Favre, M. Comparison of physical and physiological profiles in elite and amateur young wrestlers. J. Strength Cond. Res. 2015, 29, 1876–1883. [Google Scholar] [CrossRef]
- Chaabene, H.; Negra, Y.; Bouguezzi, R.; Mkaouer, B.; Franchini, E.; Julio, U.; Hachana, Y. Physical and physiological attributes of wrestlers: An update. J. Strength Cond. Res. 2017, 31, 1411–1442. [Google Scholar] [CrossRef]
- Bussweiler, J.; Hartmann, U. Energetics of basic karate kata. Eur. J. Appl. Physiol. 2012, 112, 3991–3996. [Google Scholar] [CrossRef]
- Nevill, A.M.; Holder, R.L.; Baxter-Jones, A.; Round, J.M.; Jones, D.A. Modeling developmental changes in strength and aerobic power in children. J. Appl. Physiol. 1998, 84, 963–970. [Google Scholar] [CrossRef]
- McMahon, T. Size and shape in biology. Science 1973, 179, 1201–1204. [Google Scholar] [CrossRef]
- Reljic, D.; Hassler, E.; Jost, J.; Friedmann-Bette, B. Rapid weight loss and the body fluid balance and hemoglobin mass of elite amateur boxers. J. Athl. Train. 2013, 48, 109–117. [Google Scholar] [CrossRef]
- Giovani, N.; Nicolaidis, P. Differences in force-velocity characteristics of upper and lower limbs of non-competitive male boxers. Int. J. Exerc. Sci. 2012, 5, 106–113. [Google Scholar] [PubMed]
- Chaabène, H.; Tabben, M.; Mkaouer, B.; Franchini, E.; Negra, Y.; Amara, S.; Chaabène, R.B.; Hachana, Y. Amateur boxing: Physical and physiological attributes. Sports Med. 2015, 45, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, H.; Peres, G.; Monod, H. Standard anaerobic exercise tests. Sports Med. 1987, 4, 268–289. [Google Scholar] [CrossRef]
- Jaafar, H.; Rouis, M.; Attiogbe, E.; Vandewalle, H.; Driss, T.A. Comparative study between the wingate and force-velocity anaerobic cycling tests: Effect of physical fitness. Int. J. Sports Physiol. Perform. 2016, 11, 48–54. [Google Scholar] [CrossRef] [PubMed]
Variables (Xi) | Unit | Range | Mean | Standard Deviation | Normality | Correlation (Xi·Yi) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(min–max) | Value | SEM | (95% CI) | K-S Value | p | Y1: WAnT-PP | Y2: WAnT-MP | |||||
r | p | r | p | |||||||||
Anthropometry | ||||||||||||
Stature | cm | 156.7–190.8 | 174.3 | 0.9 | (172.5 to 176.1) | 7.2 | 0.064 | 0.20 | 0.478 | ≤0.01 | 0.650 | ≤0.01 |
Body Mass | kg | 49.5–113.5 | 73.6 | 1.5 | (70.6 to 76.7) | 12.1 | 0.110 | ≤0.05 | 0.513 | ≤0.01 | 0.676 | ≤0.01 |
Air Displacement Plethysmography | ||||||||||||
Body Volume | L | 46.6–110.2 | 69 | 1.5 | (66.0 to 72.1) | 12.1 | 0.111 | ≤0.05 | ||||
Body Density | kg/L | 1.013–1.093 | 1.071 | 0.002 | (1.067 to 1.075) | 0.016 | 0.144 | ≤0.01 | ||||
Thoracic Gas Volume | L | 2.870–4.574 | 3.751 | 0.044 | (3.664 to 3.839) | 0.351 | 0.058 | 0.20 | ||||
Fat Mass | % | 2.7–38.8 | 12.7 | 0.9 | (10.9 to 14.4) | 7.0 | 0.140 | ≤0.01 | ||||
kg | 2.2–42.4 | 9.9 | 0.9 | (8.0 to 11.7) | 7.4 | 0.212 | ≤0.01 | |||||
Fat-Free Mass | kg | 42.9–85.1 | 64.0 | 1.01 | (62.0 to 66) | 8.1 | 0.090 | 0.20 | 0.717 | ≤0.01 | 0.718 | ≤0.01 |
Dual energy X-Ray Absorptiometry | ||||||||||||
Lower Limbs Lean Soft Tissue | kg | 11.9–29 | 20.5 | 0.4 | (19.7 to 21.2) | 2.9 | 0.072 | 0.20 | 0.622 | ≤0.01 | 0.746 | ≤0.01 |
Wingate Test | ||||||||||||
Load (Braking Force) | kg | 3.8–8.6 | 5.6 | 0.1 | (5.3 to 5.8) | 0.9 | 0.130 | ≤0.01 | ||||
WAnT-PP | watt | 514–1527 | 923 | 21 | (882 to 965) | 166 | 0.070 | 0.20 | ||||
WAnT-MP | watt | 357–871 | 606 | 10 | (585 to 627) | 83 | 0.069 | 0.20 |
Yi: Performance Outputs | Xi: Size Descriptor | log a + k × log (Size Descriptor) + log ε | Correlation (Yi/Xik, Xi) | |||||
---|---|---|---|---|---|---|---|---|
Intercept | k Exponent (95% CI) | r | R2 | p | r | (95% CI) * | ||
WAnT-PP | Stature | −4.725 | 2.236 (1.281 to 3.191) | 0.511 | 0.261 | <0.01 | −0.018 | (−0.262 to 0.228) |
Body Mass | 4.057 | 0.643 (0.400 to 0.886) | 0.558 | 0.311 | <0.01 | −0.031 | (−0.274 to 0.216) | |
FFM | 2.473 | 1.045 (0.801 to 1.290) | 0.735 | 0.540 | <0.01 | −0.011 | (−0.256 to 0.235) | |
LL-LST | 4.200 | 0.868 (0.635 to 1.101) | 0.687 | 0.472 | <0.01 | −0.015 | (−0.259 to 0.231) | |
WAnT-MP | Stature | −4.990 | 2.207 (1.547 to 2.867) | 0.647 | 0.420 | <0.01 | −0.016 | (−0.260 to 0.230) |
Body Mass | 3.675 | 0.635 (0.474 to 0.796) | 0.708 | 0.501 | <0.01 | −0.041 | (−0.283 to 0.206) | |
FFM | 2.912 | 0.840 (0.656 to 1.023) | 0.758 | 0.574 | <0.01 | −0.019 | (−0.263 to 0.227) | |
LL-LST | 4.053 | 0.779 (0.627 to 0.932) | 0.792 | 0.627 | <0.01 | −0.024 | (−0.268 to 0.223) |
log a + k1 × log (X1) + k2 × log (X2) + log ε | Model Summary | |||||||
---|---|---|---|---|---|---|---|---|
Yi: Performance Outputs | Constant | Xi: Size Descriptors | k Exponent | Partial Correlation | R | R2 Adjusted | ||
Value | p | value | (95% CI) | |||||
WAnT-PP | 2.736 | ≤0.01 | X1: FFM | 0.800 | 0.307 to 1.293 | 0.384 | 0.742 | 0.550 |
WAnT-MP | 3.474 | ≤0.01 | X1: FFM | 0.316 | −0.024 to 0.656 | 0.232 | 0.804 | 0.647 |
n | CA (Years) | Stature (cm) | BM (kg) | FM | WAnT-PP | WAnT-MP | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
% | Technique | (watt) | (watt.kg−1) | (watt) | (watt.kg−1) | ||||||
Present study | all | 64 | 24 ± 5 | 174.3 ± 7.2 | 73.6 ± 12.1 | 12.7 ± 7.0 | ADP | 923 ± 166 | 696 ± 83 | ||
Boxing | 11 | 26 ± 4 | 178.2 ± 7.1 | 78.3 ± 15.3 | 16.2 ± 8.4 | ADP | 890 ± 134 | 627 ± 100 | |||
Kickboxing | 10 | 23 ± 3 | 173.9 ± 6.8 | 71.3 ± 10.1 | 9.2 ± 2.3 | ADP | 970 ± 135 | 608 ± 78 | |||
Taekwondo | 9 | 23 ± 3 | 174.5 ± 6.5 | 75.7 ± 14.8 | 16.8 ± 9.9 | ADP | 907 ± 146 | 601 ± 86 | |||
Karate | 9 | 22 ± 2 | 176.2 ± 6.5 | 71.2 ± 8.4 | 10.6 ± 7.0 | ADP | 1036 ± 112 | 650 ± 66 | |||
Judo | 10 | 22 ± 2 | 173.5 ± 5.7 | 74.1 ± 10.7 | 7.5 ± 4.1 | ADP | 1014 ± 212 | 598 ± 60 | |||
Wrestling | 5 | 25 ± 8 | 163.0 ± 6.4 | 62.2 ± 9.2 | 12.9 ± 3.3 | ADP | 743 ± 174 | 507 ± 99 | |||
Jiu-Jitsu | 10 | 28 ± 6 | 174.9 ± 6.7 | 76.5 ± 11.5 | 15.5 ± 4.8 | ADP | 828 ± 105 | 604 ± 68 | |||
Popadic Gacesa et al. [4] | Boxing | 14 | 22.2 | 179.5 | 77 | 715 | 9.3 | 517 | 6.7 | ||
Zabukovec & Tiidus [23] | Kickboxing | 4 | 27 | 176.7 | 72.6 | 1360 | 18.8 | 761 | 10.5 | ||
Taaffe & Pieter [22] | Taekwondo | 14 | 72.5 | 7.5 | Skinfolds | 865 | 11.8 | 671 | 9.2 | ||
Doria et al. [20] | Karate (Kata) | 3 | 30.7 | 176 | 78.5 | 9.7 | 5.7 | ||||
Karate (Kumite) | 3 | 24 | 181 | 76.3 | 9.6 | 7.8 | |||||
Sbriccoli et al. [21] | Judo | 6 | 26 | 180 | 109 | 1236 | 558 | ||||
Popadic Gacesa et al. [4] | Wrestling | 17 | 20.6 | 175.4 | 79.4 | 765 | 9.9 | 516 | 6.6 | ||
Yoon [24] | Wrestling | 8 | 11.2 | 6.7 | |||||||
Lovell et. [25] | Jiu-Jitsu | 1 | 25 | 182 | 90.2 | 8.5 | Skinfolds | 798 | 8.9 | 521 | 5.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho-e-Silva, M.J.; Sousa-e-Silva, P.; Morato, V.S.; Costa, D.C.; Martinho, D.V.; Rama, L.M.; Valente-dos-Santos, J.; Werneck, A.O.; Tavares, Ó.M.; Conde, J.; et al. Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina 2020, 56, 480. https://doi.org/10.3390/medicina56090480
Coelho-e-Silva MJ, Sousa-e-Silva P, Morato VS, Costa DC, Martinho DV, Rama LM, Valente-dos-Santos J, Werneck AO, Tavares ÓM, Conde J, et al. Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina. 2020; 56(9):480. https://doi.org/10.3390/medicina56090480
Chicago/Turabian StyleCoelho-e-Silva, Manuel J., Paulo Sousa-e-Silva, Vinícius S. Morato, Daniela C. Costa, Diogo V. Martinho, Luís M. Rama, João Valente-dos-Santos, André O. Werneck, Óscar M. Tavares, Jorge Conde, and et al. 2020. "Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports" Medicina 56, no. 9: 480. https://doi.org/10.3390/medicina56090480
APA StyleCoelho-e-Silva, M. J., Sousa-e-Silva, P., Morato, V. S., Costa, D. C., Martinho, D. V., Rama, L. M., Valente-dos-Santos, J., Werneck, A. O., Tavares, Ó. M., Conde, J., Castanheira, J. M., Soles-Gonçalves, R., & Duarte, J. P. (2020). Allometric Modeling of Wingate Test among Adult Male Athletes from Combat Sports. Medicina, 56(9), 480. https://doi.org/10.3390/medicina56090480